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Microbial communities are usually highly diverse and often involve multiple strains from the
participating species due to the rapid evolution of microorganisms. In such a complex
microecosystem, different strains may show different biological functions. While
reconstruction of individual genomes at the strain level is vital for accurately
deciphering the composition of microbial communities, the problem has largely
remained unresolved so far. Next-generation sequencing has been routinely used in
metagenome assembly but there have been struggles to generate strain-specific genome
sequences due to the short-read length. This explains why long-read sequencing
technologies have recently provided unprecedented opportunities to carry out
haplotype- or strain-resolved genome assembly. Here, we propose MetaBooster and
MetaBooster-HiFi, as two pipelines for strain-aware metagenome assembly from PacBio
CLR and Oxford Nanopore long-read sequencing data. Benchmarking experiments on
both simulated and real sequencing data demonstrate that either the MetaBooster or the
MetaBooster-HiFi pipeline drastically outperforms the state-of-the-art de novo
metagenome assemblers, in terms of all relevant metagenome assembly criteria,
involving genome fraction, contig length, and error rates.
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1 INTRODUCTION

Microbial communities from the environment such as the sea, soil, and human gastrointestinal tract
often constitute various microorganisms with uneven abundances, thus showing high diversity. The
rapid variation of microorganisms may lead to multiple strains of the same species, which further
elevates the biodiversity and complexity of microbial communities. Related studies have
demonstrated that different strains may show different phenotypes or play different biological
functions in the environment (Marx, 2016; Van Rossum et al., 2020). For example, Escherichia coli
(E. coli) is usually harmless and common in the gut of mammals, but unusual strains such as E. coli
(STEC) O26:H11 and E. coli (EHEC) O104:H4 are highly pathogenic and cause bloody diarrhea or
even death (Burger, 2012; Bonanno et al., 2015); different strains of pathogen Staphylococcus aureus
and Streptococcus pyogenes could induce significantly varying human immune responses (Sela et al.,
2018); some strains ofHelicobacter pylori (e.g., cagA-positive strains) are correlated with a higher risk
of gastric cancer (Cover, 2016). Therefore, deciphering the strain diversity of microbial communities
plays a crucial role in various applications.

In general, amplicon sequencing (e.g., 16S/18S rRNA or ITS) and traditional cultivation-based
methods overlook the vast majority of genetic material, whereas metagenomic sequencing enables
genome-scale assembly and strain-level analysis. Strain-resolved de novo genome assembly is the
ultimate solution to decipher strain diversity in metagenomic samples; however, this problem has
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largely remained unresolved so far. Notably, here we define the
concept of “strain” to agree with that of a “haplotype”, which is a
non-redundant genome sequence with sufficient sequencing
coverage. This is in accordance with the definition of a strain
in the related work (Vicedomini et al., 2021).

Next-generation sequencing (NGS) has been routinely used in
de novometagenome assembly, and many related tools have been
developed such as SPAdes (Bankevich et al., 2012), IDBA-UD
(Peng et al., 2012), and MEGAHIT (Li et al., 2015). These tools
only generate squashed assemblies at the species level without
considering strain diversity. In addition, VG-flow (Baaijens et al.,
2020) performs strain-aware metagenome assembly at the whole
genome scale, whereas Snowball (Gregor et al., 2016) and
DESMAN (Quince et al., 2017) do so only at the gene scale.
These de novo assembly methods struggle to generate long-strain-
specific genome sequences because NGS reads are too short
(hundreds of bp) to span inter-/intra-genomic repeats.

Third-generation sequencing (TGS) technologies such as
Pacific Biosciences (PacBio) and Oxford Nanopore
Technologies (ONT) have revolutionized the method of DNA
sequencing because they generate considerably longer reads (tens
of Kbps to Mbp). Hence, they have recently provided
unprecedented opportunities to carry out haplotype- or strain-
resolved de novo genome assembly. In particular, PacBio high-
fidelity (HiFi) long reads are highly accurate (sequencing error
rate < 1%) such that haplotype- or strain-resolved genome
assembly can be achieved relatively easily. Related works such
as HiCanu (Nurk et al., 2020), hifiasm (Cheng et al., 2021), and
hifiasm-meta (Feng et al., 2021) are designed to assemble high-
fidelity long reads without losing haplotype information.
Nevertheless, other types of long reads (i.e., PacBio CLR,
ONT) usually suffer from high sequencing error rate (5–15%).
This makes it more difficult to perform strain-resolved
metagenome assembly mainly due to the hindrance in
distinguishing low frequent strain variations from sequencing
errors. Related approaches such as Canu (Koren et al., 2017) and
metaFlye (Kolmogorov et al., 2020) as the most dominant
metagenome assemblers are unable to separate strains of
divergence vary by less than 5%; note that the majority of
different strains from one species vary by less than 5%. Later,
Strainberry (Vicedomini et al., 2021) was proposed as a post-hoc
strain resolver based on pre-assembled contigs from Canu or
metaFlye. However, it is only suitable to deal with low-complexity
samples and the final result largely depends on the performance
of the pre-assemblers used. Overall, there is plenty of room to
improve the strain-aware metagenome assembly from error-
prone long reads. In addition, previous studies (Luo et al.,
2021; Luo et al., 2022) have demonstrated that performing
haplotype-aware error correction in noisy long reads prior to
genome assembly can significantly improve haplotype awareness.

Here, we propose MetaBooster and MetaBooster-HiFi, as two
pipelines for strain-aware metagenome assembly from PacBio
CLR and Oxford Nanopore long-read sequencing data. First,
MetaBooster/MetaBooster-HiFi performs error correction on
raw reads using VeChat (Luo et al., 2022), a new variation
graph-based standalone tool to correct errors in long reads.
Subsequently, reads corrected by VeChat are combined with

reads corrected by Canu, a state-of-the-art long-read assembler
(Koren et al., 2017). A crucial insight is that joining the two read
sets, and thereby joining the (obviously complementary) virtues
of VeChat and Canu creates maximum synergy, which
considerably “boosts” the performance of assemblers that one
subsequently uses. Here, we focus on assembling the joined reads
using either Canu itself (MetaBooster), or the PacBio HiFi mode
of Canu (MetaBooster-HiFi).

In this study, we do not present a newmethod per se; however,
we do present a pipeline that is superior over all conceivable de
novo long-read-based metagenome assembly strategies presented
so far, by fairly large margins. In other words, the primary novelty
of this work is the superior performance of the “boosted” error
correction—assembly pipeline. An additional novelty is the
introduction of VeChat, as a variation graph-based error
correction tool for long reads into the world of de novo
metagenome assembly.

Benchmarking experiments on both simulated and real
sequencing data demonstrate that either the MetaBooster or
the MetaBooster-HiFi pipeline drastically outperforms the
existing de novo metagenome assemblers in terms of relevant

FIGURE 1 | Workflow overview of MetaBooster and MetaBooster-HiFi.
MetaBooster takes raw reads as input and outputs contigs using Canu (blue),
whereas MetaBooster-HiFi takes raw reads as input and outputs contigs
using HiCanu (red). The dotted arrow lines denote running Strainberry is
optional. Canu (correction) means running Canu’s correction and trimming
modules only. Canu (assembly) means running Canu’s assembly module only.
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assembly evaluation criteria such as genome fraction, contig
length, and error rate. Of further interest, applying Strainberry
as a post-hoc tool for revisiting the resulting assemblies,
improves the assemblies of MetaBooster and MetaBooster-
HiFi by further small amounts. In comparison with the
strategies originally suggested in Strainberry, one achieves
further increases in performance.

2 MATERIALS AND METHODS

2.1 Workflow
See Figure 1 for an overview of the workflow of the two pipelines,
MetaBooster and MetaBooster-HiFi. Firstly, raw reads are
corrected using VeChat (Luo et al., 2022), on the one hand
(left branch at the top in Figure 1) and the error correction
and read trimming module of Canu (Koren et al., 2017), on the
other hand (right branch at the top in Figure 1). In detail, we use
the reads, as provided through the file
$prefix.trimmedReads.fasta, as a standard output that is
generated by Canu, and reflects the corrected reads that
Canu uses for the assembly. Subsequently, corrected reads
from VeChat and Canu are merged. This doubles the number
of original reads on the one hand, without merely duplicating
them. Reads that are not well corrected by one of the methods
can be corrected by the other method, because error correction
modules work according to different principles. The resulting
joined reads can then be assembled using Canu’s assembly
module (the blue branch, namedMetaBooster, at the bottom of
Figure 1) or HiCanu (Nurk et al., 2020) (the red branch,
named MetaBooster-HiFi, at the bottom of Figure 1),
respectively.

Eventually, as an optional last step, one can apply Strainberry
to post-process assemblies and further improve them; see the
dotted lines in Figure 1.

2.2 Datasets
To evaluate the two new pipelines, with or without the
additional application of Strainberry, in comparison with all
state-of-the-art de novo strain-aware metagenome assembly
protocols that one can currently conceive, we make use of
simulated and real data. While the simulated data is generated
using well-established simulators, we draw real data from
recent publications on the topic. See Supplementary Table
S1 for the details of all data sets, such as names and accession
IDs of species, number of strains per species, and genome
divergences.

2.2.1 Simulated Sequencing Data
We used CAMISIM (Fritz et al., 2019) to simulate
metagenomic data (PacBio CLR reads) and PBSIM2 (Ono
et al., 2021) as a read simulator instead of the built-in one in
CAMISIM. For PBSIM2, the built-in P6C4 model-based
simulation profiles were used. These reflect the features of
error-prone long reads generated by the currently most
popular sequencing platforms. To evaluate the effects of
varying numbers of strains and divergence, as well as

sequencing coverage when running our pipelines and the
other methods, we simulated both a low-complexity data
set that contains a smaller amount of strains and a high-
complexity data set that is characterized by containing
considerable more strains.

In detail, the low-complexity data set consists of seven species,
together presenting 13 strains, at an average nucleotide identity
(ANI) of < 98.4%. All ANI values were computed using FastANI
(an alignment-free method to estimate ANI) with default
parameters (Jain et al., 2018). The high-complexity data set
consists of 30 species that together give rise to 100 strains in
total, at an ANI of < 99.99%. For both data sets, the average
sequencing coverage of strains was approximately 30x. The
average sequencing error rate was 10%. The relative
abundance of strains varied from 3.1 to 19.8% for the low-
complexity data and from 0.28 to 3.3% for the high-
complexity data.

The genomes serving as a template for both simulated data sets
were retrieved from (Quince et al., 2017); note that these genomes
were already used in several studies before (Nicholls et al., 2021;
Luo et al., 2022).

2.2.2 Real Sequencing Data
Mock community I: natural whey starter culture data. We
downloaded two real metagenomic datasets (PacBio CLR
reads) derived from natural whey starter cultures (NWCs), as
presented by Somerville et al., 2019.We then merged the two data
sets. We further subsampled 20% of the reads from the merged
data set, which yielded a real metagenomic data set of relatively
low complexity, dominantly containing three species together
exhibiting six strains (each species involves two strains). The ANI
between the two strains (from the same species) ranges from
98.03 to 99.99%. The average sequencing coverage is about 50x.
Note that this data comes from real samples, thus it might contain
more than the six strains (Somerville et al., 2019).We use these six
dominant strains as reference genomes for assembly evaluation
because it is the only viable option.

Mock community II: Microbial 10-plex data. We downloaded
raw long-read sequencing data and the corresponding reference
genomes referring to a 10-plex (as multiplexed) dataset that was
sequenced using the PacBio Sequel System, Chemistry v3.0
(https://downloads.pacbcloud.com/public/dataset/microbial_
multiplex_dataset_release_SMRT_Link_v6.0.0_with_Express_2.
0/). Subsequently, we randomly subsampled 10% of the reads,
which yielded a metagenome data set reflecting a mock
community of an average sequencing coverage of
approximately 40x. The data set contains seven species
showing nine strains overall, reflecting an ANI of < 98.5% as
an indicator for the divergence of strains.

Real human gut microbiome data: We downloaded ONT
reads reflecting a real human gut sample that can be accessed
at SRR8427258 and was presented and analyzed earlier (Moss
et al., 2020). We also obtained Illumina reads of the same
sample (accessible through identifiers SRR6807561,
SRR6788327) as provided through another study (Bishara
et al., 2018). The Illumina reads were used to evaluate
assembly performance in a reference-free manner.
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2.3 Assembly Evaluation
The metagenome assembly performance was evaluated by means
of several commonly used metrics, routinely reported by
MetaQUAST V5.1.0rc1 (Mikheenko et al., 2018), as a
prominent assembly evaluation tool. See below for specific
explanations (and see http://quast.sourceforge.net/docs/manual.
html for full details). Contigs with lengths less than 500bp were
filtered before evaluation, reflecting common practice. In
particular, we ran the metaQUAST.py program with the
option “--unique-mapping” appropriately taking into account
that our data sets reflect mixed samples. In addition, for the
purpose of evaluating the real human gut sample, there is no
ground truth in the reference genomes. Hence, Merqury (Rhie
et al., 2020) was used to evaluate results based on auxiliary short-
read sequencing data, in a reference-independent manner.

2.3.1 Genome Fraction
The Genome fraction is the percentage of aligned bases in the
ground truth strains covered by output contigs. This measures
how complete the reference genomes are covered by contigs.
When reference genomes are unknown, k-mer completeness
reported from Merqury is used as an alternative metric of
approved usefulness (Rhie et al., 2021; Luo et al., 2021).

2.3.2 N50 and NGA50
N50 is defined as the length for which the collection of all contigs
of that length or longer covers at least half the assembly. NGA50
is similar to N50 but can only be calculated when the reference
genome is provided. NGA50 only considers the aligned blocks
(after breaking reads/contigs at misassembly events and
trimming all unaligned nucleotides). NGA50 is then defined as
the length for which the overall size of all aligned blocks of this
length or longer equals at least half of the reference haplotypes.
Both N50 and NGA50 are used to measure the contiguity of the
assemblies.

2.3.3 Error Rate (ER)
The error rate is equal to the sum of the mismatch and the indel
rate when mapping the obtained contigs to the reference
haplotype sequences.

2.3.4 N-Rate
The N-rate is defined as the proportion of ambiguous bases (‘N’s)
in the assembly.

2.3.5 Number of Misassemblies (#Misassemblies)
The misassembly event in assemblies indicates that left and right
flanking sequences align to the true haplotypes with a gap or
overlap of more than 1 kbp, or align to different strands, or even
to different strains. Here, we report the total number of
misassemblies in the given sequence data.

2.3.6 Duplication Ratio
The duplication ratio is equal to the total amount of aligned bases
in the assembly divided by the total amount of aligned bases in the
reference sequences.

3 RESULTS

3.1 Simulated Data
See Table 1 for the assembly performance of simulated
sequencing datasets. Both MetaBooster-HiFi and MetaBooster
generate better assemblies in terms of various aspects, in
comparison to readily available assemblers (i.e., Canu and
metaFlye). For example, on the low-complexity dataset,
MetaBooster-HiFi achieves a 7.1% higher genome fraction,
about 10 times longer NGA50 while maintaining fewer
misassemblies, and 3.6 times lower error rate, compared with
those of Canu (better assemblies than metaFlye). Likewise, on the
high complexity dataset, MetaBooster-HiFi achieves 9.3% higher
genome fraction, about two times longer NGA50 while
maintaining fewer misassemblies, and 1.2 times lower error
rate, compared with those of Canu (better assemblies than
metaFlye). Moreover, when making additional use of the post-
hoc strain resolver, Strainberry, one receives assemblies that are
further improved in terms of genome fraction and error rate,
however, at the cost of contiguity (N50/NGA50). In comparison
with combining other assemblers with Strainberry, MetaBooster/
MetaBooster-HiFi + Strainberry still outperform the other
combinations (i.e., Canu/metaFlye + Strainberry), especially in
terms of genome fraction, N50/NGA50, and error rate. Note that
MetaBooster/MetaBooster-HiFi + Strainberry achieve only small
absolute improvements over the other combinations (i.e., Canu/
metaFlye + Strainberry) on simulated data. However, from a
relative perspective, MetaBooster/MetaBooster-HiFi +
Strainberry approximately reduces half of the error rate and
the amount of misassemblies on low complexity data, and
MetaBooster-HiFi nearly doubles the NGA50 on the high
complexity data. Note also that metaFlye + Strainberry has a
high ambiguous base rate (N (%)), comparable with its error rate,
whereas MetaBooster/MetaBooster-HiFi + Strainberry do not
exhibit such effects.

3.2 Real Data
See Table 2 for the assembly performance referring to the real
sequencing data sets, including the mock communities. On the
natural whey starter culture (NWC) dataset, MetaBooster
achieves the highest genome fraction (4 and 25.6% higher
than that of Canu and metaFlye, respectively), comparable
NGA50 while the N50 is shorter. MetaBooster also has a
lower error rate compared with that of Canu, and better
assemblies than that of metaFlye. Although MetaBooster-HiFi
shows worse assembly performance in terms of genome fraction
andN50/NGA50 compared with that of Canu, it still substantially
outperforms metaFlye in terms of all key measurements.

When adding Strainberry, MetaBooster + Strainberry yields
the highest genome fraction (89.2%) on NWC, which slightly
improves on running MetaBooster alone (88.6%). This comes at
the expense of shorter N50/NGA50, higher error rate, and N rate.
In comparison, Canu + Strainberry achieves 85.2%, which is 4%
less than MetaBooster + Strainberry.

Evaluating results on the Microbial 10-plex dataset, both
MetaBooster and MetaBooster-HiFi outperform Canu and
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metaFlye in terms of genome fraction, NGA50, and error rate. In
addition, MetaBooster + Strainberry generates better assemblies
in terms of genome fraction and “error rate + N rate”, compared
with other combinations of assemblers plus Strainberry. It is
remarkable that the microbial 10-plex dataset is the one dataset
where adding in Strainberry leads to the most pronounced
improvements in terms of genome fraction, which reflects the
coverage of individual strains.

On the real human gut microbiome dataset, MetaBooster
achieves comparable genome fraction, 2 times shorter N50,
but in compensation 2 times lower error rate in a comparison
with metaFlye. Neither Canu nor MetaBooster-HiFi can rival the
results of any of MetaBooster or metaFlye.

Unlike on other datasets, the integration of Strainberry
worsens results in terms of coverage of strains (Genome
Fraction) and error rate, where the trends to the worse are
quite obvious. For example, Genome Fraction goes down from
84.3% without Strainberry to 77.4% with Strainberry, when
regarding MetaBooster. This trend applies also to all other
tools apart from MetaBooster-HiFi.

MetaBooster-HiFi shows bad assembly performance on this
dataset. The most likely explanation is that the sequencing error
rate of raw reads is so high that HiCanu fails to handle the
corrected reads because the remaining error rate is too high.

In summary, MetaBooster and MetaBooster-HiFi introduce
advantages of various, non-negligible kinds on the different real
data sets: on NWC, MetaBooster demonstrates a significantly
greater coverage of strains, with or without a subsequent
application of Strainberry.

OnMicrobial 10-plex, MetaBooster is better than Canu (as the
toughest rival) with or without a subsequent application of
Strainberry. We observe that Microbial 10-plex is the only real

dataset, where the application of MetaBooster or not remains a
matter of taste, as it is reasonable to say that it shares merits
with Canu.

On the real human gut microbiome data set, we have a picture
that substantially differs from the other two data sets. Here, a
subsequent application of Strainberry does not improve the
assembly performance probably because Strainberry was
developed for low-complexity metagenomes (so it is not used
according to its primary purpose). When running methods/
pipelines without (the rather worsening) Strainberry,
MetaBooster achieves comes in second in terms of Genome
Fraction, while clearly rivaling the optimal metaFlye
(metaFlye: 84.3%, MetaBooster: 84.2%). In any case,
MetaBooster more than halves the error rate of metaFlye.

Overall, although not dominating other approaches in every
aspect, MetaBooster and MetaBooster-HiFi outperform the
state-of-the-art approaches in many important aspects and
therefore add important qualities that had not been available
before.

3.3 Running Time and Memory Usage
See Supplementary Table S2 and Supplementary Table S3 for
running time and memory usage statistics about runs on
simulated and real sequencing data. In general, the error
correction step (VeChat) is the most time-consuming step and
makes for peak memory usage.

MetaBooster is 6 ~ 66 or 6 ~ 213 slower and requires
several times higher or comparable peak memory usage than
others (metaFlye and Canu) on simulated and real sequencing
data, respectively. Additionally, MetaBooster-HiFi is faster
than MetaBooster while needing the same peak
memory usage.

TABLE 1 | Assembly performance for simulated sequencing data. Results of assemblers are sorted by the second and the forth columns. The reference size of low
complexity and high complexity data is about 63.3 Mbp and 373.9 Mbp, respectively. We set the parameter genomeSize as the reference size presented here when
running Canu.

assembler Post-hoc
strain

resolver

#Contigs Genome
fraction (%)

N50 (bp) NGA50
(bp)

Error
rate (%)

N (%) # Misassemblies Duplication
ratio

Assembly
size (Mbp)

Low complexity

MetaBooster-HiFi - 207 98.2 5,401,308 3,809,573 0.041 0.000 13 1.04 65.0
MetaBooster - 229 93.5 1,776,642 1,191,789 0.059 0.000 41 1.03 61.8
Canu - 336 91.1 670,907 382,472 0.149 0.000 65 1.05 61.5
metaFlye - 660 71.6 212,939 74,586 0.330 0.000 273 1.04 48.3
MetaBooster Strainberry 902 99.6 791,215 1,046,223 0.035 0.000 17 1.06 66.9
MetaBooster-HiFi Strainberry 307 99.5 1,893,577 1,907,959 0.044 0.000 15 1.05 65.9
Canu Strainberry 879 99.4 218,802 262,285 0.086 0.000 32 1.08 68.0
metaFlye Strainberry 894 96.5 490,469 455,481 0.094 0.068 80 1.06 64.9

High complexity

MetaBooster-HiFi - 3,734 88.8 354,665 254,136 0.162 0.000 362 1.17 394.7
MetaBooster - 3,064 81.2 383,218 156,134 0.174 0.000 466 1.10 337.5
Canu - 3,204 79.5 442,268 137,979 0.194 0.000 408 1.08 328.0
metaFlye - 3,554 52.0 264,868 15,820 0.409 0.000 1,233 1.03 207.0
MetaBooster Strainberry 9,876 93.3 87,675 98,024 0.117 0.007 236 1.17 406.8
MetaBooster-HiFi Strainberry 6,027 93.0 133,704 155,125 0.150 0.007 209 1.19 412.9
Canu Strainberry 10,229 92.5 80,214 87,947 0.136 0.012 213 1.16 402.8
metaFlye Strainberry 6,211 84.8 219,010 144,318 0.136 0.182 828 1.07 343.3
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4 DISCUSSION

We presented MetaBooster and MetaBooster-HiFi as two novel
error correction and assembly pipelines by which to perform de
novo strain aware metagenome assembly. In experiments, we
observed that MetaBooster and MetaBooster-HiFi introduce
novel qualities in that respect, in terms of genome fraction
(strain-specific genome coverage), error rates or contiguity of
assemblies.

MetaBooster and MetaBooster-HiFi combine the error-
corrected reads from VeChat, which is based on a variation
graph-based method, and the ones one can retrieve from
Canu’s error correction module, as an overlap graph-based
method. This way, our pipelines create synergy by exploiting
the advantages of the two strategies, on the one hand. To be
specific, VeChat generally achieves better error correction for
most reads than that of Canu as documented by Luo et al., 2022.
However, VeChat may not perform very well in some particular
regions, for example in highly divergent genomic regions where
different strains substantially vary (see Supplementary Figure
S1). Canu may achieve better error correction in such highly
variable regions, because it uses a consensus-based strategy for

correction. From this point of view, Canu complements the
generally superior, but in difficult regions incomplete reads of
VeChat wherever necessary. This shows that the joined corrected
reads from Vechat and Canu can generate better assembly (see
bottom two panels in Supplementary Figure S1). On the other
hand, the combination itself increases the sequencing coverage.
Both of these points lead to enhanced strain-aware metagenome
assemblies (see Supplementary Table S4 for additional
arguments about merging error correction modules).

Evaluating benchmarking results in detail indicates that in
most cases, either MetaBooster or MetaBooster-HiFi pipeline
outperforms Canu and metaFlye, as the state-of-the-art strain-
aware de novo metagenome assembly tools on most datasets,
in one or more of the most relevant categories, such as genome
fraction (coverage of individual strains), contig contiguity
and error rate. As a general trend, MetaBooster-HiFi
appears to outperform MetaBooster on higher-quality data
such as PacBio CLR data. MetaBooster, on the contrary, shows
better performance on lower-quality data such as ONT reads.
Note that the evolution of nanopore sequencing technologies
is fast, with the most recently published platform being able to
generate (long) reads of error rates as low as < 5%. This

TABLE 2 | Assembly performance for real sequencing data. Results of assemblers are sorted by the second and the fourth columns. Note that in the ‘Real human gut
microbiome’ dataset, genome fraction reflects the k-mer completeness reported by Merqury. The reference size of Mock community I and II is about 13.0 Mbp and
36.8 Mbp, respectively. The reference size of the real human gut microbiome dataset is unknown, but metaFlye generates the assembly with the size of about 192 Mbp, thus
we assume the estimated reference size is 200 Mbp. We set the parameter genomeSize as the reference size presented here when running Canu.

assembler Post-hoc
strain

resolver

#Contigs Genome
fraction (%)

N50 (bp) NGA50
(bp)

Error
rate (%)

N (%) # Misassemblies Duplication
ratio

Assembly
size (Mbp)

Mock community I: natural whey starter culture

MetaBooster - 381 88.6 93,125 137,737 0.119 0.000 376 1.51 17.5
Canu - 191 84.6 268,047 138,616 0.132 0.000 255 1.27 14.1
MetaBooster-HiFi - 217 79.2 159,827 88,396 0.090 0.000 131 1.23 12.9
metaFlye - 376 63.0 109,472 22,888 0.269 0.000 381 1.17 10.0
MetaBooster Strainberry 452 89.2 78,953 119,193 0.157 0.033 393 1.53 17.9
Canu Strainberry 265 85.2 135,194 125,977 0.163 0.026 269 1.29 14.5
MetaBooster-HiFi Strainberry 309 80.8 93,739 80,481 0.131 0.055 168 1.26 13.5
metaFlye Strainberry 430 72.4 130,897 44,965 0.258 0.274 371 1.22 11.9

Mock community II: Microbial 10-plex

MetaBooster-HiFi - 1,013 91.6 180,008 347,693 0.104 0.000 90 1.29 43.8
MetaBooster - 684 90.1 245,260 137,384 0.171 0.000 99 1.18 39.3
Canu - 485 88.8 411,086 135,250 0.199 0.000 94 1.10 36.3
metaFlye - 291 70.4 1,248,427 102,535 0.191 0.000 147 1.02 26.8
MetaBooster Strainberry 1770 98.8 49,458 77,254 0.104 0.010 64 1.25 45.3
Canu Strainberry 1,597 98.7 56,315 76,684 0.114 0.014 60 1.19 43.3
metaFlye Strainberry 765 96.5 737,281 479,290 0.075 0.073 49 1.06 37.8
MetaBooster-HiFi Strainberry 1,516 95.8 67,377 153,561 0.114 0.003 70 1.32 46.5

Real human gut microbiome

metaFlye - 2,990 84.3 203,880 - 2.945 0.000 - - 191.9
MetaBooster - 6,425 84.2 109,293 - 1.433 0.000 - - 199.2
Canu - 3,622 81.3 192,144 - 2.249 0.000 - - 159.8
MetaBooster-HiFi - 4,544 42.7 14,411 - 0.990 0.000 - - 46.8
metaFlye Strainberry 7,125 77.7 63,200 - 3.551 0.012 - - 214.8
MetaBooster Strainberry 11,012 77.4 41,569 - 2.618 0.001 - - 222.3
Canu Strainberry 7,996 75.7 58,104 - 3.096 0.003 - - 181.8
MetaBooster-HiFi Strainberry 6,830 52.5 16,534 - 1.347 1.641 - - 59.5
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motivates the parallel development of the MetaBooster (for
today’s low-quality reads) and MetaBooster-HiFi (future long
reads of higher quality), providing flexibility relative to future
progress in sequencing technology. In rather unclear situations,
a guideline for real practice is to run both pipelines and opt for
the better one relative to the practically relevant criteria one can
determine.

We also evaluated Strainberry as a post-hoc strain resolver that
has the potential to enhance assemblies further. Clearly,
Strainberry’s performance depends on the assemblies that one
feeds into it, which are generated by independent software, where
Canu and metaFlye were suggested by the developers of
Strainberry. Using MetaBooster or MetaBooster-HiFi as the
assembler whose output is used for Strainberry, one can
achieve further improvements over the assembly strategies
originally suggested by Strainberry.

Overall, while exhibiting various favorable features, a
conclusive insight into the why and how of how advantages
(and on rare occasions also disadvantages) is achieved by the
“booster” pipelines has not yet been reached. In future work, we
are planning to study how to reach optimal synergy when crafting
strain aware metagenome assembly pipelines from approaches
presented in the literature.

DATA AVAILABILITY STATEMENT

Raw sequencing data and resulting assemblies can be downloaded
from Zenodo (DOI: \href{https://zenodo.org/record/5830706#.

YdssXWiZOw4}{https://doi.org/10.5281/zenodo.5830706}]. The
source code is publicly available at \url{https://github.com/
HaploKit/metagenome-asm}. Further inquiries can be directed
to the corresponding author.

AUTHOR CONTRIBUTIONS

XL developed the pipeline and performed the data analysis. XL
and AS wrote the manuscript. XK simulated the metagenomic
reads. All authors read and approved the final version of the
manuscript.

FUNDING

XL and XK were supported by the Chinese Scholarship Council.
AS was supported by the Dutch Scientific Organization, through
Vidi grant 639.072.309 during the early stages of the project, and
from the European Union’s Horizon 2020 research and
innovation programme under Marie Skłodowska-Curie grant
agreements No 956229 (ALPACA) and No 872539 (PANGAIA).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.868280/
full#supplementary-material

REFERENCES

Baaijens, J. A., Stougie, L., and Schönhuth, A. (2020). Strain-aware Assembly of
Genomes from Mixed Samples Using Flow Variation Graphs. RECOMB,
221–222. doi:10.1007/978-3-030-45257-5_14

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., and Kulikov, A. S.
(2012). Spades: a New Genome Assembly Algorithm and its Applications to Single-
Cell Sequencing. J. Comput. Biol. 19, 455–477. doi:10.1089/cmb.2012.0021

Bishara, A., Moss, E. L., Kolmogorov, M., Parada, A. E., Weng, Z., Sidow, A.,
et al. (2018). High-quality Genome Sequences of Uncultured Microbes by
Assembly of Read Clouds. Nat. Biotechnol. 36, 1067–1075. doi:10.1038/nbt.
4266

Bonanno, L., Loukiadis, E., Mariani-Kurkdjian, P., Oswald, E., Garnier, L., Michel,
V., et al. (2015). Diversity of Shiga Toxin-Producing escherichia Coli (Stec)
O26: H11 Strains Examined via Stx Subtypes and Insertion Sites of Stx and Espk
Bacteriophages. Appl. Environ. Microbiol. 81, 3712–3721. doi:10.1128/aem.
00077-15

Burger, R. (2012). Ehec o104: H4 in germany 2011: Large outbreak of bloody
diarrhea and haemolytic uraemic syndrome by shiga toxin-producing e. coli via
contaminated food

Cheng, H., Concepcion, G. T., Feng, X., Zhang, H., and Li, H. (2021). Haplotype-
resolved De Novo Assembly Using Phased Assembly Graphs with Hifiasm.Nat.
Methods 18, 170–175. doi:10.1038/s41592-020-01056-5

Cover, T. L. (2016). Helicobacter pylori Diversity and Gastric Cancer Risk.MBio 7,
e01869–15. doi:10.1128/mbio.01869-15

Feng, X., Cheng, H., Portik, D., and Li, H. (2021). Metagenome Assembly of High-
Fidelity Long Reads with Hifiasm-Meta. arXiv preprint arXiv:2110.08457.

Fritz, A., Hofmann, P., Majda, S., Dahms, E., Dröge, J., Fiedler, J., et al. (2019).
Camisim: Simulating Metagenomes and Microbial Communities. Microbiome
7, 1–12. doi:10.1186/s40168-019-0633-6

Gregor, I., Schönhuth, A., and McHardy, A. C. (2016). Snowball: Strain Aware
Gene Assembly of Metagenomes. Bioinformatics 32, i649–i657. doi:10.1093/
bioinformatics/btw426

Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K. T., and Aluru, S. (2018).
High Throughput Ani Analysis of 90k Prokaryotic Genomes Reveals clear Species
Boundaries. Nat. Commun. 9, 1–8. doi:10.1038/s41467-018-07641-9

Kolmogorov, M., Bickhart, D. M., Behsaz, B., Gurevich, A., Rayko, M., Shin, S. B.,
et al. (2020). Metaflye: Scalable Long-Read Metagenome Assembly Using
Repeat Graphs. Nat. Methods 17, 1103–1110. doi:10.1038/s41592-020-
00971-x

Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., and Phillippy, A.
M. (2017). Canu: Scalable and Accurate Long-Read Assembly via Adaptive
K-Mer Weighting and Repeat Separation. Genome Res. 27, 722–736. doi:10.
1101/gr.215087.116

Li, D., Liu, C.-M., Luo, R., Sadakane, K., and Lam, T.-W. (2015). Megahit: an ultra-
fast single-node solution for large and complex metagenomics assembly via
succinct de bruijn graph. Bioinformatics 31, 1674–1676. doi:10.1093/
bioinformatics/btv033

Luo, X., Kang, X., and Schönhuth, A. (2021). Phasebook: Haplotype-Aware De
Novo Assembly of Diploid Genomes from Long Reads. Genome Biol. 22, 299.
doi:10.1186/s13059-021-02512-x

Luo, X., Kang, X., and Schönhuth, A. (2022). Vechat: Correcting Errors in Long
Reads Using Variation Graphs. bioRxiv. doi:10.1101/2022.01.30.478352

Marx, V. (2016). Microbiology: the Road to Strain-Level Identification. Nat.
Methods 13, 401–404. doi:10.1038/nmeth.3837

Mikheenko, A., Prjibelski, A., Saveliev, V., Antipov, D., and Gurevich, A. (2018).
Versatile Genome Assembly Evaluation with Quast-Lg. Bioinformatics 34,
i142–i150. doi:10.1093/bioinformatics/bty266

Moss, E. L., Maghini, D. G., and Bhatt, A. S. (2020). Complete, Closed Bacterial
Genomes from Microbiomes Using Nanopore Sequencing. Nat. Biotechnol. 38,
701–707. doi:10.1038/s41587-020-0422-6

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8682807

Luo et al. Metagenome Assembly From Long Reads

https://zenodo.org/record/5830706#.YdssXWiZOw4
https://zenodo.org/record/5830706#.YdssXWiZOw4
https://doi.org/10.5281/zenodo.5830706
https://github.com/HaploKit/metagenome-asm
https://github.com/HaploKit/metagenome-asm
https://www.frontiersin.org/articles/10.3389/fgene.2022.868280/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.868280/full#supplementary-material
https://doi.org/10.1007/978-3-030-45257-5_14
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1038/nbt.4266
https://doi.org/10.1038/nbt.4266
https://doi.org/10.1128/aem.00077-15
https://doi.org/10.1128/aem.00077-15
https://doi.org/10.1038/s41592-020-01056-5
https://doi.org/10.1128/mbio.01869-15
https://doi.org/10.1186/s40168-019-0633-6
https://doi.org/10.1093/bioinformatics/btw426
https://doi.org/10.1093/bioinformatics/btw426
https://doi.org/10.1038/s41467-018-07641-9
https://doi.org/10.1038/s41592-020-00971-x
https://doi.org/10.1038/s41592-020-00971-x
https://doi.org/10.1101/gr.215087.116
https://doi.org/10.1101/gr.215087.116
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1093/bioinformatics/btv033
https://doi.org/10.1186/s13059-021-02512-x
https://doi.org/10.1101/2022.01.30.478352
https://doi.org/10.1038/nmeth.3837
https://doi.org/10.1093/bioinformatics/bty266
https://doi.org/10.1038/s41587-020-0422-6
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Nicholls, S. M., Aubrey, W., De Grave, K., Schietgat, L., Creevey, C. J., and Clare, A.
(2021). On the Complexity of Haplotyping a Microbial Community.
Bioinformatics 37, 1360–1366. doi:10.1093/bioinformatics/btaa977

Nurk, S., Walenz, B. P., Rhie, A., Vollger, M. R., Logsdon, G. A., Grothe, R., et al.
(2020). Hicanu: Accurate Assembly of Segmental Duplications, Satellites, and
Allelic Variants from High-Fidelity Long Reads. Genome Res. 30, 1291–1305.
doi:10.1101/gr.263566.120

Ono, Y., Asai, K., and Hamada, M. (2021). Pbsim2: a Simulator for Long-Read
Sequencers with a Novel Generative Model of Quality Scores. Bioinformatics 37,
589–595. doi:10.1093/bioinformatics/btaa835

Peng, Y., Leung, H. C., Yiu, S.-M., and Chin, F. Y. (2012). Idba-ud: a De Novo
Assembler for Single-Cell and Metagenomic Sequencing Data with Highly
Uneven Depth. Bioinformatics 28, 1420–1428. doi:10.1093/bioinformatics/
bts174

Quince, C., Delmont, T. O., Raguideau, S., Alneberg, J., Darling, A. E., Collins,
G., et al. (2017). Desman: a New Tool for De Novo Extraction of Strains
from Metagenomes. Genome Biol. 18, 1–22. doi:10.1186/s13059-017-
1309-9

Rhie, A., McCarthy, S. A., Fedrigo, O., Damas, J., Formenti, G., Koren, S., et al.
(2021). Towards Complete and Error-free Genome Assemblies of All
Vertebrate Species. Nature 592, 737–746. doi:10.1038/s41586-021-03451-0

Rhie, A., Walenz, B. P., Koren, S., and Phillippy, A. M. (2020). Merqury: Reference-
free Quality, Completeness, and Phasing Assessment for Genome Assemblies.
Genome Biol. 21, 1–27. doi:10.1186/s13059-020-02134-9

Sela, U., Euler, C. W., Correa da Rosa, J., and Fischetti, V. A. (2018). Strains of
Bacterial Species Induce a Greatly Varied Acute Adaptive Immune Response:
The Contribution of the Accessory Genome. PLoS Pathog. 14, e1006726. doi:10.
1371/journal.ppat.1006726

Somerville, V., Lutz, S., Schmid, M., Frei, D., Moser, A., Irmler, S., et al. (2019). Long-
read Based De Novo Assembly of Low-Complexity Metagenome Samples Results
in Finished Genomes and Reveals Insights into Strain Diversity and an Active
Phage System. BMC Microbiol. 19, 1–18. doi:10.1186/s12866-019-1500-0

Van Rossum, T., Ferretti, P., Maistrenko, O. M., and Bork, P. (2020). Diversity
within Species: Interpreting Strains in Microbiomes. Nat. Rev. Microbiol. 18,
491–506. doi:10.1038/s41579-020-0368-1

Vicedomini, R., Quince, C., Darling, A. E., and Chikhi, R. (2021). Strainberry:
Automated Strain Separation in Low-Complexity Metagenomes Using Long
Reads. Nat. Commun. 12, 1–14. doi:10.1038/s41467-021-24515-9

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Luo, Kang and Schönhuth. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8682808

Luo et al. Metagenome Assembly From Long Reads

https://doi.org/10.1093/bioinformatics/btaa977
https://doi.org/10.1101/gr.263566.120
https://doi.org/10.1093/bioinformatics/btaa835
https://doi.org/10.1093/bioinformatics/bts174
https://doi.org/10.1093/bioinformatics/bts174
https://doi.org/10.1186/s13059-017-1309-9
https://doi.org/10.1186/s13059-017-1309-9
https://doi.org/10.1038/s41586-021-03451-0
https://doi.org/10.1186/s13059-020-02134-9
https://doi.org/10.1371/journal.ppat.1006726
https://doi.org/10.1371/journal.ppat.1006726
https://doi.org/10.1186/s12866-019-1500-0
https://doi.org/10.1038/s41579-020-0368-1
https://doi.org/10.1038/s41467-021-24515-9
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles

	Enhancing Long-Read-Based Strain-Aware Metagenome Assembly
	1 Introduction
	2 Materials and Methods
	2.1 Workflow
	2.2 Datasets
	2.2.1 Simulated Sequencing Data
	2.2.2 Real Sequencing Data

	2.3 Assembly Evaluation
	2.3.1 Genome Fraction
	2.3.2 N50 and NGA50
	2.3.3 Error Rate (ER)
	2.3.4 N-Rate
	2.3.5 Number of Misassemblies (#Misassemblies)
	2.3.6 Duplication Ratio


	3 Results
	3.1 Simulated Data
	3.2 Real Data
	3.3 Running Time and Memory Usage

	4 Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


