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Abstract

Here we utilize a non-Fourier approach to model buoyancy aiding or opposing flow of Max-

well fluid in the region of stagnation-point towards a vertical stretchable surface. Flow field is

permeated by uniform transverse magnetic field. Two different heating processes namely (i)

prescribed surface temperature (PST) and (ii) constant wall temperature (CWT) are ana-

lyzed. Through suitable transformations, the similarity equations are formed which are

treated numerically for a broad range of magnetic interaction parameter. The obtained solu-

tions are compared with available articles under limiting situations and such comparisons

appear convincing. The structure of boundary layer depends on a parameter measuring the

ratio of free stream velocity to the stretching sheet velocity. The momentum transport via

stretching boundary is opposed by both fluid relaxation time and magnetic interaction

parameter. Thermal boundary layer expands as the effects of transverse magnetic field and

thermal relaxation time are amplified. A reduction in heat penetration depth is anticipated for

increasing values of thermal relaxation time. The variation in wall slope of temperature with

increasing thermal relaxation time appears similar at any assigned value of Prandtl number.

A comparative study of aiding and opposition flow situations is presented and deliberated.

Introduction

Non-Newtonian fluids such as polymers, lubricants, granular materials, biological fluids etc.

abound in daily life and in industrial processes, for example, in chemical, food processing and

oil industries. The phenomenon and constitutive relations of such liquids are significantly var-

ied and complex than the traditional viscous fluid dynamics. Viscoelastic materials display

both viscous and elastic behaviors when subjected to the shearing force. The elastic effect arises

due to existence of macromolecules such as polymer molecules which have a high relaxation

time compared to characteristic time. Stress relaxation time is an important characteristic of

these liquids which is the time required for the decay of elastic effects. Some common
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viscoelastic fluids are dough, yoghurt, cheese and gelled products. Viscoelastic fluid models of

rate up involve one or more time derivatives and do not appear as explicit expression for stress

tensor. In the past decade, Maxwell fluid model is frequently preferred by the researchers for

the analysis of boundary layer problems. Maxwell fluid flow in the region of stagnation-point

was analyzed by Sadeghy et al. [1] using spectral collocation point approach. They also made a

comparison of results for Maxwell and second grade models. Consequences of buoyancy force

on stagnation flow of Maxwell liquid near a deforming sheet were elucidated by Kumari and

Nath [2]. Their results predicted that elastic effects have a retarding effect on fluid velocity.

Hayat et al. [3] reported series approximations for electrically conducting flow of Maxwell

fluid around a stagnation-point on a continuously deforming surface. Mukhopadhyay [4]

modeled heat transfer effects in time dependent Maxwell fluid flow near a stretchable plate.

Motsa et al. [5] made use of successive linearization procedure to treat the Maxwell fluid flow

due to shrinking surface. A few important characteristics of boundary layer in Maxwell fluid

were enlightened by Renardy and Wang [6]. Shateyi [7] provided a numerical treatment for

magnetohydrodynamic (MHD) Maxwell fluid flow near a vertical surface considering the

aspects of thermophoresis and chemical reaction. Bhattacharyya et al. [8] investigated multiple

solutions for Maxwell fluid flow near a shrinking permeable boundary. Recently published

material in this direction can be sought through refs. [9–17].

The phenomenon of heat transfer has abundant applications in numerous practical fields

such as cooling towers, food processing, dispersion of temperature/moisture across groove

fields, cooling of small electrical components such as microchips in computer processors,

nanofluid flows, solar water cooling, enhancing performance efficiency of diesel engine oil and

various others. Heat conduction model developed by Fourier [18] is of immense importance

in modeling heat transfer in sundry situations. Foremost drawback of Fourier’s approach is

that it gives a paradoxical prediction that any initial disturbance would instantly alter the

medium under observation. To overcome this drawback, a successful generalization to Fourier

heat flux theory was devised by Cattaneo [19]. He used the concept of thermal relaxation time

which refers to the time needed to achieve steady-state conduction in volume element when it

is subjected to temperature differences. To preserve objectivity constraint, Christov [20] used

the Oldroyd’s upper-convected derivative in place of usual time derivative in Cattaneo’s model

to formulate energy equation. The Cattaneo-Christov approach was utilized by Straughan [21]

to inspect convection in a horizontal layer of incompressible viscous fluid. Tibullo and Zam-

poli [22] proved uniqueness for incompressible flow problems based on Cattaneo-Christov

model. Haddad [23] explored instabilities associated with the thermal transport in Brinkman

layer with thermal relaxation effects. Han et al. [24] developed series approximations for Max-

well fluid flow near a deformable surface considering the aspects of Navier slip and Cattaneo-

Christov conduction. Thermal relaxation effects in rotating viscoelastic fluid flow were ana-

lyzed by Mustafa [25]. He used both numerical and analytical techniques to treat the governing

non-linear system. Khan et al. [26] reported simulations for viscoelastic fluid flow induced by

an exponentially deforming surface considering a non-Fourier approach. Hayat et al. [27]

investigated the onset of Cattaneo-Christov conduction for swirling flow of Jeffrey fluid past a

porous surface. Mushtaq et al. [28] analyzed the Sakiadis flow in the framework of Cattaneo-

Christov theory using two numerical approaches. Salahuddin et al. [29] examined the behavior

of Lorentz force on Williamson fluid flow due to deforming sheet with thermal relaxation

effects. Recently, a number of studies featuring Cattaneo-Christov model are published (see

[30–34] and refs. there in.).

Stagnation flows are particularly important in predicting drag coefficient near stagnation

region of bodies in high speed flows. Fluid flow around a stagnation-point towards a stretchable

sheet has been a compelling research topic because it is met in many metal working and polymer
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extrusion processes. The pioneering study of Heimenz [35] concerning the plane stagnation-

point flow has led to may subsequent research activities. For example, Mahapatra et al. [36] mod-

eled stagnation-point flow of conducting power-law fluid bounded by a stretchable surface. In

this study, numerical calculations were made for full range of magnetic interaction parameter.

Consequence of wall permeability on the stagnation-point flow near a shrinking sheet was dis-

cussed by Bhattacharyya et al. [37]. In another study, Bhattacharyya et al. [38] provided numeri-

cal analysis for MHD fluid flow around a stagnation-point with chemically reactive solute.

Bhattacharyya [39] presented dual solutions for thermal transport in stagnation-point flow con-

sidering variable heat flux at the boundary. Also, Bhattacharyya [40] examined solute transfer in

stagnation-point flow caused by shrinking surface with diffusive mass fluid conditions.

Inspired by the aforementioned studies, we intend to investigate the onset of mixed convec-

tion in Maxwell fluid flow due to heated or cooled vertical surface utilizing Cattaneo-Christov

heat flux model. Flow field is influenced by vertical magnetic field of uniform strength. Studies

presented through [41–47] demonstrate the fact that buoyancy forces resulting from the heat-

ing of the deformable surfaces are useful in terms of drag reduction and heat transfer intensifi-

cation. Unlike previous studies [2], [3], [4] and [9], we consider the correct form of body force

terms representing magnetic and gravitational potentials. Conventional transformations are

adopted to extract local similarity equations which are treated via efficient shooting approach,

the details of which can be found in [28]. For validation purpose, the results are compared

with published papers in special cases and found in complete agreement. Alternative computa-

tional approaches for similar kind of boundary layer problems can be seen through [48–51]

and studies there in. The impacts of important parameters on the momentum and energy

transport are the main concerns of this investigation. The rest of the paper is arranged in the

following manner. Mathematical formulation is covered in the next section. Section 3 gives a

detailed description of the employed numerical treatment. In section 4, physical description to

the behavior of emerging parameters is assigned graphically. Finally, the conclusion section

highlighting major results is presented.

Problem formulation

Consider a laminar viscoelastic fluid flow adjacent to a vertical elastic sheet with u and v denot-

ing velocity components along x− and y− directions in which the coordinate x extends along

the sheet and y is normal to it. Let us assume that the surface stretches in x− direction with

velocity uw(x) = ax and ue(x) = cx denotes the velocity of external flow where a and c are positive

constants. The buoyancy force resulting due to density differences aids or opposes the external

flow when it is directed towards or opposite to the external stream. The conducting Maxwell

fluid is exposed to transverse magnetic field of strength B0 (see Fig 1). Under low magnetic Rey-

nolds number, induced magnetic field can be ignored in comparison with the applied magnetic

field. There is no electric field. Thus if σ denotes the fluid electrical conductivity, the compo-

nents of Lorentz force vector become (−σB0
2u,−σB0

2v,0). The function Tw(x) = T1 + bx pre-

scribes the wall temperature in which b is a constant and T1 represents the temperature of

quiescent fluid. Utilizing the Oberback-Boussinesq approximation, equations representing

Maxwell fluid motion with heat transfer are given below (see refs. [14] and [20]):

ux þ vy ¼ 0 ð1Þ

uux þ vuy þ l1ðu2uxx þ v2uyy þ 2uvuxyÞ ¼ ueðueÞx þ nuyy �
s

r
B2

0
ðu � ue þ l1vuyÞ

þgbT ½ðT � T1Þ þ l1fuTx þ vTy � uxðT � T1Þg�;
ð2Þ

Buoyancy effects in stagnation-point flow of Maxwell fluid utilizing non-Fourier heat flux approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0192685 May 9, 2018 3 / 19

https://doi.org/10.1371/journal.pone.0192685


rCpðuTx þ vTyÞ ¼ � r � q; ð3Þ

where λ1 stands for fluid relaxation time, ν denotes the kinematic viscosity, ρ is the fluid density,

βT stands for the coefficient of thermal expansion, Cp denotes the specific heat capacity and q

the heat flux vector. Using Cattaneo-Christov theory, the heat flux q obeys the following relation

[20, 24]:

qþ l2ðqt þ V � rq � q � rVþ ðr � VÞqÞ ¼ � krT; ð4Þ

in which k denotes the fluid thermal conductivity and λ2 stands for thermal relaxation time.

Taking divergence of Eq (4) and then utilizing Eq (3), one arrives at the following equation:

uTx þ vTy þ l2fu
2Txx þ v2Tyy þ 2uvTxy þ ðuux þ vuyÞTx þ ðuvx þ vvyÞTyg ¼ aTyy: ð5Þ

Fig 1. Physical model and coordinate system.

https://doi.org/10.1371/journal.pone.0192685.g001
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For detailed derivation of Eq (5), the readers are referred to the article by Christov [20]. The

boundary conditions assume the following forms:

uðx; 0Þ ¼ uwðxÞ ¼ ax; Tðx; 0Þ ¼
T1 þ bx ðPSTÞ

Tw ðCWTÞ
; ð6Þ

(

vðx; 0Þ ¼ 0; ð7Þ

u! ueðxÞ ¼ cx; v! veðyÞ ¼ � cy as y!1; ð8Þ

T ! T1 as y!1: ð9Þ

Conditions given in (6) indicates no-slip at the wall, condition (7) represent impermeability

at the boundary, condition (8) indicates that viscous effects vanish at far distance from the sur-

face and condition (9) signifies no temperature variation far from the boundary.

Defining the non-dimensional horizontal distance z = y(a/ν)1/2, we seek the similarity solu-

tions of (1), (2) and (5) of the following forms:

u ¼ axF0ðzÞ; v ¼ � ðnaÞ1=2FðzÞ; yðzÞ ¼ ðT � T1Þ=ðTw � T1Þ: ð10Þ

Eq (1) is satisfied by transformations (10), while Eqs (2), (5) and (6)–(9) convert into the

following ordinary differential equations:

F‴ þ ð1þMbÞFF@ � F02 þ bð2FF0F@ � F2F‴Þ � MF0

þlðy � bFy
0
Þ þM

c
a
þ

c2

a2
¼ 0;

ð11Þ

1

Pr
y

@
þ Fy

0
� F0y � gðF2y

@
þ FF@yþ F02y � FF0y0Þ ¼ 0 ðPSTÞ; ð12Þ

1

Pr
y

@
þ Fy

0
� gðF2y

@
� FF0y0Þ ¼ 0 ðCWTÞ; ð13Þ

F ¼ 0; F0 ¼ 1; y ¼ 1 at z ¼ 0;

F0 !
c
a
; y! 0 as z!1:

ð14Þ

In Eq (8), λ = Grx/Rex2 is the mixed convection parameter (also called Richardson number)

in which Grx = gβT(Tw − T1)x3/ν2 denotes the local Grashof number and Rex = uwx/ν is the

local Reynolds number. For positive values of λ we have Tw> T1 in the upper half (where

x> 0) while Tw< T1 in the lower half (where x< 0). In this situation, buoyancy force acts in

the same direction as that of free stream velocity in both upper and lower halves, thereby assist-

ing the fluid flow. For negative λ, buoyancy force is directed opposite to the external stream in

both upper and lower halves. The other parameters appearing in (11) and (12)-(13) are given

below:

M ¼ sB0
2=ra; Pr ¼ n=a; b ¼ l1a; g ¼ l2a; ð15Þ

where M denotes the magnetic interaction parameter, Pr denotes the Prandtl number, β stands

for fluid relaxation time and γ for thermal relaxation time. A list of all symbols is shown in
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Table 1. Note that Eqs (11, 12 and13) reduce to the viscous fluid case when β = 0. Also, the

analysis for usual Fourier law can be recovered by selecting γ = 0.

Numerical procedure

Here we discuss the numerical treatment of governing Eqs. (11) and (12) using shooting

method coupled with Runge-Kutta method of fifth-order and the Newton’s method. Making

use of the substitutions y1 = F,y2 = F0,y3 = F@,y4 = θ,y5 = θ0, an initial value problem consisting

of five first order ordinary differential equations is obtained:

y1
0 ¼ y2; y1ð0Þ ¼ 0

y2
0 ¼ y3; y2ð0Þ ¼ 1

y3
0 ¼

y2
2 � ð1þMbÞy1y3 � 2by1y2y3 � lðy4 � by1y5Þ þMðy2 � c=aÞ � ðc=aÞ2

1 � by1
2

; y3ð0Þ ¼ s1

y4
0 ¼ y5; y4ð0Þ ¼ 1

y5
0 ¼

Prfy2y4 � y1y5 þ gðy1y3y4 þ y2
2y4 � y1y2y5Þg

1 � Prgy1
2

; y5ð0Þ ¼ s2 :

ð16Þ

We replace infinity (1) by a number, say z1, which is initially taken as low as 2 and then

proceed with the numerical integration of system (16) by assigning suitable guesses for the

missing slopes s1 = F@(0) and s2 = θ0(0). It means that a solution to the system (16) will depend

on similarity variable z and the missing slopes s1 and s2. Here the mesh size h = 0.01 is consid-

ered in numerical integration. Thus conditions for F0 and θ at infinity can be expressed as

y2(z1,s1,s2) − (c/a) = 0 and y4(z1,s1,s2) = 0 respectively. These algebraic equations are solved

for s1 and s2 by Newton’s method. Solutions for s1 and s2 are employed in (16) and the system

is integrated at a higher z1, say z1 = 4. We repeat this process for different z1(say z1 =

5,6,7etc.) until the solutions for s1 and s2 become independent of z1. In Newton’s method,

computer code is designed to perform maximum 30 iterations. Our computations have shown

Table 1. List of symbols.

x,y Cartesian coordinates (m) Rex local Reynolds number

(u,v) velocity components along x-and y-directions respectively (ms-1) Greek symbols
(ue,ve) external flow velocity components in (ms-1) z similarity variable

uw velocity of stretching sheet (ms-1) σ electrical conductivity (s.m-1)

a,c positive constants (s-1) ρ fluid density (kg.m-3)

B0 magnetic field strength (Nm-1A-1) ν kinematic viscosity (m2s-1)

M magnetic interaction parameter α thermal diffusivity (m2s-1)

g gravitational acceleration (ms-2) λ Richardson number

T fluid temperature (K) λ1 fluid relaxation time (s)

Tw wall temperature (K) λ1 heat flux relaxation time (s)

T1 ambient fluid temperature (K) γ dimensionless thermal relaxation time

Cp specific heat (Jkg−1K−1) β dimensionless fluid relaxation time

q heat flux(Wm-2) βT coefficient of thermal expansion (K−1)

k thermal conductivity (Wm-1K−1) θ dimensionless temperature

F dimensionless stream function Subscripts
Pr Prandtl number w condition at the wall

Grx local Grashof number 1 condition at infinity

https://doi.org/10.1371/journal.pone.0192685.t001
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that such number of iterations is sufficient to fulfill the desired tolerance of 10−7 in all the con-

sidered cases.

Numerical results and discussion

We modeled the aiding or opposing mixed convection viscoelastic fluid flow adjacent to a

heated vertical surface utilizing the novel Cattaneo-Christov model. A convenient shooting

technique is implemented to compute the governing similarity equations. In Table 2, the val-

ues of F@(0) are compared with those of Mahapatra et al. [36] for broad range of magnetic

interaction parameter M in Newtonian limit (β = 0). Present numerical results are in complete

agreement with [36] for all reported values of M. For a further check, we made comparison of

values of F@(0) with Mustafa et al. [34], Abel et al. [52] and Megahed [53] for the forced con-

vection flow situation (λ = c/a = 0). Again we witness a very good agreement for all chosen val-

ues of Deborah number β (see Table 3). The values of wall temperature slope θ0(0) for various

parameter values are listed in Table 4. It is indicated in [48] that Prandtl number for non-New-

tonian fluids is usually large. Hence numerical calculations are made at Pr = 10 and Pr = 25.

An increasing trend in |θ0(0)| is found for increasing values of dimensionless thermal relaxa-

tion time γ. CPU time for the numerical values computed in Table 4 is mentioned against each

simulation.

For fixed values of mixed convection parameter λ and Deborah number β, the curves of F0

(z) representing x−component of velocity are portrayed in Fig 2 for different values of mag-

netic interaction parameter M and velocity ratio (c/a). Velocity parallel to the surface decreases

with increasing M for (c/a)< 1 but increases with increases M for (c/a)> 1. For any value of

velocity ratio (c/a) we witness a decreasing trend in boundary layer thickness for increasing

values of M. It is the consequence of the fact that magnetic field sets up a Lorentz force in

transverse direction which retards the momentum transport phenomenon.

Fig 3 shows the velocity curves F0(z) for varying velocity ratio (c/a) in both assisting and

opposing flow regimes. An increase in (c/a) can be realized by increasing free stream velocity

Table 2. Comparison of velocity gradient |F@(0)| with that of Mahapatra et al. [36] when β = λ = 0.

M (c/a) = 2 (c/a) = 0.2

[36] Present [36] Present

0.0 2.0175 2.01750 0.9181 0.91811

0.5 2.1363 2.13632 1.0768 1.07682

1.0 2.2491 2.24910 1.2156 1.21562

1.5 2.3567 2.35667 1.3404 1.34038

2.0 2.4597 2.45967 1.4546 1.45460

3.0 2.6540 2.65398 1.6569 1.65979

5.0 3.0058 3.00578 2.0085 2.00847

10 3.7447 3.74472 2.6894 2.68944

20 4.9004 4.90037 3.6922 3.69223

40 6.6339 6.63381 5.1412 5.14123

60 8.0002 8.00032 6.2635 6.26356

80 9.1642 9.16537 7.2136 7.21333

100 10.1934 10.19819 8.052 8.05184

200 14.2825 14.28291 11.3491 11.35042

300 17.4127 17.43563 13.8537 13.88640

500 22.4499 22.44996 17.8617 17.91178

1000 31.6858 31.68596 25.1163 25.31466

https://doi.org/10.1371/journal.pone.0192685.t002
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while maintaining the same stretching rate (or by decreasing the stretching rate while keeping

the free stream velocity fixed). We observe that F0(z) is proportional to (c/a) whereas boundary

layer thickness decreases with increasing (c/a). Physically an increment in (c/a) implies a

reduction in the straining motion near the surface which in turn reduces the thickness of

hydrodynamic boundary layer.

In Fig 4, we present the change in velocity profile F0(z) with the variation in Deborah num-

ber β. In assisting or opposing flow regime, fluid flow in vertical direction accelerates when β
becomes large for (c/a)> 1 while opposite effect is observed for (c/a)< 1. Notably, a decreas-

ing trend in boundary layer thickness is found for increasing β and such outcome persists for

Table 3. Comparison with wall velocity gradient −F@(0) obtained by Mustafa et al. [34], Abel et al. [52] and Megahed [53] for different values of β when λ = (c/a) =

0.

β Mustafa et al. [34] Abel et al. [52] Megahed [53] Present

z1 = 2 z1 = 5 z1 = 10

0 1.000000 0.999962 0.999978 1.000000 1.000000 1.000000

0.2 1.051890 1.051948 1.051945 1.051921 1.051890 1.051890

0.4 1.101903 1.101850 1.101848 1.101789 1.101903 1.101903

0.6 1.150137 1.150163 1.150160 1.150168 1.150137 1.150137

0.8 1.196711 1.196692 1.196690 1.196682 1.196711 1.196711

1.2 1.285363 1.285257 1.285253 1.285324 1.285363 1.285363

1.6 1.368758 1.368641 1.368641 1.368715 1.368758 1.368758

2.0 1.447651 1.447617 1.447616 1.447639 1.447651 1.447651

https://doi.org/10.1371/journal.pone.0192685.t003

Table 4. Computational results of −θ0(0) for varying values of γ,(c/a)and β with Pr = 10 and M = 5.

Pr = 10 Pr = 25

γ (c/a) β Assisting Flow

λ = 1

Opposing Flow

λ = −1

Assisting Flow

λ = 1

Opposing Flow

λ = −1

0.2 0.3 0.2 3.978577

(32.270 sec)

3.910338

(35.197 sec)

6.551186

(60.005 sec)

6.50699

(63.613 sec)

0.4 4.354726

(13.898 sec)

4.284905

(23.047 sec)

7.128445

(36.352 sec)

7.086098

(59.329 sec)

0.6 4.693003

(45.715 sec)

4.613185

(57.069 sec)

7.623144 (13.964 sec) 7.555093 (13.637 sec)

0.8 4.959215

(16.371 sec)

4.932692

(27.048 sec)

7.947736 (8.273 sec) 7.915262 (8.407 sec)

0 0 0.2 3.357325

(2.481 sec)

3.270179

(2.524 sec)

5.659030

(2.871 sec)

5.609332

(2.877 sec)

0.4 3.641242

(2.737 sec)

3.588133

(2.606 sec)

5.921715

(2.925 sec)

5.883671

(2.921 sec)

0.6 3.761313

(2.837 sec)

3.715780

(2.651 sec)

6.044662

(2.961 sec)

6.010370

(2.971 sec)

1.2 4.084024

(2.760 sec)

4.051657

(2.565 sec)

6.395400

(3.526 sec)

6.368817

(2.060 sec)

0.2 0.3 0 4.002944

(38.038 sec)

3.945292

(35.149 sec)

6.570579

(67.316 sec)
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any assigned value of (c/a). This is explained as follows. At low Deborah number, stress relaxa-

tion is fast in comparison to the observation time scale, and hence fluid has solid-like response

to the shearing force. At higher Deborah number, the fluid response resembles closely to that

of an elastic solid substance. In this situation, the boundary layer thickness does not grow as

fast as for smaller Deborah number.
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Fig 5 depicts the change in velocity curves by varying mixed convection parameter λ. It is

observed that velocity in x−direction has direct relationship with λ. The result is in accordance

with those reported by earlier studies (for instance see Kumari and Nath [9], Ali et al. [44]

etc.). This trend follows from the fact that positive λ acts as favorable pressure gradient which

accelerates the fluid flow in the boundary layer.
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Fig 6 shows the temperature curves, represented by θ(z), with the change in Prandtl number

Pr. Prandtl number gives the ratio of momentum diffusion coefficient to thermal diffusion

coefficient. In some manufacturing processes, the Prandtl number can be used to adjust the

cooling rate. As emphasized in [53], non-Newtonian fluids have relatively high Prandtl num-

ber. At higher Prandtl number, heat convection is dominant over pure conduction. In other

words, heat transfer rate at the stretching boundary grows with increasing Pr. The larger heat

transfer rate implies shorter penetration depth due to which temperature decreases.

Temperature curves for varying magnetic interaction parameter M are displayed in Fig 7.

Fluid temperature in the boundary layer rises for growing magnetic field strength. This is

because less hot fluid is carried away from the surface due to reduction in velocity with increas-

ing M which in turn yields smaller wall temperature gradient.

In Fig 8, the profiles of temperature θ are plotted by varying thermal relaxation time γ. We

found that temperature θ(z) has a decreasing behavior for increasing thermal relaxation time

γ. It implies that heat penetration into the fluid reduces as relaxation duration for heat flux

increases.

The impact of velocity ratio parameter (c/a) on temperature profile θ is depicted through

Fig 9. In Fig 3, we observed that fluid flow accelerates in vertical direction with an increment

in (c/a) for λ> 0. This eventually intensifies the horizontal flow of cold fluid at the ambient

towards hot surface which in turn decreases temperature distribution.

Having tested the accuracy of method, we now intend to give physical description to the

role of involved parameters on the solution profiles. When (c/a) = 1, the fluid and stretching

boundary have same velocities, which results in no-frictional effect at the fluid-solid interface,

that is, F@(0) = 0. When (c/a)> 1, the free stream moves faster than the stretching surface,

which implies that fluid applies drag on the boundary due to which F@(0)> 0 (see Fig 10).

However when (c/a)< 1, the stretching surface moves faster than the external free stream and

hence it applies drag on the fluid. In this case F@(0) has a negative sign. In Fig 10, we display
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the profile of F@(0) versus magnetic interaction parameter M for a variety of velocity ratio

parameters. Magnitude of F@(0) continues to enhance as magnetic interaction parameter

becomes large. Physically, the reduction in boundary layer thickness due to enhancement in M
implies an elevation in wall slope of velocity field F0. In Fig 11, we give a comparative study of

Fourier and Cattaneo-Christov models. Although, qualitatively similar behavior of Prandtl

number Pr on θ0(0) is found in both models but the variation in θ0(0) with increasing Pr

becomes prominent as thermal relaxation time become large. Solutions for non-similar partial
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differential equations have been presented in terms of stream function ϕ(x,y) and temperature

T(x,y) in Figs 12 and 13. The profiles of temperature θ for constant and variable wall tempera-

ture (Similar and Nonsimilar solutions) with variation of Pr are plotted in Fig 14.
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Summary of the results

Cattaneo-Christov heat conduction for mixed convection Maxwell fluid flow adjacent to a

heated or cooled vertical surface is investigated here. Flow fields are influenced by vertical

magnetic field. Accurate numerical results are presented for broad range of magnetic interac-

tion parameter (0�M� 1000) and moderate values of viscoelastic fluid parameter β. Follow-

ing conclusions are drawn on the basis of current analysis:

� Transverse magnetic field opposes the momentum transport by deformingsheet while

fluid temperature rises for intensifying magnetic field strength.

� A reduction in momentum boundary layer thickness is anticipated for growing fluid

relaxation time.

� Fluid flow in vertical direction decelerates with increasing magnetic interaction parame-

ter M and viscoelastic parameter β for (c/a)< 1. However opposite effect is found in the

case where (c/a)> 1.

� For any choice of velocity ratio (c/a), vertical velocity increases/decreases with increasing

strength of buoyancy assisting/opposing force.

� Fluid temperature falls inside the boundary layer as relaxation time for heat flux enlarges.

� As velocity ratio parameter (c/a) enlarges, this accelerates the flow of cold fluid at the

ambient towards the plate. Consequently, fluid temperature inside the boundary layer

falls for increasing velocity ratio parameter (c/a).

� Fluid temperature inside the boundary layer increases/decreases as the strength of buoy-

ancy assisting/opposing force increases.

� Present computations are consistent with those of available articles [34], [36], [52] and

[53] in limiting situations.

Appendix

Here we will present the details concerning the derivation of Eq (2).

Relevant equation governing the two-dimensional flow of incompressible Maxwell fluid

along a vertical surface with transverse magnetic field can be expressed as follows:

r
dV
dt
¼ � rpþr � Sþ rgbTðT � T1Þ þ J� B; ð17Þ

in which V = [u(x,y),v(x,y),0] denotes the velocity vector, g = [0,g,0] is gravitational accelera-

tion, J = σ(E + V × B) denotes the current density in which B = [0,B0,0] is the applied magnetic

field and E denotes the electric field intensity, d/dt� @/@t + (V � r)V is the material time

derivative and S is the extra stress tensor which obeys the following relation:

1þ l1

D
Dt

� �

S ¼ mA1: ð18Þ

Here λ1 is the fluid relaxation time, A1 = (rV) + (rV)t is the first Rivlin-Ericksen tensor

and D/Dt the convected time derivative. For any vector A, we have:

DA
Dt
¼
@A
@t
þ ðV � rÞA � ðrVÞ � A; ð19Þ
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In order to eliminate S, let us assign the operator 1þ l1
D
Dt

� �
to Eq (17). We obtain the fol-

lowing:

r 1þ l1

D
Dt

� �
dV
dt
� rgbTðT � T1Þ � J� B

� �

¼ � 1þ l1

D
Dt

� �

rpþ mðr:A1Þ; ð20Þ

Making use of definition (19) and boundary layer approximations, x−component of Eq

(20) is obtained as follows:

uux þ vuy þ l1ðu2uxx þ v2uyy þ 2uvuxyÞ ¼ ueðueÞx þ nuyy �
s

r
B2

0
ðu � ue þ l1vuyÞ

þgbT ½ðT � T1Þ þ l1fuTx þ vTy � uxðT � T1Þg�;
ð21Þ

where we have used � 1þ l1
D
Dt

� �
rp

� �

x ¼ ue
due
dx þ

s

r
B0

2ue.
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