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Abstract: Polymerization-induced self-assembly (PISA) has become an effective strategy to synthesize
high solid content polymeric nanoparticles with various morphologies in situ. In this work, one-step
PISA was achieved by in situ photocontrolled bromine-iodine transformation reversible-deactivation
radical polymerization (hereinafter referred to as Photo-BIT-RDRP). The water-soluble macroinitiator
precursor α-bromophenylacetate polyethylene glycol monomethyl ether ester (mPEG1k-BPA)
was synthesized in advance, and then the polymer nanomicelles (mPEG1k-b-PBnMA and
mPEG1k-b-PHPMA, where BnMA means benzyl methacrylate and HPMA is hydroxypropyl
methacrylate) were successfully formed from a PISA process of hydrophobic monomer of BnMA or
HPMA under irradiation with blue LED light at room temperature. In addition, the typical living
features of the photocontrolled PISA process were confirmed by the linear increase of molecular
weights of the resultant amphiphilic block copolymers with monomer conversions and narrow
molecular weight distributions (Mw/Mn < 1.20). Importantly, the photocontrolled PISA process is
realized by only one-step method by using in situ photo-BIT-RDRP, which avoids the use of transition
metal catalysts in the traditional ATRP system, and simplifies the synthesis steps of nanomicelles. This
strategy provides a promising pathway to solve the problem of active chain end (C-I) functionality
loss in two-step polymerization of BIT-RDRP.

Keywords: photopolymerization; reversible-deactivation radical polymerization (RDRP); polymerization-
induced self-assembly (PISA); bromine-iodine transformation; photocontrolled

1. Introduction

In the past 20 years, the development of polymer synthesis technology has brought convenience to
the preparation of polymers with different topologies, such as linear, grafted, branched, and ring-shaped.
Intensive studies have shown that under certain conditions, existing polymers with different structures
can self-assemble to form structured aggregates. Among these polymers, the linear block copolymer
has the simplest structure, so the investigation of its self-assembly behaviour is the most extensive and
in-depth [1,2]. The self-assembly of block copolymers has a wide range of applications in materials,
chemistry, nanoscience, and biomedicine [3,4]. However, in the conventional method, in order to
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obtain a better nanostructure morphology, the concentration of the block copolymer solution needs to
be highly diluted [5,6], which limits its potential application. In recent years, polymerization-induced
self-assembly (PISA) has attracted great attention [7]. In a PISA, the polymerization and the
self-assembly processes are performed simultaneously, so the synthesis steps are greatly simplified
compared to the conventional self-assembly method [8,9]. In addition, PISA has many advantages over
traditional methods, such as rich assembly morphologies [7], high solid content [10], and suitability for
various solvents [11,12], and the morphologies of the nanostructures can be controlled by adjusting the
molar ratio of hydrophilic and hydrophobic segments during PISA process [13]. PISA is theoretically
suitable for all reversible-deactivation radical polymerization (RDRP) such as atom transfer radical
polymerization (ATRP), reversible addition-fragmentation chain transfer (RAFT) polymerization and
iodine transfer radical polymerization (ITP) [7,14–17]. However, the more in-depth study of PISA is
currently carried out by RAFT polymerization due to the absence of transition metal during PISA
process [7,18–21].

Alkyl iodides (R-I) are usually used as initiators and regulators in iodine-mediated RDRP [22–25].
However, the bond dissociation energy of the C-I bond is relatively low, so alkyl iodides are
usually unstable and need special storage conditions, which limits the practical application of this
polymerization method [26]. Recently, Goto’s group [26] and our group [27] reported thermal-initiated
and photocontrolled in situ bromine-iodine transformation RDRP (BIT-RDRP) strategies, respectively.
This method generates R-I in situ in a polymerization system by a nucleophilic substitution reaction of
a relatively stable atom transfer radical polymerization (ATRP) initiator alkyl bromide (R-Br) with
NaI (Scheme 1). Since commercially available ATRP R-Br initiators are used as the precursors in a
BIT-RDRP process, this strategy avoids the introduction of transition metal catalysts usually used in
a transition metal-mediated ATRP system. On the other hand, a PISA usually requires a two-step
procedure. Generally, the solvent-soluble block is obtained in the first step, and then it is used as
a macroinitiator to initiate the polymerization of the nucleating monomer to form an amphiphilic
block copolymer in situ [28]. Very recently, our group introduced the first photo-BIT-RDRP into a
two-step PISA process, and different micelle morphologies (spherical micelles and vesicle aggregates)
were controllably generated by the two-step photo-BIT-RDRP-PISA method using polyethylene glycol
methacrylate (PEGMA) and benzyl methacrylate (BnMA) as hydrophilic and hydrophobic monomer,
respectively [29]. Through this strategy, we have successfully established a new PISA method by
combination the advantages of both ATRP and iodine-mediated RDRP, which avoiding the use of
transition metals in the ATRP and overcoming the shortcomings of the unstability of alkyl iodide
initiator in the iodine-mediated RDRP method [29].
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It is well-known that the functional chain end of the polymer-I (C-I bond) is relatively active and
easy to cause an unavoidable functionality loss during the process of conventional polymerization
post-treatment. Therefore, there is a drawback of functionality loss of the macroinitiator polymer-I
obtained in the first step for the two-step photo-BIT-RDRP-PISA mentioned above. Therefore, it is highly
desired to construct a one-step in situ bromine-iodine transformation RDRP-PISA (BIT-RDRP-PISA)
system, especially photo-BIT-RDRP-PISA system, which will simplify the polymerization procedure
and reduce the loss of active C-I chain ends significantly. Based on this purpose, in this work,
we first focused on the synthesis of a water-soluble alkyl bromide as a macroinitiator precursor
(mPEG1k-BPA) instead of R-Br in the two-step photo-BIT-RDRP-PISA. Subsequently, the one-step
photo-BIT-RDRP-PISA process (Scheme 2) was smoothly carried out by using mPEG1k-IPA, a product of
in situ bromine-iodine transformation nucleophilic substitution of mPEG1k-BPA with NaI [27,29], as the
alkyl iodide macroinitiator to initiate a PISA process in methanol in the presence of the hydrophobic
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monomer (BnMA or hydroxypropyl methacrylate (HPMA)) under irradiation with blue LED light at
room temperature.
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2. Experimental

2.1. Materials

Benzyl methacrylate (BnMA, 98%, J&K, Shanghai, China) and hydroxypropyl methacrylate
(HPMA, 99%, Energy Chemical, Shanghai, China) were passed through an alumina column to
remove the inhibitor. Polyethylene glycol monomethyl ether (mPEG1k, Mn = 1000 g/mol, 97%) was
purchased from TCI (Shanghai, China). 2-Bromo-2-phenylacetic acid (98%), sodium iodide (97%)
and triethylamine (99.5%) were also purchased from TCI (Shanghai, China). Dichlorosulfane (98%),
anhydrous methanol (99.5%), anhydrous ether, tetrahydrofuran (99.5%) and all other chemicals were
obtained from Shanghai Chemical Reagents Co. Ltd. (Shanghai, China) and used as received unless
otherwise mentioned.

2.2. Characterization

The number average molecular weight (Mn,GPC) and molecular weight distribution (Mw/Mn)
values of the resulting polymers were determined using a HLC-8320 gel permeation chromatograph
(GPC, TOSOH, Kyoto, Japan) equipped with a refractive-index detector (TOSOH), using a TSKgel
guard column SuperMP-N (4.6 × 20 mm) and two TSKgel SupermultiporeHZ-N (4.6 × 150 mm),
with measurable molecular weights ranging from 5 × 102 to 5 × 105 g/mol. THF was used as an eluent
at a flow rate of 0.35 mL/min operated at 40 ◦C. GPC samples were injected using a TOSOH plus
autosampler and calibrated with polymethyl methacrylate (PMMA) standards purchased from TOSOH.
1H NMR spectra of the polymers were recorded on a Bruker (Beijing, China) 300 MHz nuclear magnetic
resonance (NMR) instrument using CDCl3 or DMSO-d6 as the solvent and tetramethylsilane (TMS)
as an internal standard at ambient temperature. The UV-visible absorption spectrum was measured
by a UV-2600 UV-Vis spectrophotometer (Shimadzu, Kyoto, Japan) with methanol as the solvent.
The morphology of the polymeric nanoparticles was obtained by a TecnaiG22 transmission electron
microscope (TEM, FEI, Hillsboro, OH, USA) with an accelerating voltage of 120 kV. Take 4 µL of the
polymer mixture solution in a dry and clean ampule, dilute with 5 mL of methanol solvent, and then
pipet 10 µL of the solution (0.5 mg/mL) onto a 200 mesh carbon-coated copper mesh. After standing for
40 s, filter paper was used to remove excess solvent from under the copper mesh. In order to facilitate
the observation of the morphology of the polymer nanoparticles, it is necessary to dye the aqueous
solution with a concentration of 1.0% w/w of phosphotungstic acid. Therefore, 10 µL of an aqueous
solution of phosphotungstic acid was pipetted onto a copper mesh to which polymeric nanoparticles
had been dropped. After standing for 20 s, filter paper was used to remove excess solvent from under
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the copper mesh. Dynamic light scattering (DLS) measurements were conducted using a NanoBrook
90 Plus instrument (BIC, Huntsville, NY, USA). The intensity weighted mean hydrodynamic diameter
and the particle size distribution were obtained from the analysis of the autocorrelation functions using
the cumulants method. At least three measurements at 25 ◦C were made for each sample (0.10% w/w
dispersions) with an equilibrium time of 2 min before starting the measurement.

2.3. Synthesis and Characterization of mPEG1k-BPA

The polyethylene glycol monomethyl ether 2-bromo-2-phenylacetate (mPEG1k-BPA) was
synthesized according to the method in the reference [30]. The typical procedure is shown in
Scheme 3. Firstly, 20 mL of dichlorosulfane and 8.6 g of 2-bromo-2-phenylacetic acid (40 mmol)
were added to a 50 mL three-necked flask. The temperature was raised to 70 ◦C under magnetic
stirring and refluxed for 6 h. After cooling to room temperature, the remaining dichlorosulfane was
removed by rotary evaporation to obtain 2-bromo-2-phenylacetyl chloride (1). Its structure was clearly
characterized by NMR spectroscopy (1H-NMR (300 MHz, CDCl3, TMS, δ, ppm): 7.59–7.32 (m, 5H),
5.94 (s, 1H).

Then, in a 250 mL three-necked flask, 8.1 g of mPEG1k, 0.5 mL of triethylamine and 150 mL of
anhydrous dichloromethane were added. 5 g of (1) was added dropwise with a constant pressure
dropping funnel under ice bath (0 ◦C). After the addition was completed, increasing temperature
to 30 ◦C for 36 h. The dichloromethane was removed by rotary evaporation. The product was
dissolved with a small amount of tetrahydrofuran (THF) and then precipitated in anhydrous ether.
This process was repeated three times. Then a white solid (mPEG1k-BPA) was collected by suction
filtration. Its structure was verified by NMR spectroscopy (1H-NMR, 300 MHz, CDCl3, TMS, δ, ppm):
7.60–7.31 (m, 5H), 5.39 (s, 1H), 4.34 (d, 2H), 3.98–3.51(m, 90H), 3.38 (s, 3H), 2.10 (s, 2H).
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2.4. General Procedure for the Polymerization of BnMA or HPMA

We conducted the polymerization in ampules under an argon (Ar) atmosphere, and the light
source is blue light-emitting diode (LED) light strip (λmax = 464 nm, 0.15 mW/cm2). A typical
polymerization procedure for the molar ratio of [BnMA]0/[mPEG1k-BPA]0/[NaI]0/[TEA]0 = 20/1/2/0.5 is
shown as follows: a mixture of mPEG1k-BPA (14.8 mg, 0.015 mmol), NaI (4.4 mg, 0.03 mmol), BnMA
(50 µL, 0.30 mmol), TEA (1.0 µL, 0.0075 mmol), and methanol (0.50 mL) was added to a dried ampule
(2 mL) with a stir bar. The mixed solution was a pale yellow homogeneous solution. After three
freeze-pump-thaw cycles to eliminate the dissolved oxygen and provide an Ar atmosphere, the ampule
was flame-sealed. The mixture was transferred to a stirring device equipped with a blue LED strip,
cooling with an electric fan to remove heat from the LED strip. The polymerization was maintained
at room temperature (25 ◦C). After a desired polymerization time, the ampule was moved to a dark
place, and 20 µL of the polymer solution was pipetted into a solvent of DMSO-d6 and subjected to
1H-NMR characterization for monomer conversion. For the polymerization of HPMA, a mixture of
polymerization solution was obtained with the molar ratio of [HPMA]0/[mPEG1k-BPA]0/[NaI]0/[TEA]0

= 300/1/2/1 (PEG1k-BPA: 14.8 mg, 0.015 mmol; NaI: 4.4 mg, 0.03 mmol; HPMA: 0.5 mL, 3.5 mmol; TEA:
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1.72 µL, 0.012 mmol) in a mixed solvent of 1.67 mL of methanol and 0.83 mL of water, and the rest
procedure was the same as that for the polymerization of BnMA mentioned above.

3. Results and Discussion

3.1. Polymerization Mechanism

Firstly, blue light plays a vital role in the photo-BIT-RDRP system. Our previous research
demonstrated that the type of light source has a significant effect on the monomer conversion,
molecular weight, and molecular weight distribution of the resultant polymers [27]. Compared
with light sources of other wavelengths, the blue light we selected has relatively good control over
the polymerization process. On the other hand, the occurrence and stop of the polymerization
reaction strictly follow the light on and off, which makes the polymerization method have excellent
spatiotemporal controllability [27,29].

As reported by our previous work, the photo-BIT-RDRP process will result in the formation of
a small amount of iodine [27]. Therefore, the UV-vis absorption spectra were used to verify whether
I2 was generated during the polymerization. We measured the UV-visible absorption spectra of TEA,
mPEG1k-BPA and the reaction solution after 7 h of polymerization ([BnMA]0/[mPEG1k-BPA]0/[NaI]0/

[TEA]0 = 20/1/2/0.5) (Figure 1). TEA and mPEG1k-BPA have absorption in the wavelength range of
200–300 nm, and no absorption in the wavelength range of more than 300 nm. However, after 7 h
of polymerization, absorption peaks appeared at 365 nm and 297 nm. In comparison to the UV-vis
absorption spectra of the I2 and I2-TEA complexes, there actually exists the absorption peak of the
resulting I2-TEA complex. This proves that there is indeed a small amount of I2 formation during the
polymerization. On the other hand, the polymerization solution was pale yellow before irradiation
with blue LED light. However, after irradiation, the color of polymerization solution gradually became
darker, which proved the formation of a small amount of iodine again. Therefore, we can propose
the polymerization mechanism of this one-step photo-BIT-RDRP, which is similar with that of typical
reversible complexation mediated polymerization (RCMP) as reported previously [31–34], and is shown
in Scheme 4. The ATRP macroinitiator mPEG1k-BPA (PEG-Br) was first transferred into mPEG1k-IPA
(PEG-I) in the presence of NaI under irradiation with blue LED light. The in situ generated PEG-I was
used as the starting RCMP macroinitiator to initiate the monomer polymerization and therefore to
form the propagating polymer chains Pn-I. It should be noted that the halogen bond interaction can be
formed between TEA and iodine in the presence of catalyst TEA [17,35]. Thereby the C-I bond can
be cleaved easily under irradiation with blue LED light to generate the carbon-centered propagating
radicals (Pn•) and iodine radical/H2O complex (I•/H2O complex). At the same time Pn• can reversibly
combine the iodine radical to form a dormant species Pn-I, and a small amount of the free iodine
radicals can also combine to form I2 during the polymerization process as observed in Figure 1.
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Figure 1. UV-vis absorption spectra of the (1) TEA, (2) mPEG1k-BPA, (3) polymerization conditions: 
[BnMA]0/[mPEG1k-BPA]0/[NaI]0/[TEA]0 = 20/1/2/0.5, VBnMA = 50 μL, under irradiation with blue LED 
light (λmax = 464 nm, 0.15 mW cm−2) at room temperature (25 °C) after 7 h, (4) I2, (5) TEA/I2 = 4:1. The 
samples were diluted with methanol before measurement. 

Figure 1. UV-vis absorption spectra of the (1) TEA, (2) mPEG1k-BPA, (3) polymerization conditions:
[BnMA]0/[mPEG1k-BPA]0/[NaI]0/[TEA]0 = 20/1/2/0.5, VBnMA = 50 µL, under irradiation with blue LED
light (λmax = 464 nm, 0.15 mW cm−2) at room temperature (25 ◦C) after 7 h, (4) I2, (5) TEA/I2 = 4:1.
The samples were diluted with methanol before measurement.
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Scheme 4. Proposed polymerization mechanism by using one-step photo-BIT-RDRP strategy.

3.2. In Situ Photo-BIT-RDRP of BnMA and Its Self-Assembly Behavior

We investigated the polymerization behaviors of BnMA using mPEG1k-BPA as the macroinitiator
under irradiation with blue LED light at room temperature. As can be seen from Figure 2a, ln([M]0/[M])
grows very slowly over time in 0 to 5 h, indicating that the increase in the polymerization degree
of PBnMA before 5 h is not enough to achieve micelle nucleation. However, after 5 h, ln([M]0/[M])
increases linearly with polymerization time. It is due to the increase in viscosity after micelle
nucleation, and the monomer is encapsulated inside mPEG1k-b-PBnMA, resulting in an increase in
local monomer concentration. Therefore, the polymerization rate is significantly accelerated. From
Figure 2b, the molecular weights of the resultant amphiphilic block copolymers increase linearly
with monomer conversion, and the molecular weight distributions keep narrow (Mw/Mn < 1.20).
It is noted that there are some deviations in molecular weights measured by GPC (Mn,GPC) from
the theoretical ones (Mn,th) since PMMA was used as the standard for calibration in GPC; however,
the molecular weights determined by NMR spectra (Mn,NMR) was close to their corresponding Mn,th

values. In addition, as shown in Figure 2c, there is an obvious peak shift after block polymerization
with BnMA. These facts indicate that the photo-BIT-RDRP of BnMA is consistent with the typical
feature of RDRP. The self-assembly morphology of the mPEG1k-b-PBnMAx (x = 3, 8, and 15) at different
degrees of polymerization is shown in Figure 3 (the detailed information is shown in Table 1). Figure 3A
is a topographical view of the block PBnMA with the degree of polymerization (DP) of 3. At this
time, the insoluble segments are shorter, so that the particle size of the micelles formed is small
(about 12.8 nm). In Figure 3B, for DP 8, the particle size increases to 43.2 nm. As shown in Figure 3C,
the particle size of the assembled spherical polymer micelles increased to 177.1 nm correspondingly.
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Figure 2. ln([M]0/[M]) as a function of time (a), number-average molecular weight (Mn,GPC) and
molecular weight distribution (Mw/Mn) versus monomer conversion (b) and GPC elution curves
(c) for photo-BIT-RDRPof BnMA. Polymerization conditions: [BnMA]0/[mPEG1k-BPA]0/[NaI]0/[TEA]0

= 20/1/2/0.5, VBnMA = 50 µL, Vmethanol = 0.5 mL, under irradiation with blue LED light (λmax = 464 nm,
0.15 mW/cm2) at room temperature (25 ◦C); BnMA concentration at 20.0 wt %.
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Table 1. Polymerization of BnMA via photo-BIT-RDRP.

Entry Time(h) Conv. a (%) Mn,th
b (g/mol) Mn,NMR

c (g/mol) Mn,GPC (g/mol) Mw/Mn DP d Particle Size (nm) e

A 5.5 12.8 2000 2000 3300 1.14 3 12.8 ± 2.4
B 7 42.4 3000 3100 4300 1.13 8 43.2 ± 2.0
C 12 77.6 4200 4700 6300 1.17 15 177.1 ± 2.7

Polymerization conditions: [BnMA]0/[mPEG1k-BPA]0/[NaI]0/[TEA]0 = 20/1/2/0.5, VBnMA = 50 µL, Vmethanol = 0.5 mL,
under irradiation with blue LED light (λmax = 464 nm, 0.15 mW cm−2) at room temperature (25 ◦C). a Monomer
conversion was calculated from 1H NMR spectra results. b Mn,th = [BnMA]0/[mPEG1k-BPA]0 ×MBnMA × Conv.% +

Mn,mPEG1k-BPA. c Molecular weight calculated from 1H NMR spectra results. d Degree of polymerization calculated
from Conv.%. e Obtained from TEM images.

3.3. In Situ Photo-BIT-RDRP of HPMA and Its Self-Assembly Behavior

HPMA has considerable solubility in methanol or water, while PHPMA has poor solubility,
especially for high molecular weight PHPMA in water. Therefore, HPMA is also an ideal monomer
for a PISA process. We chose a mixed solution of methanol and water as the solvent. Figure 4 is a
topographical view of the assembly of mPEG1k-b-PHPMAx (x = 75, 105, 181) with different degrees of
polymerization observed by TEM (polymerization information is shown in Table 2). When the DP is 75,
the particle size of the self-assembled nanoparticles is about 34.2 nm. Increasing DP to 105, the particle
size of the nanoparticles increased to 50.1 nm. Further increasing the DP to 181, the nanoparticles
correspondingly increased to 102.9 nm. Therefore, the size of the resultant nanoparticles can be easily
controlled by adjusting the degree of polymerization during the photo-BIT-RDRP-PISA process.Polymers 2020, 12, 150 8 of 10 
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4. Conclusions 

In summary, we have synthesized a water-soluble macroinitiator mPEG1k-BPA and realized a 
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copolymer micelles in situ. This strategy effectively improves the problem of the active chain end (C-
I) loss caused by two-step bromine-iodine transformation RDRP-PISA process, and also greatly 
simplifies the synthesis step, which provides a promising method for the synthesis of polymeric 
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Table 2. Polymerization of HPMA via photo-BIT-RDRP.

Entry Time
(h)

Conv. a

(%)
Mn,th

b

(g/mol)
Mn,GPC
(g/mol) Mw/Mn DP c Particle Size (Ð) d

A 6 25 12,300 17,200 1.34 75 34.2 (0.208)
B 8 35.1 16,700 22,300 1.28 105 50.1 (0.163)
C 12 60.4 27,600 33,500 1.28 181 102.9 (0.260)

Polymerization conditions: [HPMA]0/[mPEG1k-BPA]0/[NaI]0/[TEA]0 = 300/1/2/1, VHPMA = 0.5 mL, Vmethanol = 1.67 mL,
Vwater = 0.83 mL, under irradiation with blue LED light (λmax = 464 nm, 0.15 mW cm−2) at room temperature (25 ◦C).
a Monomer conversion was calculated from 1H NMR spectra results. b Mn,th = [HPMA]0/[mPEG1k-BPA]0 ×MHPMA
× Conv.% + Mn,mPEG1k-BPA. c Degree of polymerization calculated from Conv.%. d Obtained by DLS.

4. Conclusions

In summary, we have synthesized a water-soluble macroinitiator mPEG1k-BPA and realized
a one-step in situ photo-BIT-RDRP-PISA process under irradiation with blue LED light at room
temperature, successfully obtaining mPEG1k-b-PBnMA and mPEG1k-b-PHPMA amphiphilic block
copolymer micelles in situ. This strategy effectively improves the problem of the active chain end (C-I)
loss caused by two-step bromine-iodine transformation RDRP-PISA process, and also greatly simplifies
the synthesis step, which provides a promising method for the synthesis of polymeric nanoparticles by
photo-BIT-RDRP-PISA strategy.
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