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SUMMARY

Virtually all diseases affect multiple organs. However, our knowledge of the body-wide effects
remains limited. Here, we report the body-wide transcriptome landscape across 13-23 organs of
mouse models of myocardial infarction, diabetes, kidney diseases, cancer, and pre-mature aging.
Using such datasets, we find (1) differential gene expression in diverse organs across all models;
(2) skin as a disease-sensor organ represented by disease-specific activities of putative gene-expres-
sion network; (3) a bone-skin cross talk mediated by a bone-derived hormone, FGF23, in response to
dysregulated phosphate homeostasis, a known risk-factor for kidney diseases; (4) candidates for the
signature activities of many more putative inter-organ cross talk for diseases; and (5) a cross-species
map illustrating organ-to-organ and model-to-disease relationships between human and mouse.
These findings demonstrate the usefulness and the potential of such body-wide datasets encompass-
ing mouse models of diverse disease types as a resource in biological and medical sciences. Further-
more, the findings described herein could be exploited for designing disease diagnosis and treat-
ment.

INTRODUCTION

Diseases are conventionally studied in the context of changes and responses that occur in only one or a few
selected organs. For example, in studying heart diseases, the heart is the main focus point. In some cases, a
few other organs (e.g., kidney, lung, brain) are included in the studies, as they are known to interact with the
heart via circulating hormones and other systemic factors (McGrath et al., 2005). In investigating kidney
diseases, multiple organs (e.g., bone, heart, brain, liver) are often studied on the basis of the inter-organ
communication (Hu et al., 2013; Ix and Sharma, 2010; Kuro-o, 2010; Vervloet et al., 2014a). Tumorigenesis
in a specific organ imposes critical impacts on metabolic organs, eventually causing the whole-body-level
condition known as cachexia (Droujinine and Perrimon, 2016). Even in this case, only a few selected organs
are the subjects of the studies. Currently, we know very little about exactly to what extent diverse organs in
the body are influenced in a specific disease condition.

In an effort to understand the whole-body level biology of the human and non-human model organisms,
the multi-organ omics databases have been established and made available to the public. Especially,
the Genotype-Tissue Expression (GTEx) (GTEx Consortium, 2013) and The Human Protein Atlas (Uhlen
et al., 2015) publish comprehensive transcriptome and transcriptome/proteome datasets of multiple
organs of healthy human subjects, respectively. Most recently, an international research project referred
to as Human Cell Atlas (Regev et al., 2017) has been initiated and is aiming to have the complete whole-
body map of the human at the individual cell level. A similar approach has already generated transcriptome
datasets of approximately 6,000 individual cells in Drosophila (Karaiskos et al., 2017), a commonly used
model organism in biology and medicine. Recently, we reported comprehensive whole-body transcrip-
tome datasets of normal and several mutant zebrafish (Takada et al., 2017), a vertebrate model frequently
used for the study of biology and medicine. Although such comprehensive multi-organ datasets of healthy
subjects and developmental models are being generated, comparably comprehensive multi-organ and
multi-disease datasets remain limited. The Stockholm-Tartu Atherosclerosis Reverse Network Engineering
Task (STARNET) has provided transcriptome datasets of several organs derived from human subjects with
coronary artery diseases (CADs) (Franzen et al., 2016). However, diverse organs are yet to be represented.
Furthermore, the comparable datasets for other types of diseases are not available, thus disease-to-dis-
ease comparisons remain a challenge.
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Figure 1. Mouse Models
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Each model and the organs analyzed are described (See Transparent Methods for the details).
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Figure 2. Differential Expression of Known Regulated Genes in Each Model

FPKM (fragments per kilobase million) of each gene in each organ sample is plotted as bar graph. All organs (left) and the select organs known for the
regulated expression of the genes (right) are shown. The model names are according to those shown in Figure 1. The gene name is indicated on the left of
each graph. The organs for which the sequence datasets are not available for each model are indicated as @ on the x axis of each graph.

Hence, what is missing is the dataset representing the body-wide diverse organs and multiple diseases.
The availability of such datasets allows for the evaluations of molecular changes that occur in diverse
organs in each disease model. Such datasets also make it possible to perform direct organ-to-organ
comparisons among various disease models and also inter-organ comparisons within the specific model.
Such analyses can be effectively used to deduce the body-wide inter-organ communication network.
Furthermore, their utility could extend to the identification of disease-specific and/or organ-specific
molecular signatures that could serve as biomarkers for diseases and/or molecular targets for therapeutics.
Moreover, such body-wide multi-disease model datasets could be used to make organ-to-organ compar-
isons with human datasets to characterize similarities and dissimilarities between the mouse and human
transcriptome landscapes.

In this report, we provide such datasets. We describe comprehensive transcriptome datasets of 13-23
organs from diverse disease models: myocardial infarction, diabetes, kidney diseases, brain tumor, and
pre-mature aging. The data are generated from one to three stages representing early to late phases of
the progression of each disease condition. For kidney diseases, we provide datasets from multiple different
models, each representing overlapping but distinct risk factors for the disease. The analyses of such data-
sets reveal organ-to-organ similarities and dissimilarities among different disease models. They also show
common and distinct features of the transcriptome landscape among distinct organs within each model.
These analyses identified the skin as one of the unexpected organs that appears to sense disease-associ-
ated pathophysiological condition(s). Experimental validations found 25 genes in the skin that are differen-
tially expressed in the kidney-disease models. We also show that their expression is differentially modu-
lated by a bone-derived systemic factor, FGF23, suggesting a bone-skin interaction in kidney disease or
related conditions. More global body-wide network analyses across multiple organs in each model identify
candidates for inter-organ cross talk underlying disease-associated pathophysiological changes. The utility
of our mouse model datasets is also illustrated by showing the organ-to-organ differences in the degree of
similarity in the genome-wide gene expression patterns between human and each mouse model. The
comparison of the mouse datasets to an orthologous human disease dataset provides an insight into
the degree of the relatedness of the mouse model to human disease. We discuss the utility of such rich
body-wide datasets across multiple disease models for the study of disease and also the relevance of
the findings to human biology and clinical applications.

RESULTS
Mouse Models of Human Diseases

Comprehensive transcriptome data were generated from mouse models of diverse human diseases and
disease-related conditions (Figure 1). We chose seven relatively well-established and widely used mouse
models and generated transcriptome datasets from one to three pathophysiological stages for each model
(Figure 1). Models for myocardial infarction (MI) (Murakoshi et al., 2013) (Figure 1A), streptozotocin
(STZ)-induced diabetes (Graham et al., 2011; Portha et al., 1989) (Figure 1B), kidney diseases and related
conditions including chronic kidney disease (CKD), chronic kidney disease mineral and bone disorder
(CKD-MBD) (Hu et al., 2013; John et al., 2011; Kuro-o, 2013, 2017; Kuro-o and Moe, 2017; Kuro-o, 2010;
Miller et al., 2010; Stubbs et al., 2007; Tani et al., 2017, Watanabe et al., 2017) (Figure 1C), cancer (Kiaris
et al., 2000) (Figure 1D), pre-mature aging (Butterfield and Poon, 2005) (Figure 1E), and kidney injury
induced by cisplatin (Megyesi et al., 1998) (Figure 1F) were generated (see Transparent Methods) and
validated (Figures S1-S5, Tables S1-59).

Comparative Analyses of the Mouse RNA-Sequence Datasets

From each model and control mice (WT and WT + Saline) (see Transparent Methods), 13-23 organs were
harvested and processed for RNA sequence (RNAseq) analyses (see Transparent Methods). The overall
quality of the sequence data was demonstrated by the virtually identical gene expression patterns between
the control datasets (WT and WT + Saline) and the publicly available wild-type (WT) mouse datasets
(Pervouchine et al., 2015) (Figure Sé). A subtle difference could be attributed to strain, age, sex, or hous-
ing-condition differences (see Transparent Methods). The validity of the datasets was further confirmed
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Figure 3. Organ-to-Organ Comparisons of the Differentially Expressed Genes for Each Model

The color or the colors (the vertical alignment) at the bottom indicate the organ or the combination of the organs,
respectively. The differentially expressed genes in each organ/organ combination of each model were identified by
comparison with the corresponding dataset of WT. The number (in log,) of the differentially expressed genes in each
organ/organ combination of each disease model, but not in that of the corresponding sham control, was counted and is
shown as bar graph for each model. The number (in log,) of the differentially expressed genes in each organ/organ
combination of the cisplatin model, as compared with the corresponding dataset of WT, was counted and is shown as bar
graph. It is important to note that the organs analyzed for each model overlap but are not identical (see Figure 1). The
organs that are not represented in each model are indicated by blue-color x axis line. Thus the comparison is valid only
among the organs that are represented in each organ. The corresponding organ-to-organ comparisons of the GO terms
are shown in Figure S7.

by the regulated expressions of the known disease marker genes (Bosworth and de Boer, 2013; Cheng
etal., 2015; Hiratsuka et al., 2006; Jarve et al., 2017; Pabla et al., 2015; Port et al., 2011; Ramesh and Reeves,
2002; Reed et al., 2011; Sehl et al., 2000; Suyama et al., 2012; Tonne et al., 2013; Wada et al., 2016) (Figure 2).
To evaluate how broadly the gene expressions are altered across various organs, we compared both model
and sham control with WT control datasets independently using DESeq2 analysis. For convenience, we
used 2-fold change as differentially expressed genes (i.e., [loga(fold-change)| > 1) with p < 0.0001 (Wald
test and adjusted by Benjamini-Hochberg method). The number of such differentially expressed genes
specifically for one organ in each model, but not in the corresponding sham control, was counted. In addi-
tion, the number of the differentially expressed genes in multiple organs for all combinations of the organs
in each model, but not in the corresponding sham control, was also counted. The results of such organ-to-
organ comparisons for each model are shown in Figure 3. It is important to note that the organs analyzed
for each model overlap but are not identical; thus the model-to-model comparison should not be per-
formed using these graphs. Hence, for the model-to-model comparison for each organ, the number of
differentially expressed genes in each organ isolated from each model was analyzed (Figure 4). The number
of differentially expressed genes specifically in one model or sham control, but not in the other models or
sham controls, and also in multiple combinations of the models/sham controls, but not in other combina-
tions was counted. The results of such model-to-model comparisons for each organ are shown in Figure 4.

As expected, the organ(s) that is(are) conventionally known to show pathophysiological responses in each
model show a large number of differentially expressed genes. In the Ml models, the clusters of taller bars in
the heart and the combinations including the heart are obvious (Figure 3). A closer examination found
1,302, 1,891, and 1,178 differentially expressed genes in the heart or the organ combinations, including
the heart of E-MI, M-MI, and L-MI, respectively, but not in the corresponding sham-control models (Tables
S10 and S11). Furthermore, according to the ranking in the number of differentially expressed genes in the
heart, the M-MI model is the first with 629 genes (Figure 4 and Table S12). The second is E—/M-MI models
with 261 genes (i.e., 261 genes are differentially expressed in both E— and M-MI models) (Figure 4 and
Table S12). The third (253 genes), fourth (133 genes), fifth (105 genes), and sixth (102 genes) were E-MI
model, M-/L-MI models, E-/M-/L-MI models, and L-MI model, respectively (Figure 4 and Table S12).
The genes that are also regulated in the corresponding sham controls were excluded in this ranking (Fig-
ure 4 and Table S12). In the kidney disease models, we found 499, 631, and 1,124 differentially expressed
genes in the kidney or the organ combinations, including the kidney of E-CKD, M-CKD, and L-CKD, respec-
tively, but not in the corresponding sham-control models (Figure 3, Tables S10 and S11). In the cisplatin-
treated model, the kidney shows 1,482 differentially expressed genes (Figure 3, Tables S10 and S11).

However, the overall landscape of the organ-to-organ and the model-to-model comparisons was more
complex than anticipated. It appears that the differential gene expression patterns extend to more diverse
organ types than conventionally assumed (Figure 3). Although, in each model, the number of differentially
expressed genes varies from organ to organ and also depends on the organ combinations, the differentially
expressed genes are broadly distributed across organs and organ combinations (Figure 3). The organ-to-
organ comparisons of Gene Ontology (GO) terms of the differentially expressed genes also show the over-
lapping and distinct distribution pattern for each organ (Figure S7 and Table S13). In the model-to-model
comparisons (Figure 4), the differentially expressed genes in each organ can be detected both in a specific
model and also are shared among multiple organs, as indicated by the broadly distributed patterns of the
barsineach graph (Figure 4). A closer examination also identifies the lack of differentially expressed genesin
a certain model(s) and/or a model combination(s), as indicated by the lack of the bars (Figure 4). A common
distribution pattern can also be found among the organs, suggesting the possibility that some organs
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Figure 4. Model-to-Model Comparisons of the Gene Expression for Each Organ

The color or the colors (the vertical alignment) at the bottom indicate the model or the model combinations, respectively.
The number (in logy) of the differentially expressed genes (as compared with the corresponding WT dataset) in each
model/model combination of each organ was counted and is shown as bar graph for each model. Only organs that are
common to all models are analyzed and shown. The model-to-model comparisons of the GO terms are shown in
Figure S8.

respond more robustly than the others (Figure 4). The model-to-model comparisons of GO terms of the
differentially expressed genes in each organ also show both the model/model-combination-specific GO
terms and those shared by multiple models/model combinations (Figure S8 and Table S13).

The Skin as a Disease Sensor?

We show that differential gene expression can be found broadly across diverse organs (Figure 3). In partic-
ular, the skin is one of the most robustly affected organs (Figure 3, Tables S10 and S11). In each model, but
notin the corresponding sham control, a large number of genes are differentially expressed in the skin: 337
(E-MI), 378 (M-MI), 248 (L-MI), 477 (E-CKD), 294 (M-CKD), 707 (L-CKD), 361 (E-STZ), 349 (M-STZ), 974
(E-SAMP8), 3,731 (M-SAMP8), 526 (L-SAMPS), 381 (E-GBM), 267 (M-GBM), 79 (HPidw), 2,011 (Cisplatin)
genes (Figure 3, Tables S10 and S11). The model-specific differentially expressed skin genes were also
found: 8 (E-MI), 10 (M-MI), 2 (L-MI), 13 (E-CKD), 6 (M-CKD), 28 (L-CKD), 21 (E-STZ), 38 (M-STZ), 110
(E-SAMP8), 2,160 (M-SAMP8), 33 (L-SAMPS8), 5 (E-GBM), 25 (M-GBM), 6 (HPi4w), 536 (Cisplatin) genes (Fig-
ure 4 and Table S12).

Next, we applied Weighted Gene Co-expression Network Analysis (WGCNA) to identify signature gene
expression network activities of the skin that distinguish one pathophysiological condition from the other
(Figure 5 and see Transparent Methods). For each model, we found a set of modules consisting of unique
GO terms that show relatively stronger positive or negative correlation with a specific pathophysiological
condition (e.g., E., M., L.) than with the others (Figure 5 and Table S14).

The WGCNA of the skin of the Ml models identified the modules that show relatively strong negative
correlations with E.MI or L.MI. The former module consists of GO terms such as "regulation of viral life
cycle” and "viral budding” (Figure 5A and Table S14), suggesting that the downregulation of these pro-
cesses signifies the skin condition of E.MI. The latter module consists of GO terms such as “modulation
by virus of host morphology or physiology,” “circulatory system,” and “vascular development” (Figure 5A
and Table S14), suggesting that the suppression of these processes may represent the skin condition
of L.ML.

The analysis of the skin of the STZ-induced diabetes model identified one module that shows a strong
negative correlation with E.STZ and the other module that exhibits a strong positive correlation with
M.STZ (Figure 5B and Table S14). The former consists of GO terms such as “positive regulation of cellular
process” and "positive regulation of signal transduction” (Figure 5B and Table S14), suggesting that the
downregulation of these processes represents the skin condition of E.STZ. The latter module consists of
GO terms such as “positive regulation of type | interferon-mediated signaling pathway” and “cellular
response to type | interferon” (Figure 5B and Table S14), suggesting that the enhanced activities of such
processes may signify the skin condition of M.STZ.

The WGCNA of the skin of the CKD models found the modules that distinguish L.CKD from the others, and
they consist of unique GO terms such as “intracellular protein transport,” * single-
organism cellular processes,” and “muscle structure development” (Figure 5C and Table S14), suggesting
that the upregulation of such processes in the skin represents L.CKD-specific pathophysiological
conditions.

"o

response to wounding,

The inclusion of the phosphorus-overload models to the CKD models in the analysis resulted in the
modular pattern where no modules show outstandingly strong correlations with any models (Figure 5D).
This result suggests that the skin conditions of these models are relatively similar.

A comparison of the cisplatin model with the CKD and phosphorus-overload models identified positively
and negatively correlating modules with the cisplatin model (Figure 5E and Table S14). The positively
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Figure 5. Signature Gene Expression Network Activities of the Skin

The result of WGCNA using the skin datasets of the Ml models (A), the STZ-induced diabetes models (B), the CKD models (C), the CKD and phosphorus-
overload models (D), the CKD, the phosphorus-overload, and the cisplatin-induced kidney injury models (E), the tumor models (F), and the pre-mature aging
models (G) are shown (see Transparent Methods). The top two GO terms are shown for each module on the left. The correlation coefficient and the p value
(Student’s asymptotic t test) of each module and the complete list of GO terms with their p values (Fisher's exact test) are shown in Table S14.

correlating modules consist of GO terms such as “metabolic process” and “catabolic process” (Figure 5E
and Table S14). The negatively correlating module consists of GO terms such as "extracellular matrix
organization,” “collagen fibril organization,” and “lipid metabolic process” (Figure 5E and Table S14),
suggesting that the downregulation of such processes in the skin represents the cisplatin-model-specific
condition.

"o

The analysis of the tumor model identified a module that shows strong correlation with M.GBM (Figure 5F).
The module consists of GO terms such as “response to interferon-beta” and “response to cytokine” (Fig-
ure 5F and Table S14), suggesting that the upregulation of such processes signifies the skin condition of
M.GBM but not of E.GBM.

The WGCNA of the pre-mature aging models identified several modules that distinguish one pathophys-
iological condition from the other (Figure 5G). The modules consisting of GO terms such as “cellular
metabolic process” and “organic substance metabolic process”. appear to distinguish M.SAMP8 from
the others (Figure 5G and Table S14). The module consisting of GO terms such as “regulation of protein
metabolic process,” “organic substance metabolic process,” and “leukocyte migration involved in inflam-
matory response” shows a strong negative correlation specifically with L.SAMP8 (Figure 5G and Table S14),
suggesting that the downregulation of such processes distinguish the L.SAMP8 skin condition from the
others.

These and other modules showing relatively stronger correlations and lower p values could be signature
activities of the gene expression network in the skin for that specific pathophysiological condition in the
model. These results are also in support of the idea that the skin is a disease-sensor organ.

Although a variety of skin pathophysiological conditions are implicated for a variety of non-skin diseases
(Brewster, 2008; Duff et al., 2015; Gagnon and Desai, 2013; Gnirs and Prelaud, 2005; Uliasz and Lebwohl,
2008), the evidence remains relatively weak. Furthermore, the molecular mechanism underlying such skin
pathologies and/or conditions remains elusive. Our results with the mouse models suggest the existence
of unigue signature activities of gene expression network in the skin that represent a specific pathophysio-
logical condition of each disease model, providing molecular and system level evidence for the skin as a
disease-sensor organ. In fact, such findings are not limited to the mouse models. We performed RNAseq
analyses of skin biopsies from eight patients with breast cancer and three patients with lung cancer (Fig-
ure 6). These analyses demonstrate that gene expression changes occur in the skin in non-skin diseases
such as breast and lung cancer in human (Figure 6). Furthermore, there exist gene expression changes
that are conserved and specific to each cancer type and that are common for both (Figure 6).

To further investigate the regulatory mechanisms underlying the gene expression changes in the skin in
non-skin diseases, we studied the differential gene expression changes in the skin in our mouse models
(Figures 3, 4, and 5). Several pathophysiological skin conditions are observed in renal diseases in human.
However, very little is known about the molecular signatures of such skin conditions. Furthermore, the
molecular mechanism underlying the emergence of such skin conditions in renal diseases remains enig-
matic. Hence, we characterized the gene expression changes found in the models of kidney diseases.

We selected 25 differentially expressed genes in the skin of E-CKD, M-CKD, and L-CKD models, and
unilateral nephrectomy followed by phosphate overload was imposed on the mice. The gRT-PCR analysis
validated the varying degrees of up- and down-regulation in one or more of the CKD models: 14 were
upregulated (Figure 7A and Table S15) and 11 were downregulated (Figure 7B and Table S15).

The Bone-Skin Cross talk and FGF23

Next, we designed an experiment to gain a mechanistic insight into the differential expression of the
genes. We hypothesized that a systemic factor derived from a non-skin organ(s) mediates such differential
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Figure 6. Comparison of the Gene Expression Patterns in the Skin Derived from Patients with Cancer

The number of upregulated (Up-genes) (A) and downregulated (Down-genes) (B) genes is indicated in the Venn diagram.
The differential expression levels of the upregulated (C) and downregulated (D) genes are shown in the heatmap. Those
that are non-significant as defined by p > 0.0001 are indicated by H.

gene expression in the skin of CKD models. FGF23 could be a candidate. FGF23 is a bone-derived
hormone that regulates phosphate homeostasis and is implicated in kidney diseases (Bergwitz and Jupp-
ner, 2010; Blau and Collins, 2015; Guo and Yuan, 2015; Hu et al., 2013; Kuro-o, 2013, 2017; Kuro-o and Moe,
2017; Kuro-o, 2010; Mitsnefes et al., 2017; Portale et al., 2014; Portale et al., 2016; Shimada et al., 2004;
Stubbsetal., 2007; Vervloet et al., 2014b; Wesseling-Perry and Salusky, 2013). In fact, we show that the level
of the circulating FGF23 is significantly increased in the CKD models (Figure S3C). Therefore, we tested this
hypothesis by characterizing FGF23-deficient mice (Figure S9A). FGF23-deficient mice were generated by
the CRISPR/Cas? method (Figure S9A and see Transparent Methods). As FGF23-deficient mice progres-
sively weaken postnatally (Shimada et al., 2004; Stubbs et al., 2007), we developed another phosphate-
overload model using mice 3-4 weeks old. WT mice 3 weeks old (they are weaned at 3 weeks old) were
fed ad libitum with a diet containing low (0.35%), normal (0.54%), or high (2%) levels of inorganic phosphate
for 1 week (see Transparent Methods for the details). In this model, both the plasma phosphate (Figure S9B)
and FGF23 (Figure S9C) levels increase in the WT mice. FGF23-deficient (FGF23KO) mice at 3 weeks and
1 day old (they are weaned at 3 weeks old) were also fed with the diet containing normal (0.54%) or high
(2%) levels of inorganic phosphate for 1 week (see Transparent Methods for the details). In these FGF23KO
mice, the plasma FGF23 is barely detectable, confirming the null mutation of the gene (Figure S9C).
Furthermore, the plasma phosphate level increases even without the phosphate overload (Figure S9B),
corroborating the known function of FGF23 as a hormone facilitating phosphate excretion (Bergwitz and
Juppner, 2010; Kuro-o, 2013; Kuro-o, 2010; Stubbs et al., 2007). The FGF23KO mice show the increased
plasma phosphate level upon the phosphate overload (FGF23KOTWHP in Figure S9B), confirming that
they indeed take in the high-phosphate diet. The expressions of the 25 skin genes were analyzed by
gRT-PCR in this model (Figure 8). The expression of each gene in the younger mice loaded with a high-
phosphate diet for 1 week (WTTWHP) was compared with that with a low-phosphate diet (WTTWLP).
The result showed 5 upregulated (Hamp2: ca. x3.6, Cxcl13: ca. x2.3, Ptp4a3: ca. x1.3, Serpinbée: ca. x2.0,
122ra2: ca. x1.6) (Figure 8A and Table S16) and 10 downregulated genes (Col15a1: ca. x0.7, Aldh112: ca.
x0.3, Clec11a: ca. x0.3, Serpinbéd: ca. x0.3, Defb8: ca. x0.01, Col3al: ca. x0.5, C1gtnfé: ca. x0.4, Sparc:
ca. x0.5, Col1al: ca. x0.4, Col5al: ca. x0.6) (Figures 8B, 8D, and Table S16). The expression of Nrap also
appears to be downregulated (ca. x0.8), but the p value was only 0.01074 (Figure 8C and Table S16). The
expressions of nine genes (Actn3, Asb11, KIhI38, Atp2al, Myot, Pdeddip, Rbfox1, Lrrc2, Col11al) show
no significant changes (Figure 8C and Table S16).

Next, the effect of FGF23 deficiency was examined using the FGF23-deficient mice (Figure 8). The com-
parisons were made as follows: WT with the normal diet (WTTWND) vs. FGF23KO with the normal diet
(FGF23KOTWND), WT with the high-phosphate diet (WTTWHP) vs. FGF23KO with the high-phosphate
diet (FGF23KOTWHP), and WT with the high-phosphate diet (WTTWHP) vs. FGF23KO with the normal-
phosphate diet (FGF23KO1WND). The plasma phosphate level in the WT mice fed with the high phos-
phate shows an increase in the blood phosphate level that is comparable with that of the FGF23KO
mice fed with the normal diet (Figure S9B). Therefore, the comparison between WTIWHP and
FGF23KOTWND was made to account for the influence of the high phosphate level in the blood. These
analyses show that the upregulated expression of all five genes (Hamp2, Cxcl13, Ptp4a3, Serpinbée,
1122ra2) is further upregulated in the FGF23KO mice (Figure 8A and Table S16). The downregulated
expression of five genes (Col15a1, Aldh112, Clec11a, Serpinbéd, Defb8) is further downregulated in the
FGF23KO mice (Figure 8B and Table S16). Although the expression of Actn3, Asb11, KlhI38, Atp2al,
Myot, Pdeddip, Rbfox1, Lrrc2, and Nrap is merely unaffected by the phosphate overload (WTTWLP vs.
WT1WHP), their expression is significantly upregulated by the FGF23 deficiency (Figure 8C and Table
S16). In contrast, the expression of Col11a1, the other gene that is unaffected by the phosphate overload,
is downregulated by the FGF23 deficiency (Figure 8C and Table S16). These results suggest that, upon
phosphate overload the concurrent upregulation of FGF23 suppresses the excessive upregulation
(Hamp2, Cxcl13, Ptp4a3, Serpinbée, 1122ra2) (Figure 8A) and downregulation (Col15a1, Aldh1i2, Clec11a,
Serpinbéd, Defb8) of the gene expression in the skin (Figure 8B). For Actn3, Asb11, KIhi38, Atp2al, Myot,
Pde4dip, Rbfox1, Lrrc2, Coll1al, and Nrap, the phosphate-overload-induced FGF23 upregulation
suppresses and maintains the expression level even with the phosphate overload (Figure 8C), i.e., the
phosphate-overload-induced FGF23 upregulation functions as a break for their otherwise upregulated
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Figure 7. Differentially Expressed Skin Genes in the CKD Models

The gRT-PCR results for each upregulated (A) and downregulated (B) gene are shown. n = 9 (E.Sham), n = 9 (E.CKD), n = 9 (M.Sham), n = 9 (M.CKD), n =9
(L.Sham), n = 8 (L.CKD).

*p < 0.05, **p < 0.01, and ***p < 0.001, Mann Whitney U-test. The mean is indicated by a horizontal line.

(Actn3, Asb11, Klhi38, Atp2al, Myot, Pde4dip, Rbfox1, Lrrc2, Nrap) or downregulated (Col11a1) expres-
sion (Figure 8C).

The analyses also found evidence for a pathway that is less dependent on FGF23. For Col3al, Clgtnfé,
Sparc, and Collal, only slight downregulation is detected in the WT1WHP vs. FGF23KO1WHP comparison
(Figure 8D), but not in the WTTWHP vs. FGF23KOTWND one (Figure 8D), despite the comparable increase
in the blood phosphate level (Figure S9B). For Col5a1, neither WTTWND vs. FGF23KO1TWND nor WTTWHP
vs. FGF23KOTWHP comparison found statistically significant differences in the Col5a1 expression (Fig-
ure 8D and Table S16). The WTTWHP vs. FGF23KO1TWND comparison shows only marginal, if any, upregu-
lation (ca. x1.7), with the p value of 0.0132 (Figure 8D and Table S16). These results suggest that the
increased FGF23 level upon the phosphate overload influences very little, if any, of the phosphate-over-
load-mediated downregulation of these five skin genes.

The signaling by FGF23 is mediated by a cell surface receptor complex consisting of a-Klotho and FGFRs
(Hu et al.,, 2013; John et al., 2011; Shen et al., 2016). To gain further insight into this bone-skin cross talk
mediated by FGF23, we examined the body-wide expression patterns of aKlotho and Fgfrs (Figure 9).
The expression of aKlotho is most abundant in the kidney as previously described (Kuro-o et al., 1997),
but very little, if any, expression was detected in the skin (Figure 9). The transcripts for the co-receptors,
Fgfrs, are more ubiquitously expressed (Figure 9). As aKlotho is the requisite receptor component for
the FGF23 signaling (Chen et al., 2018; Hu et al., 2013; John et al,, 2011; Lee et al., 2018; Shen et al.,
2016), it is unlikely that FGF23 acts directly on the skin. Instead, the FGF23 effects are mediated by yet
another factor(s) that is(are) regulated by FGF23.

Putative Inter-Organ Cross talk Network

The characterization of the skin gene expressions in the disease models led us to identify the bone-skin
cross talk mediated by the bone-derived hormone FGF23 and its regulation by phosphate homeostasis
(Figures 7 and 8). Hence, we next took advantage of the rich multi-organ datasets across multiple disease
models to identify more signature activities of inter-organ cross talk for the disease models. WGCNA was
applied to the datasets for each disease model (Figures 10, 11, 12, 13, 14, 15, and 16 and see Transparent
Methods). This analysis identified modules consisting of multiple organ GO term units in each model (Fig-
ures 10,11, 12,13, 14,15, and 16). We found several modules in each disease model that exhibit a relatively
stronger correlation with a specific pathophysiological condition than with the others (Figures 10, 11, 12, 13,
14,15, and 16, Tables S17-523).

For example, in the MI model (Figure 10), the “red” module shows the strongest correlation (correlation
coefficient, 0.87786; p value, 2.06 x 10~"%) with E.MI. The top-ranked organ GO term units for each organ
in this module are “"bone marrow (BM) regulation of viral budding via host ESCRT complex (ID: 1084),"”
"brain transport (ID: 1258),” “heart cellular metabolic process (ID: 129),” "kidney small molecule metabolic
process (ID: 1192)," “liver metabolic process (ID: 477)," “lung immune response (ID: 365),” "pancreas
cellular amino acid metabolic process (ID: 120),”
process (ID: 445),” "spleen metabolic process (ID: 477),
damage stimulus (ID: 652),” “thymus cellular response to epidermal growth factor stimulus (ID: 148),"”
and "white adipose tissue (WAT) regulation of I-kB kinase/NF-kB signaling (ID: 999)" (Figure 10 and
Table S17).

skeletal muscle (SkMuscle) macromolecule catabolic

"on

testis negative regulation of response to DNA

In the CKD model (Figure 12), the “paleturquoise” module shows the strongest correlation (correlation
coefficient, 0.968783; p value: 2.22 x 1077) with E.CKD (Figure 12 and Table $19). The top-ranked organ
GO terms for each organ in this module are “adrenal gland (AdrenalG)-female gamete generation (ID:
201)," "aorta positive regulation of B cell apoptotic process (ID: 473)," "brain-intermediate filament
organization (ID: 260),” "“colon-formation of cytoplasmic translation initiation complex (ID: 205),” “eye
chemoattraction of dopaminergic neuron axon (ID: 114),” "heart regulation of platelet-derived growth

"o

factor receptor signaling pathway (ID: 664),” "ileum-dihydrobiopterin metabolic process (ID: 148),”
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Figure 8. Differentially Expressed Skin Genes in the Phosphorus-Overload Models in Wild Type (WT) and FGF23-Deficient (FGF23KO) Mice
The gRT-PCR results for genes that are upregulated (A), downregulated (B), unaffected (C), and downregulated but relatively less affected by the FGF23KO
(D) upon phosphate overload are shown. The phosphate overload was initiated at 3 weeks old for all WT and indicated as WT(3W). For FGF23KO, the
phosphate overload was initiated at 3 weeks plus 1 day and indicated as FGF23KO (3W+1d). For all graphs in (A) and the WT(3W)TWHP vs. FGF23KO(3W+1d)
TWND and the WT(3W)TWHP vs. FGF23KO(3W+1d)TWHP comparisons for Defb8 in (B), it may be difficult to see the upregulation (A) or downregulation
even with the statistical significance. This results from accommodating widely distributed dots along the y axis in the same graph. The statistically significant
and robust gene expression changes can be confirmed by examining the raw data and statistical analyses shown in Table S16. LP, low-phosphorus diet; ND,
normal diet; HP, high-phosphorus diet. n = 13-14 (WTTWLP), n = 12 (WT1WND), n = 14 (WTTWHP), n = 12 (FGF23KOTWND), n = 7 (FGF23KOTWHP).

*p < 0.05, **p < 0.01, and ***p < 0.001, Mann Whitney U-test. The mean is indicated by a horizontal line.
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Figure 9. Expression Patterns of a-Klotho, Fgfr1, Fgfr2, Fgfr3, and Fgfr4 across the Organs
The FPKM for each gene in each sample is shown as bar graph. The organ names are indicated at the bottom. Shown are for all CKD models and the sham

controls.
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andis described in full in Table S17. The organ(s) that is(are) not represented in the module is(are) indicated by WM. The correlation coefficient and the p value
iScience 2, 238-268, April 27, 2018

Modules identified by WGCNA using the datasets of the Ml models are shown. The top GO term of each organ for each module is indicated by the number

(Student’s asymptotic t test) of each module and the complete list of GO terms with their p values (Fisher's exact test) are shown in Table S17.

Figure 10. Characterization of Putative Inter-Organ Cross talk in the Ml Models
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Figure 11. Characterization of Putative Inter-Organ Cross talk in the STZ-Induced Diabetes Models
Modules identified by WGCNA using the datasets of the STZ-induced diabetes models are shown. The correlation coefficient and the p value (Student’s
asymptotic t test) of each module and the complete list of GO terms with their p values (Fisher’s exact test) are shown in Table S18.
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Figure 12. Characterization of Putative Inter-Organ Cross talk in the CKD Models
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Figure 13. Characterization of Putative Inter-Organ Cross talk in the CKD and Phosphorus-Overload Models

Modules identified by WGCNA using the datasets of the CKD and phosphorus-overload models are shown. The organ(s) that is(are) not represented in the
module is(are) indicated by B. The correlation coefficient and the p value (Student’s asymptotic t test) of each module and the complete list of GO terms with
their p values (Fisher's exact test) are shown in Table S20.

"

"jejunum-cellular response to interferon-gamma (ID: 96),” "kidney-metabolic process (ID:303),” “liver-ribo-
somal small subunit biogenesis (ID: 721)," "lung-cell competition in a multicellular organism (ID: 59),”
"pancreas-positive regulation of respiratory burst involved in inflammatory response (ID: 519),” “pituitary
gland (PituitaryG)-cellular response to nutrient (ID: 100),” “skin-regulation of mitophagy (ID: 651),” “skeletal
muscle (SkMuscle)-cellular macromolecule metabolic process (ID: 84)," “skull-mRNA transcription from
RNA polymerase Il promoter (ID: 334),” “spleen-negative regulation of muscle adaptation (ID: 392),”
"stomach-RNA phosphodiester bond hydrolysis (ID: 725),” "“testis-response to TNF agonist (ID: 712),”
“thymus-cellular component disassembly (ID: 74),” and "white adipose tissue (WAT)-organic substance
transport (ID: 441)" (Figure 12 and Table S19).

Similarly, in these and other models, there are many more modules, each of which shows a uniquely strong
correlation to a specific pathophysiological condition (Figures 10, 11, 12, 13, 14, 15, and 16). In such
modules, each of the organs are linked to not only the top-ranked GO term but also multiple other GO
terms (see Tables S17-523 for the complete list). This suggests that each of these organs forms an inter-
organ cross talk network via biological functions expressed by their corresponding GO terms within the
module. Hence, each of such modules may represent the signature activity of the inter-organ cross talk
for the specific pathophysiological condition.

Human-Mouse Comparisons

Another utility of such body-wide multi-organ and multi-model datasets was also examined. The similar-
ities and dissimilarities between experimental animal models and the human have been a subject of
long-standing discussion. Herein, we provide the body-wide multi-organ and multi-model RNAseq
datasets of the mouse, one of the most commonly used experimental animal models. Several multi-organ
human RNAseq datasets are publicly available (GTEx Consortium, 2013; Franzen et al., 2016; Uhlen et al.,
2015). Hence, the comparison between our mouse datasets and such human datasets could provide an
insight into the questions about the mouse-human relatedness. The gene expression pattern in each organ
of each mouse model reported herein was compared with that in the corresponding organ of human
subjects. The comparison was conducted by calculating Spearman’s rank correlation coefficients between
the mouse and human data (Figures 17 and 18 and see Transparent Methods). The human data are derived
from The Human Protein Atlas (https://www.proteinatlas.org) and represent those of relatively healthy
human subjects.

The comparison between mouse and human was first made for each organ (Figure 17). The results suggest
that the heart, the pancreas, the skeletal muscle (SKMuscle), and the spleen show a higher degree of
similarity between the mouse and the human (Figure 17). In contrast, the testis data of the mouse and
the human show the lowest similarity (Figure 17). Next, the comparison among all organs of both mouse
and human was made (Figure 18). The result shows that both brain and testis exhibit far distinctive patterns
among all organs in both mouse and human (Figure 18). For each of these two organs, the mouse-to-human
difference is much less than the brain/testis-to-the other organs differences (Figure 18). The heart pattern
appears to be closely related to that of the skeletal muscle in both mouse and human (Figure 18), suggest-
ing that the relatedness of these two organs offset the species difference to some extent (Figure 18).

In addition, we compared the mouse heart datasets of the Ml models with those derived from a patient with
heart failure with ischemic heart disease (Figure 19 and see Transparent Methods). The WGCNA of the
mouse heart datasets of the MI models identified 13 modules (Figure 19). A uniquely strong correlation
with M.MI (the fibrosis stage) was found with “turquoise (correlation coefficient, —0.72763; p value,
5.59 x 107°),” “blue (correlation coefficient, 0.719743; p value, 7.35 x 107)," and "green (correlation
coefficient, 0.812496; p value, 1.42 x 104" modules. In all of these three modules, there are several
GO terms that rank among the top 20 GO terms in the human sample (Figure 19). In particular, the GO
term “carbohydrate derivative biosynthetic process” shows the p values of 7.00 x 1074 5.50 x 107/,
and 8.60 x 107° in the human ischemic heart, "turquoise” module of the mouse M.MI heart, and “blue”
module of the mouse M.MI heart, respectively (Figure 19 and Table S24). This and other signature GO
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Figure 14. Characterization of Putative Inter-Organ Cross talk in the CKD, the Phosphorus-Overload, and the Cisplatin-Induced Kidney Injury
Models

Modules identified by WGCNA using the datasets of the CKD, the phosphorus-overload, and the cisplatin-induced kidney injury models are shown. The
organ(s) that is(are) not represented in the module is(are) indicated by WM. The correlation coefficient and the p value (Student’s asymptotic t test) of each
module and the complete list of GO terms with their p values (Fisher's exact test) are shown in Table S21.

terms shared by the human ischemic heart and the mouse Ml heart (the full list can be explored using Table
S24) may represent common features between the human ischemic heart and the mouse Ml model heart.

DISCUSSION

Herein we report the transcriptome landscape of the body-wide multi-organ across multi-disease and
disease-related models. The mining of such comprehensive datasets provided evidence for more diverse
and complex organ-to-organ and also model-to-model similarities and dissimilarities than conventionally
assumed. In particular, we found the skin to be a unique organ that appears to sense and respond to
disease and disease-related conditions in other non-skin organs.

The experimental validation of the inference derived from such data mining led to the uncovering of a
previously less recognized cross-talk pathway between bone and skin, whereby a bone-derived systemic
factor, FGF23, appears to function as a suppressor (Figures 8A-8C). In addition, we show evidence for a
sensor function of the skin that is less dependent on FGF23 (Figure 8D).

Such differential gene expression in the skin could serve as biomarkers for detecting signs of diseases
involving dysfunctional phosphate homeostasis, such as CKD and CKD-MBD (Hu et al., 2013; John et al.,
2011; Kuro-o, 2013, 2017; Kuro-o and Moe, 2017; Kuro-o, 2010; Shen et al., 2016). In fact, an association
of dermatological conditions with CKD has been reported (Brewster, 2008; Gagnon and Desai, 2013).
They could also serve as biomarkers to determine whether a disease involves the FGF23 pathways. Further-
more, they could be used to determine the effects of therapeutics manipulating the FGF23 pathways (Aono
et al., 2009; Degirolamo et al., 2016). With the recent development of a new non-invasive skin biopsy
method using a micro-needle (http://www.minderadx.com/wp-content/uploads/2015/03/MiNDERA-SID-
2017-Poster-.pdf), the utility of such skin biomarkers could be readily applicable to human subjects.

The signature activities of the inter-organ cross talk for diseases appear not to be limited to the bone-skin
cross talk in phosphate homeostasis or kidney diseases. By applying WGCNA to the mouse datasets, we
identified several modules consisting of multiple organ GO term (gene) units, each of which exhibits a
strong correlation with a specific pathophysiological condition in each disease model (Figures 10, 11,
12,13, 14, 15, and 16). Each of such modules may represent a putative inter-organ cross talk activity that
signifies a specific pathophysiological condition of each disease model. Experimental validations of this
finding in the future may prove such activities useful for disease diagnosis and/or selecting an effective
treatment(s) for a particular disease.

The availability of such datasets also allowed us to gain insight into the relatedness between the human and
animal models (Figures 17, 18, and 19). We found evidence for organ-to-organ variations in the degree of relat-
edness between the human and the mouse (Figure 17). Among the organs we studied, the testis exhibits the
highest difference between the two. This finding may reflect species specificity for fertilization (Figure 17).
The overall higher relatedness of certain organs, such as the heart, pancreas, skeletal muscle (SkMuscle), and
spleen, than the others may reflect the evolutional conservation in the anatomical organization, cellular compo-
sitions, and/or physiological functions of these organs between the mouse and the human.

The heart appears to be highly related to the skeletal muscle, and the mouse-human difference for these two
organs are relatively less (Figure 18). As both are contractile tissues, it is possible that cardiac and skeletal mus-
cles retain highly conserved molecular and/or functional features through evolution. It is also possible that this
reflects evolutionarily conserved molecular and/or functional features of peri-muscular cells, such as fibroblasts
and fibroblastic cells. Alternatively, it is equally possible that the relatedness of these two organs across the
different species reflect the highly conserved cell-type compositions in these two organs.

The comparison of the mouse MI models with the human ischemic heart derived from a patient with heart
failure indicates several conserved features (Figure 19). Although more human subjects across various ages,
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Figure 15. Characterization of Putative Inter-Organ Cross talk in the Tumor Models

Modules identified by WGCNA using the datasets of the tumor models are shown. The organ(s) that is(are) not represented in the module is(are) indicated by
M. The correlation coefficient and the p value (Student’s asymptotic t test) of each module and the complete list of GO terms with their p values (Fisher's
exact test) are shown in Table S22.
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Figure 16. Characterization of Putative Inter-Organ Cross talk in the Pre-Mature Aging Models

Modules identified by WGCNA using the datasets of the premature-aging models are shown. The organ(s) that is(are) not represented in the module is(are)
indicated by . The correlation coefficient and the p value (Student’s asymptotic t test) of each module and the complete list of GO terms with their p values
(Fisher's exact test) are shown in Table 523.
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sex, races, genetic backgrounds, and other accompanying conditions must be studied, the results suggest
that the mouse MI models studied here reflect at least some features of human heart diseases. Further
analyses of human subjects across more diverse backgrounds and their comparisons with the mouse Ml
models and other heart-disease-related models using the approach introduced here and other methods
could facilitate better understanding of human heart diseases. Such cross-species studies could also
help us select the most appropriate model to use to validate/test candidate therapeutics and also to
make more appropriate interpretations of the results.

We took advantage of the comprehensive nature of the multi-organ and multi-model datasets reported
herein to explore a possibility of uncovering more potential diagnostic biomarkers and candidate mole-
cules for therapeutic treatments. Such possibilities were explored by applying a couple of other informatics
tool. Likelihood analysis was conducted to make an overall multi-organ comparison rather than the conven-
tional organ-to-organ comparison (Figure S10 and see Transparent Methods for the details). Partial least
square discriminant analysis (PLS-DA) was applied to the datasets to characterize gene-organ unit(s) that
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Figure 19. Comparison of the Mouse MI Model Heart with the Human Heart of a Patient with Ischemic Heart Disease

The modules identified by WGCNA of the mouse MI model datasets (see Transparent Methods) are shown. The previously published (Liu et al., 2015)
publicly available human heart RNAseq datasets (GSE57344) of healthy (non-failing) subjects and of a patient with heart failure with ischemic heart disease
are analyzed. The p value (Fisher’s exact test) of each human GO term in each mouse module is shown as heatmap. See Transparent Methods for the details.
The correlation coefficient and the p value (Student’s asymptotic t test) of each module and the complete list of GO terms with their p values (Fisher's exact
test) are shown in Table 524.

could discriminate one disease model from the others (Figure S11 and see Transparent Methods for the
details). The results appear to vary depending on which datasets are combined and analyzed. Although
such analyses provided some signs of usefulness, experimental validations are required to confirm the
utility of such findings. Furthermore, the reliability of such statistical analyses is critically dependent on
the data size. Therefore, it is necessary to increase the sample size to the order of tens or hundreds or
even more for each model. Although further work remains, the current analyses provide an initial founda-
tion for the future studies.

Here we report the body-wide transcriptome landscape of diverse types of disease models and show its
usefulness for the identification of candidate molecular signatures for disease diagnosis and treatments.
We also illustrate another utility of such rich datasets by providing insights into the relationship between
human and mouse models. The datasets reported herein could serve as a useful resource for the study
of biology and medicine. The application of other analytical tools to these datasets and also expanding
the dataset size and diversity in the future could facilitate better understanding of human biology and
its applications to disease prevention and treatments.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Transparent Methods, 11 figures and 28 tables and can be found with
this article online at https://doi.org/10.1016/}.is¢i.2018.03.014.
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Figure S1. Characterization of the MI Models. Related to Figure 1.
(A) Ejection fraction of the M1l models. n=6 (E, M), n=9 (L). ** p < 0.01 and *** p < 0.001, Mann

Whitney U-test. The mean is indicated by a horizontal line. (B) Histology of the heart of sham and Ml
mice. Hematoxylin-eosin stained sections are shown. Scale bars, 1 mm.
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Figure S2. Blood Glucose Level in the Diabetes Model. Related to Figure 1.

The blood glucose levels for E.STZ Sham (n=6), E.STZ (n=6), M.STZ Sham (n=6) and M.STZ (n=6)
models are shown in mg/dl. * p < 0.05 and ** p < 0.01, Mann Whitney U-test. The mean is indicated
by a horizontal line.
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Figure S3. Blood Analyses of the CKD and CKD-Related Models. Related to Figure 1.

Blood inorganic phosphorus (Pi) (A), Creatinine (Cr) (B) and FGF23 (C) concentrations for each model
are shown. n=15 (LPi4w), n=4 (HPi4w), n=9 (E.CKD Sham), n=9 (E.CKD), n=9 (M.CKD Sham), n=9
(M.CKD), n=9 (L.CKD Sham), n=8 (L.CKD) for (A) and (B). n=8 (LPi4w), n=8 (HPi4w), n=4 (E.CKD
Sham), n=4 (E.CKD), n=4 (M.CKD Sham), n=4 (M.CKD), n=4 (L.CKD Sham), n=4 (L.CKD) for (C).
*p<0.05, ** p<0.01, and *** p < 0.001, Mann Whitney U-test. The mean is indicated by a horizontal

line.
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Figure S4. Characterization of the GBM Models. Related to Figure 1.

(A) qRT-PCR for human B2M and mouse B2m gene expression. n=3 (E.GBM Sham), n=4 (E.GBM),
n=3 (M.GBM Sham), n=4 (M.GBM), * p < 0.05, Mann Whitney U-test. The mean is indicated by a
horizontal line. N.D.: not detectable. (B) Histology of the tumor cell-transplanted brain sections.
Hematoxylin-eosin stained sections are shown. Transplanted tumor cells are indicated by arrows. Scale
bars, 1 mm.
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Figure S5. Behavioral Test of the SAMP8 Models. Related to Figure 1.

Step-Through test results of SAMP8 mice. The time each mouse spent in memory-acquisition trial (blue
bars) and memory-retention trial (orange bars) is shown in second for control (SAMR1) and SAMP8 at
each stage (E., M., L.) is shown. n=6. *p < 0.05 and **p < 0.01, Mann Whitney U-test. Bars are shown
as meanzS.D. n.s.: Not significant.
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Figure S6. Comparisons of the RNAseq Datasets of the Control Mice to Publicly Available
Mouse Datasets. Related to Figure 1.

The RNAseq datasets of the control mice (WT and WT+Saline) are compared to the previously
published publicly available multi-organ mouse RNAseq datasets (GSE36025) (Pervouchine et al.,
2015). The WT and WT+Saline are C57BL/6N Jcl male mice of 11 weeks old and 15 weeks old,
respectively. The publicly available datasets are from C57BL/6J mice of 8 weeks old (the sex is
unknown). The result is shown as heat-map of the Spearman’s correlation coefficients for each organ

(A) and for all organs (B).
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Figure S7. Organ-to-Organ Comparisons of the GO Terms of the Differentially Expressed
Genes in Each Organ. Related to Figure 3.

The p-values are shown in log10 for each GO term. The top 10 GO terms in one or more of the models
are shown. The complete list of the GO terms is shown in Table S13.

The p-values are shown in log10 for each GO term. The top 10 GO terms in one or more of the models
are shown. The complete list of the GO terms are shown in Table S13.
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Figure S8. Model-to-Model Comparisons of the GO Terms of the Differentially Expressed

Genes in Each Model. Related to Figure 4.
The p-values are shown in log10 for each GO term. The top 10 GO terms in one or more of the organs
are shown. The complete list of the GO terms is shown in Table S13.
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Figure S9. Generation and Characterizations of the FGF23 Mutant. Related to Figure 8.

(A) Schematic diagram describing the mutation in FGF23 gene. The sequence of the mutant FGF23
protein is described. The plasma inorganic phosphate (Pi) (B) and FGF23 (C) concentrations are shown.
LP: low-phosphorus diet, ND: normal diet, HP: high-phosphorus diet. n=7 (WT1WLP), n=6
(WT1WND), n=7 (WT1IWHP), n=12 (FGF23KO1WND), n=7 (FGF23KO1WHP) for Pi (B). n=14
(WT1WLP), n=12 (WT1IWND), n=14 (WT1WHP), n=10 (FGF23KO1WND), n=7 (FGF23KO1WHP)
for FGF23 (C). * p < 0.05, ** p < 0.01, and *** p < 0.001, Mann Whitney U-test. The mean is indicated

by a horizontal line. N.D.: not detectable.
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Figure S10. Likelihood between a Pair of the Models. Related to Figures 10 - 16.

(A) Schematic diagram describing the likelihood analysis (see Transparent Methods for the details). (B)
The likelihood map. The rankings of the likelihood are indicated. The top 5 are highlighted in light-red
color.
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Figure S11. PLS-DA of the Datasets. Related to Figures 10 - 16.

All (A), E.CKD/M.CKD/L.CKD (B), E.CKD/E.CKD Sham/M.CKD/M.CKD Sham/L.CKD/L.CKD
Sham (C), EMI/M.MI/LMI (D), EMI/E.MI Sham/M.MI/M.MI Sham/L.MI/L.MI Sham (E),
E.MI/E.CKD/M.STZ/E.GBM (F) and E.MI/E.MI Sham/E.CKD/E.CKD Sham/M.STZ/M.STZ
Sham/E.GBM/E.GBM Sham (G) datasets are analyzed. The results are shown as heat-maps.



Transparent Methods

Animals

All animal protocols were approved by the Animal Care and Use Committee of Advanced
Telecommunications Research Institute International (Approved Number: A1406, A1504, A1604,
A1607, A1609, A1704, A1707, and A1709) for myocardial infarction (MI) model and phosphorus diet
model, Jichi Medical University (Approved Number: 15065) for unilateral nephrectomy and high
phosphorus diet (CKD) model, New Drug Research Center, Inc. (Approved Number: 150515C and
150604B) for SAMP8 and diabetes model, KAC Co., Ltd (Approved Number 15-0903) for
glioblastoma multiforme (GBM) model, and Karydo TherapeutiX, Inc (Approved Number:
AN20170014KTX, AN20170001KTX, AN20170010KTX) for cisplatin model, wild type mouse
without any treatment, and wild type mouse treated with saline. All experiments were conducted with
ICR (CD1), C57BL/6NCrSlc, SAMR1/Ta Slc, SAMP8/Ta Slc (Japan SLC, Inc., Shizuoka, Japan),
C57BL/6J (Charles River Laboratories Japan, Inc., Kanagawa, Japan), C57BL/6N Jcl and NOD/ShiJic-
scid Jcl (CLEA Japan, Inc., Tokyo, Japan). Control mice are wild type (WT) and wild type injected
with saline (WT+Saline). WT are C57BL/6N Jcl male mice of 11 weeks old and WT+Saline are
C57BL/6N Jcl male mice injected with Saline of 15 weeks old. All animals were housed in a
temperature controlled room at around 25°C with 12 h light/dark cycle and allowed free access to water
and normal foods (CE-2, CLEA Japan, Inc., Tokyo, Japan).

Myocardial infarction (MI models)

Male CD1 mice at 10 weeks old were used to produce myocardial infarction (MI) by ligation of left
anterior descending coronary artery (LAD) (Murakoshi et al., 2013). Mice were anaesthetized by
inhalation of 2 - 2.5% vaporized isoflurane (Wako Pure Chemical Industries, Ltd., Osaka, Japan) and
intubated with a 20-gauge intravenous catheter. Mice were ventilated with a volume-controlled
respirator (Harvard Apparatus, MA, USA) with 200 ul per cycle at a respiratory rate of 110 cycles/min.
After thoracotomy, the third intercostal space was dissected to see the LAD under the stereoscope. The
LAD was ligated with an 8-0 nylon suture 1-2 mm below the tip of the left auricle. Occlusion was
confirmed by the change of color (pallor) of the anterior wall of the left ventricle. The chest cavity was
closed with 5-0 silk sutures. The skin was closed by 9 mm autoclips. After the mice were awaken, the
intravenous catheter was extubated from trachea. Sham-operated mice were produced by the same
operation without ligating the suture, but passing it under the LAD. The mice were allowed to recover
from the operation on a warm plate for 30 minutes. The following organs were harvested and frozen in
liquid nitrogen after euthanasia at 1 day, 1 week, and 8 weeks post-surgery: Bone marrow cells (BM),
the brain, the skin (from the ear), the heart, the kidney, the liver, the lung, the pancreas, the skeletal
muscle (SkMuscle), the spleen, the testis, the thymus, and the gonadal white adipose tissue (WAT).
These organs were stored at -80°C until further analyses.

Echocardiography

Echocardiography to assess a systolic and diastolic function was performed on MI or Sham-operated
mice before the surgery and also at 1 day, 1 week, and 8 weeks post-surgery with Toshiba Diagnostic
Ultrasound System Machine (Aplio MX SSA-780A, TOSHIBA Medical Systems Corporation, Tochigi,
Japan) or VisualSonics Vevo2100 imaging system (FUJIFILM VisualSonics Inc., Toronto, Canada).
The mice were anaesthetized with 2 - 2.5% isoflurane and parasternal long-axis 2D-mode and M-mode
were recorded. The ejection fraction (EF) was calculated as follows: (Left ventricular diastolic volume
— Left ventricular systolic volume) / Left ventricular diastolic volume.

Histology

Whole heart was harvested and embedded in OCT compound (Sakura Finetek Japan, Tokyo, Japan).
The sample was stored at -80°C. The heart was sectioned at 5 um thickness by cryostat. Whole brain
was harvested and fixed in bouin’s fixative. The brain was embedded in paraffin and sectioned at 5 um
thickness by microtome. These sections were processed for hematoxylin and eosin staining. The image
of stained sections was captured with Leica M165 FC microscope (Leica, Wetzlar, Germany).

Unilateral nephrectomy and high phosphorus diet model (CKD models)



Phosphate-overload is a critical risk factor for several diseases including renal diseases such as CKD.
The phosphate-overload was induced by daily feeding the unilaterally nephrectomized mice with high-
phosphorous diet as follows. Male C57BL/6J mice at 8 weeks old underwent unilateral nephrectomy.
They were anaesthetized by intraperitoneal (IP) injection of 1.25% Avertin (2,2,2-tribromoethylalcol)
at a dose of 250 mg/kg. The right kidney was exposed by a dorsal incision, and then renal pedicle and
ureter were ligated with a silk suture. After the ligation of the renal pedicle and ureter, the right kidney
was dissected. The retroperitoneum incision was sutured, and the skin was closed by 9 mm autoclips.
Sham-operated mice were produced by the same operation without ligating the renal pedicle and ureter
and without dissecting the right kidney. After 4 weeks of the surgery, the mice were fed ad libitum with
low phosphorus (LPi) diet (0.35% inorganic phosphorus) or high phosphorus (HPi) diet (2% inorganic
phosphorus) for 1, 4, and 8 weeks. The composition of each diet is described in Table S25. At the end
of the phosphorus diet feeding, the mice were anaesthetized with Avertin and the blood was collected
from the orbital sinus into the EDTA-coated blood sampling tube. The plasma fraction was stored at -
80°C. The mice were then euthanized and organs were harvested and frozen in liquid nitrogen. The
adrenal gland, the aorta, the brain, the colon, the eye, the heart, the ileum, the jejunum, the kidney, the
liver, the lung, the pancreas, the pituitary gland, the skin (from the back), SkMuscle, the skull (the
bone), the spleen, the stomach, the testis, the thymus, the thyroid gland, and WAT were harvested.
These organs were stored at -80°C for further analyses. Inorganic phosphorus and creatinine in plasma
were measured by using DeterminerL IP Il (Kyowa Medex, Tokyo, Japan) and L type Wako CRE M
(Wako Pure Chemical Industries, Ltd., Osaka, Japan) respectively with Hitachi 7180 automatic analyzer
(Hitachi, Itd., Tokyo, Japan).

Phosphorus diet model (HPi4w model)

Male C57BL/6NCrSIc mice at 8 weeks old were fed ad libitum with LPi diet (0.35% inorganic
phosphorus) or HPi diet (2% inorganic phosphorus) for 4 weeks. The organs described for the CKD
models and BM were harvested. The complete compositions of the diet are described in Table S25.

Phosphorus diet model (Young mouse model)

Male C57BL/6NCrSIc mice at 3 weeks old were fed LPi diet (0.35% inorganic phosphorus) or normal
diet (ND: 0.54% inorganic phosphorus) or HPi diet (2% inorganic phosphorus) for 1 week. Fgf23"
(C57BL/6NCrSlc background strain) mice at 3 weeks plus 1 day-old were fed normal diet or high
phosphorus diet for 1 week. The blood and the skin were harvested as described for the CKD models.

Cisplatin model

Male C57BL/6NJcl mice at 11 weeks old received single intraperitoneal injection of cisplatin (Bristol-
Myres Squibb) at 20 mg/kg dosage. Organs were harvested on the 3" day after the injection. The organs
described for the CKD models and BM were harvested.

Diabetes models (STZ models)

Male C57BL/6NCrSlc mice at 4 weeks old were administered Streptozotocin (STZ) (S01310-1G,
Sigma-Aldrich, MO, USA) at a dose of 75 mg/kg weight via IP injection for 3 consecutive days. Sham-
treated mice were administered 0.01 M citrate buffer (pH 4.5) for 3 consecutive days. Mice were starved
overnight one day before they were sacrificed. On day 1 and day 7 after the last STZ administration,
organs were harvested and frozen in liquid nitrogen. BM, the brain, the colon, the skin (from the ear),
the heart, the kidney, the liver, the lung, the pancreas, SkMuscle, the spleen, the stomach, the testis, the
thymus, and WAT were harvested from each mouse. These organs were stored at -80°C for further
analyses. The blood glucose level was measured by bleeding the tail vein and using Life Check/Life
Check sensor (GUNZE LIMITED, Osaka, Japan).

Human tumor xenograft model (GBM models)

Human glioblastoma multiform cell line, U-87MG (ECACC 89081402), was purchased from DS
Pharma biomedical Co. Ltd (Osaka, Japan). The cells were cultured with E-MEM containing 10% fetal
bovine serum, 1% non-essential amino acids, and 1 mM Sodium pyruvate at 37°C under 5% CO,. The
cell suspension at 1 x 10° cells/ml in PBS was prepared for implantation into right cerebral hemisphere.
Male NOD/ShiJic-scid Jcl mice at 7 weeks old were used for the xenograft. The mice were



anaesthetized by a mixture of medetomidine (0.3 mg/kg, Nippon Zenyaku Kogyo Co., Ltd., Fukushima,
Japan), midazolam (4.0 mg/kg, Astellas Pharma Inc., Tokyo, Japan), and butorphanol (5.0 mg/kg, Meiji
Seika Pharma Co., Ltd., Tokyo, Japan) by IP injection. The anaesthetized mouse’s head was fixed with
a standard stereotaxic instrument (Cat No: 68012, RWD Life Science Inc., CA, USA), and the scalp
was incised to expose the skull. A small hole was made on the skull with a dental drill to implant 2 pl
of the cell suspension into the right brain with micro-syringe (Cat No. 80300, Hamilton Company, NV,
USA). The implanted place was fixed at the anterior of 0.1 mm and right side of 2.2 mm from Bregma,
and 3 mm depth of dura mater. After the cell suspension was injected at speed of 1 ul/min, the incision
on scalp was sutured with a nylon suture. The implanted mouse was awaken by IP injection of
atipamezole (0.3 mg/kg, Nippon Zenyaku Kogyo Co., Ltd., Fukushima, Japan). Sham-operated mice
were produced by the same operation with PBS injection instead of the cell suspension. On the 3" and
7" days post-surgery, the mice were starved for overnight prior to harvesting the organs. BM, the brain,
the colon, the skin (from the ear), the heart, the kidney, the liver, the lung, the pancreas, SkMuscle, the
spleen, the stomach, the testis, and WAT were harvested. These organs were stored at -80°C for further
analyses. Successful xenograft of U-87MG cells was confirmed by gRT-PCR for human B2M mRNA
detection in mouse right brain.

SAMP8 model and Step-through test

SAMP8 mice are a genetically established line from a mouse that spontaneously produced amyloid
precursor protein and demonstrated oxidative damage in the brain (Butterfield and Poon, 2005).
SAMRL1 mice, a substrain without such phenotypes, were used as controls. Male SAMR1/Ta Slc mice
(control mice for SAMP8) and SAMP8/Ta Slc mice at 8, 16, and 32 weeks old were sacrificed to harvest
the organs. The sacrificed mice at 8, 16, and 32 weeks old were selected based on the result of the Step-
Through test as follows. Manual Step-Through Test System (Muromachi Kikai Co., Ltd., Tokyo, Japan)
was used to test animals’ memory retention. The test cage was divided into the two compartments, the
light and the dark by the guillotine door. First, a mouse was placed in the light compartment and allowed
to explore there for 10 seconds so that the mouse may become familiarized with the environment. Then
the door was opened and the mouse tried to get into the dark room since mice prefers a dark place. As
soon as the mouse got into the dark, the door was closed without any shock as an adaptation trial. The
mouse was kept for 10 seconds in the dark room. Second, in the case of an acquisition trail, the mouse
was kept for 10 seconds in the light room, and then the door was opened. The migration time from the
light to the dark room was recorded (maximum 300 seconds). As soon as the mouse got into the dark
room, an electrical shock (0.2 mA, 3 seconds, once) was given to the mouse in the dark room. If the
mouse did not get into the dark room in 300 seconds, the mouse was moved to the dark room by force
and the same electrical shock was given to the mouse once. For memory retention test, the trained
mouse (through adaptation and acquisition trials) was kept in the light room for 10 seconds, and then
the door was opened. The migration time from the light to the dark room was recorded (maximum 300
seconds). SAMP8 mice exhibit shorter memory retention time as compared to the SAMR1 control mice.
The SAMP8 mice confirmed for this typical memory-loss phenotype and the SAMRL1 control mice at
8, 16, and 32 weeks old were euthanized and the organs were harvested and frozen in liquid nitrogen.
BM, the brain, the colon, the skin (from the ear), the heart, the kidney, the liver, the lung, the pancreas,
SkMuscle, the spleen, the stomach, the testis, the thymus, and WAT were harvested. The organs were
stored at -80°C for further analyses.

Human biopsies

The skin tissue biopsies from 8 breast cancer and 3 lung cancer patients were collected at Kure Medical
Center and Chugoku Cancer Center. The information of each patient is available at Table S26. All the
patients were negative for HIV, HBV, HCV, HTLV-1, and Syphilis. They had no chemotherapy or
radiation therapy treatments prior to the surgery. This study was approved by the independent ethics
committee of Kure Medical Center and Chugoku Cancer Center (Approved Number: 27-37) and
Advanced Telecommunications Research Institute International (Approved Number: H1501-1602).
The detailed information of the subjects is described in Table S26. The human skin RNAseq data from
The Human Protein Atlas (https://www.proteinatlas.org) were analyzed as healthy subject controls.

RNAseq and bioinformatics analyses



The RNA purity and integrity were determined by Agilent 2100 Bioanalyzer (Agilent, CA, USA) for
total RNA from each organ. RNAseq analyses were performed with either Illumina HiSeq 1500 or 2000
or 2500 or 4000. The details of RNAseq analyses are shown in Table S27. The output data were
analyzed by Galaxy (https://usegalaxy.org/). All sequences were mapped on mouse genome (mm10) or
human genome (hg19) with Bowtie2 (Langmead et al., 2009). Mapped sequences were calculated as
reads per kilobase of exon per million mapped reads (RPKM) or fragments per kilobase of exon per
million mapped reads (FPKM) by Cufflinks (Trapnell et al., 2010).

Analyses of differentially expressed genes

To identify differentially expressed genes, the numbers of annotated reads were counted for each
transcript by using HTSeg-count version 1.6.0 (with parameters -r pos and -s no) using mapped
sequence data with Bowtie2. DESeq2 (Love et al., 2014) analyses version 1.17.33 with the default
parameters were performed. E/M/L-MI and the corresponding Sham-controls (each n=2), E/M/L-CKD
and the corresponding Sham/LPi controls (each n=3 mixed equally), E/M-STZ (each n=3 mixed
equally), E/M-GBM and the corresponding Sham controls (each n=3 mixed equally), E/M/L-SAMP8
and the corresponding SAMR1 controls (each n=3 mixed equally), Cisplatin-treated (n=2) models were
each compared to C57BL/6N Jcl wild type male controls (11 weeks old, n=2). Human skin biopsies
from breast cancer (n=8) and lung cancer (n=3) were individually compared to each healthy human skin
RNAseq dataset (n=6) at The Human Protein Atlas (https://www.proteinatlas.org). Gene ontology (GO)
enrichment analysis was performed using R package “topGO” version 2.30.0. In the GO analyses,
differentially expressed genes were defined as the p-value (calculated by Wald test and adjusted by
Benjamini & Hochberg method) is less than 0.0001 in DESeq2 results.

Weighted gene co-expression network analysis (WGCNA)

Weighted gene co-expression network analysis was performed with R package “WGCNA” (Langfelder
and Horvath, 2008). To construct weighted gene co-expression network, log.(fold-change) in DESeq?2
results of each mouse model compared to C57BL/6N Jcl wild type male controls (11 weeks old, n=2)
or C57BL6/N Jcl wild type male treated with saline (15 weeks old, n=2) were used. As the volume of
the data is too large for calculations, we used those of which the adjusted p-values by Wald test and
Benjamini & Hochberg method is less than 0.0001 at least in one model in each analysis. For example,
in the analysis shown in Figure 5A, the genes of which adjusted p-values (as determined by DESeq?2)
are less than 0.0001 at least in one of the skin samples of E.Sham, E.MI, M.Sham, M.MI, L.Sham and
L.MI. The soft thresholding power was determined with the R function “pickSoftThreshold”. The
relatedness of each mouse model and modules detected from the constructed network was determined
by the Pearson’s correlation coefficients between summary profiles (named eigengene) in detected
modules and 1-of-K representation in each mouse model. The GO enrichment analyses were conducted
for each module using R package “topGO” version 2.30.0.

Human-mouse comparisons

To quantify similarities and dissimilarities of RNAseq between our mouse models and published
healthy humans for each organ, Spearman’s correlation coefficients were calculated from combinations
of FPKMs in the mouse models and healthy humans. RNAseq data from The Human Protein Atlas
(https://www.proteinatlas.org) were used to compute the FPKMs for the healthy human data. HCOP
(https://www.genename.org/cgi-bin/hcop) was used for assigning human-mouse orthologs. The
Spearman’s correlation calculations were performed by R function “cor(method="s”, use="p”)”. Heat
map visualizations of the Spearman’s correlation coefficients were performed by using R function
“heatmap.2” with default parameters. The comparison of the mouse MI model heart to the human heart
of a heart failure patient with ischemic heart disease is conducted using the previously published
publicly available RNAseq datasets (GSE57344) (Liu et al., 2015). The human heart datasets (n=3 of
the non-failing heart control and n=1 heart failure with ischemic heart disease) were analyzed by
DESeq2 and identified the differentially expressed genes as defined by the adjusted p-values < 0.0001
(calculated by Wald test and adjusted by Benjamini & Hochberg method). These human genes are
analyzed using R package “topGO” version 2.30.0. The modules of the heart datasets of the MI-models
were identified by WGCNA. Genes in each module were subjected to GO enrichment analysis using R
package “topGO” version 2.30.0.




Partial least squares discriminant analysis (PLS-DA)

Partial least squares discriminant analysis was performed with R function “splsda” in the package
“mixOmics” (Kim-Anh Le Cao, Florian Robhart, Ignacio Gonzalez, Sebastien Dejean with key
contributors Benoit Gautier, Francois Bartolo, contributions from Pierre Monget, Jeff Coquery,
FangZou Yao and Benoit Liquet. (2017). mixOmics: Omics Data Integration Project. R package version
6.3.0. https://CRAN.R-project.org/package=mixOmics) The input data of “splsda” are log(fold-
change) in DESeq?2 results of mouse model compared to C57BL6/N Jcl wild type male controls (11
weeks old, n=2) or C57BL6/N Jcl wild type male treated with saline (15 weeks old, n=2), and the
parameters of “splsda” were determined by using the R function “tune.splsda”.

Likelihood computation
The relatedness of the body-wide transcriptome landscapes among mouse models was determined by
computing likelihood function using the Spearman’s correlation coefficients between all possible organ
pairs. The DESeq?2 analyses were performed for each organ in each model against the same organ in
C57BL6/N Jcl wild type male controls (11 weeks old, n=2) or C57BL6/N Jcl wild type male treated
with saline (15 weeks old, n=2). In computing the likelihood, we let i and j be indices of organs (e.g.,
the brain, the heart, the kidney, etc.), n be index of mouse models (E-MI, M-MI, M-STZ, etc.) and Spjj
is a Spearman’s correlation coefficient between organ i and organ j in a mouse model n, the likelihood
function of organ-pair i and j in a mouse model m Luij(Snij) can be described as:

Snij—Hmij 2
Limij (Snij) = — = exp {—(;0—51)}

Znami]- mij

2
where H i and Omij are sample average and variance of the Spearman’s correlation coefficients
between organ i and organ j in mouse model m, respectively. The body-wide (i.e. all organs) likelihood
function in a mouse model m was computed as Ly, (sp) = [ Limij(snij), assuming statistical
independent of Spearman’s correlation coefficients among all organ pairs.

RNA extraction, cDNA synthesis, and quantitative RT-PCR (QRT-PCR)

A frozen organ was homogenized in TRIzol reagent (Thermo Fisher Scientific, MA, USA) with PT10-
35 GT Polytron homogenizer (KINEMATICA, Luzern, Switzerland) at 15,000 rpm for 10 seconds or
Cell Destroyer PS1000 or PS2000 (Bio Medical Science Inc., Tokyo, Japan) using mixture of different
sizes of zirconia beads (1.5 mm diameter X 50, 3 mm diameter X 5, 5 mm diameter X 2) at 4,260 rpm
for 45 seconds at 4°C. After 5 minutes incubation of the homogenate at room temperature, 0.2 ml of
chloroform was added into 1 ml of the homogenate. The sample was vortexed for 15 seconds and
incubated at room temperature for 3 minutes. The sample was centrifuged at 12,000 g for 15 minutes
at4°C. Following the centrifugation, the agueous phase was transferred into a new tube. Equal amount
of 70% EtOH was added into the sample and mixed. The sample was loaded on the RNeasy mini column
(Qiagen, Venlo, Netherlands) to purify the RNA according to the manufacture’s instruction. RNA
purity and concentration were measured with Nanodrop 2000 (Thermo Fisher Scientific, MA, USA).
cDNAs were synthesized from 1 pg of total RNA using SuperScript 11 first-strand synthesis system
(Thermo Fisher Scientific, MA, USA) according to the manufacture’s instruction. The synthesized
cDNA was diluted 20 times and used for real-time PCR. Real-time qRT-PCR was performed using
LightCycler480 System Il and SYBR Green Master Mix (Roche, Basel, Switzerland). All primer
sequences were designed with Primer-BLAST and listed in Table S28. The normalized data with
reference gene gene (Maea for skin genes and mouse B2m for human B2M) were analyzed using delta-
Ct method.

Generation of FGF23 mutant mouse by CRISPR/Cas9 method

Fgf23 (NCBI Gene ID: 64654) mutant mouse was generated by CRISPR/Cas9 system (Sander and
Joung, 2014). gRNA sequences for an exon 1 of Fgf23 gene were designed using Optimized CRISPR
design tool (http://crispr.mit.edu/). The gRNAs were individually cloned into the pX330 vector (#42230,
Addgene, MA, USA) that expresses Cas9 transgene. The most effective gRNA was selected as
described (Mashiko et al., 2013). The sequence of selected gRNA for Fgf23 is as follows;



GCACGCCCACCAGGAGTCTA. The plasmid including Fgf23-gRNA and the single-stranded
oligodeoxynuleotides (sSODNSs) to insert stop codon after Cas9 incision were co-injected into the
pronuclei of the fertilized eggs from C57BL/6NCrSlc mice. The sequence of Fgf23 stop donor sSODNs
is as follows;
CGGATAGGCTCTAGCAGTGCCCAAGCTGCAGACAGTGCAGAGCACGCCCACCAGG
AGTCTecctcagaagaactegtcaagaagctaAAGGCAGGTCCCTAGCATTGCACAGCACTGAGT
GGCTAATGCTGAGTTTGAAATCTGACA. The injected eggs were transferred into the oviduct of
pseudopregnant ICR female mice. The Fo mice were genotyped by PCR and direct sequence analyses
(see Table S28 for the primer sequences). One F; mouse line for Fgf23 mutant was generated by
inbreeding of the obtained Fo mice with C57BL/6NCrSlc mice. F, and Fs mice were generated by in
vitro fertilization. Fs and later generation mice were used for further analyses. These genotypes were
confirmed by PCR or direct sequence analyses using primers listed in Table S28.

ELISA for FGF23

FGF23 in plasma was measured using FGF-23 ELISA Kit (TCY4000, KAINOS Laboratories, Inc.,
Tokyo, Japan) according to the manufacture’s instruction. In each well, added were 50 ul of assay
diluent and 50 ul of FGF23 standards or samples. The plate was incubated at room temperature for 2
hours, and then the plate was washed 4 times with wash buffer. After the washing, 100 ul of enzyme
conjugated anti-FGF23 was added into each well. The plate was incubated at room temperature for 1
hour, and then the plate was washed 4 times with wash buffer. After the washing, 100 pl of the substrate
was added into each well. The plate was incubated at room temperature for 30 minutes in dark. The
reaction was stopped by adding the 100 ul of stop solution into each well. The amount of FGF23 was
calculated by measuring the absorbance at 450 nm using Multiskan GO microplate reader (Thermo
Fisher Scientific, MA, USA).

Statistical analyses

Mann Whitney U-test was performed. The p-values are shown as * p < 0.05, ** p < 0.01, and *** p <
0.001. The mean is indicated by a horizontal line. The p-values for DESeg2 were calculated by Wald
test and were adjusted by the Benjamini & Hochberg method. The p-values for the correlations of
WGCNA were calculated by Student’s asymptotic t-test. The p-values for GO enrichment analysis were
performed by Fisher’s exact test.

Data availability statement
All RNAseq data reported herein are available at i-organs.atr.jp.
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