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ABSTRACT

Analysis of differential gene expression from RNA-seq data has become a standard for several research
areas. The steps for the computational analysis include many data types and file formats, and a wide vari-
ety of computational tools that can be applied alone or together as pipelines. This paper presents a review
of the differential expression analysis pipeline, addressing its steps and the respective objectives, the
principal methods available in each step, and their properties, therefore introducing an organized over-
view to this context. This review aims to address mainly the aspects involved in the differentially
expressed gene (DEG) analysis from RNA sequencing data (RNA-seq), considering the computational
methods. In addition, a timeline of the computational methods for DEG is shown and discussed, and
the relationships existing between the most important computational tools are presented by an interac-

Bioinformatics tion network. A discussion on the challenges and gaps in DEG analysis is also highlighted in this review.
This paper will serve as a tutorial for new entrants into the field and help established users update their
analysis pipelines.
© 2022 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-

technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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1. Introduction

RNA-seq is the standard sequencing technique to reveal the
presence of, and quantify, transcripts in a biological sample. As a
result, it allows differential expression analysis from RNA sequenc-
ing data (RNA-seq) sequences. Therefore, several methods have
been proposed with different approaches and improvements in
order to perform the differentially expressed gene (DEG) analysis
from RNA-seq [1-3].

Quantification of gene expression, identification of novel tran-
scripts and detection of fusion transcripts are the major applica-
tions of RNA-Seq. Fusion transcripts detection are described more
detailed in [4].

Especially during the last decade, RNA-seq has become an indis-
pensable tool for DEG analysis [5]. In this context, considering the
diversity of methods proposed in the literature, there are some
interesting questions that deserve attention: which methodologies
are available for DEG analysis? Which are the different approaches
used by the methods for the definition of DEGs? What are the dif-
ferences between the analyses performed by each method? Finally,
how do we choose a method for DEG analysis?.

Some common goals are usually present in the methodologies
for DEG such as (i) improving the accuracy of the results; (ii) to
removing biases from the analysis [6], and (iii) filling in some gaps
in the existing analyses [7].

However, although most methods share these goals, the com-
putational tools developed for DEG analysis present different
approaches for evaluating their results. Therefore, defining which
method to use to obtain greater precision in DEG analysis is not
a trivial question, mainly because of the large number of variables
involved in this decision.

Expression analysis can be performed in coding genes, non-
coding genes (small RNAs, IncRNAs) and transposable elements
(coding and non-coding parts). Each one of these “types” of
sequences has specificities regarding the expression analysis, and
how the computational tools perform them is not the focus of
the present manuscript. On the contrary, this review focuses on
how the computational methods infer the genes (or reads) with
differential expression.

When considering methods and their implementations (soft-
ware) developed since the popularization of RNA-seq, each exper-
iment is tagged by one or more tools in the search for increasingly
efficient DEG analysis. In this sense, some studies address this con-
text and present a review of existing approaches to the analysis,
their characteristics and applications [8-10].

Given the challenge of determining whether the count of a tran-
script or exon is significantly different between experimental con-
ditions, the pioneer edgeR tool for DEG analysis [11], using
parametric analysis has become widely used since its creation.
Another challenge is the simultaneous transcript discovery and
abundance estimation without requiring by prior gene annota-
tions. Cufflinks method was developed to address these analytic
issues [7].

Despite the great popularity of computational tools initially
developed [12,7,6], many advances are still needed. In this context,
some tools have sought to improve aspects, such as the impact of
the depth of sequencing in DEG identification [13], the quantifica-
tion of genes and isoforms with or without reference genomes [14],
distinct experimental conditions and their influence on these anal-
yses [14], among others.
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Considering the number of existing methods and software ded-
icated to DEG analysis, it is possible to observe that the choice for
parametric methods ' is recurrent and, in general, presents ade-
quate results. Moreover, it is also notable the series of steps to iden-
tify DEG needs to be computationally simplified, given the volume of
pipelines developed after the RNA-seq popularization [15-18,1].

However, the variety of particularities found in DEG analysis
generate specific studies that address each of the details of existing
methods and lead to alternative approaches. Some studies have
recently reviewed aspects that affect the outcome of DEG analysis,
considering different applications such as phylogeny, single-cell
and bulk RNA [19-22]. In particular, the adopted approach can sig-
nificantly affect the outcome of the DEG analysis, as well as the
conclusions that a single tool is unlikely to be optimal in all cir-
cumstances. Besides, the number of replicates and the heterogene-
ity of the samples should be considered when selecting the
pipeline [19].

The statistical approaches for DEG analysis, such as the Nega-
tive Binomial distribution and likelihood (quasi-likelihood) are
presented and discussed regarding the problem of over-
scattering in RNA-seq samples and phylogeny [20]. Analysis of
expression data integrated with public data and meta-data, can
also be an option, however, it is a more complex analysis, more
information about integrated data analysis can be found in [23].
Systematically comparing approaches for DEG analysis coupled
with gene annotations is an approach that has been of interest [24].

Regarding single-cell data, three different scenarios were con-
sidered in order to assess the DEGs analyses showing significant
differences in the results when considering different methods, such
as the number of DEGs and their sensitivity and specificity [21].

The popularization of methods that integrate the steps of the
DEG analysis (pipeline) partly because analysis has several steps,
and for each step has a specific type of file. Another challenge for
the understanding and applying DEG methods relies on the various
options for tools in each step. It is common to find studies on
related themes that use totally different analytical methods
[22,25,26]. Interpreting results in DEG analysis is a relevant aspect
to be considered, such as the different data visualisations that help
the understanding of the results [22].

The methods for DEG analysis have some characteristics that
allow their grouping. One of them, adopted in this review, is how
to treat the expression distribution. Approaches that consider a
specific distribution for the data analysis, i.e., that data will have
a certain statistical distribution, are known as parametric
approaches. In contrast, some methods do not consider data distri-
bution (data with unknown distribution) and are known as non-
parametric approaches. An additional option is to consider both
or more approaches to indicate the DEGs, and these are known
as hybrid approaches.

In this context, we review the principal methods of DEG analy-
sis and describes the evolution of computational methods, their
properties and relationships. Moreover, a historical context is pre-
sented with the main methodologies implemented since the
increased use of the RNA-seq, seeking to identify the main alterna-
tives used to perform DEG analysis and clarify issues about this
context, such as the questions raised early in this review.

To support the understanding of biological systems, expression

! Which state that the data follow a certain distribution.
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analysis can also be performed considering only cells of interest.
This is possible through single-cell RNA sequencing (ScCRNA-seq).
Although this review focuses on differential expression analysis
techniques for bulk RNA-seq data, some considerations about
expression analysis using single-cell data and its methods are also
briefly presented.

The steps commonly used in the differential expression analysis
from RNA-seq data will be presented in the Differential Expression
Analysis section, followed by a brief history about the methodolo-
gies of differential expression analysis, discussing their main prop-
erties, similarities, differences and applications in the Methods for
the section of differential gene expression analysis. In the end, a
discussion about the convergent and divergent points between
the analyzed methodologies is presented in the Discussion section,
along with some conclusions and guidelines that can help in the
choice of methodologies and definition of experiments for DEG
analysis.

2. Differential expression analysis (pipeline)

Differential expression analysis consists of several steps, which
are presented in this section to provide an overview and show the
challenges involved. Naturally, the first step is to explore the key
steps and the respective methods available. The second step is to
choose the composition of an analysis protocol for differential
expression, commonly referred to as a differential expression anal-
ysis pipeline.

In RNA-Seq experiments the number of replicates must also be
taken into consideration; in this context, the reader can rely on
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studies that evaluate the impact of the number of replicates on
the final result of the analysis, like [27].

Fig. 1 presents the steps commonly adopted in differential
expression analysis, such as quality control and trimming, align-
ment, counting, normalization and expression analysis (to define
the genes/sequences with differential expression).

Considering the importance of choosing methodologies for each
of these steps, some studies sought to establish a protocol for the
analysis [28,29]. Instead, it is also possible to find studies that pre-
sent divergences in the choices of methods in some steps of differ-
ential expression analysis [25,26,22].

This review aims to address mainly the aspects involved in DEG
analysis and contextualize the related methods although preparing
sequencing libraries represents an important issue regarding its
impact on the results, as reported in previous studies [30-32].
Some important issues regarding its impact on the results. Some
important issues must be considered in a differential expression
analysis pipeline, such as (i) access to the reference genome or
transcriptome, (ii) quality of annotations, and (iii) number of sam-
ples. The following sections present some important considera-
tions regarding these issues and the key steps involved in
differential expression analysis.

2.1. Quality assessment and trimming

Quality assessment and sequence trimming are the first step of
the analysis, which is also common to other analyses involving
sequencing data, such as genome and transcript assemblies
[33,34].

Reference-free assembler
and/ or
Transcriptome mapping

y
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v

Quantification
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Fig. 1. Overview of the main steps in differential expression analysis from bulk RNA-seq data and file type generated in each step.
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Quality assessment aims to identify and remove sequences
identified as having low quality [35]. More specifically, trimming
removes sequences from adapters used in sequencing. However,
it is very common to find the term “cleaning” or “trimming” to
refer to both steps, i.e., removal of both adapters and low-quality
sequences. Table 1 shows the main methodologies and implemen-
tations (software) available in the literature for this task.

The sequence trimming process evaluates the quality of the
reads® obtained in sequencing. Two characteristics are evaluated:
the presence of adapter sequences (used in sample preparation)
and the quality of the reads by the sequencer. As a result, reads that
get a specific score within the defined scale [41] for the sequencing
technique are selected. In this process, each base pair is evaluated
from the quality score informed by the sequencer. It is possible to
choose the cut-off score, besides defining the reads that should be
kept or discarded.

Considering identification of the quality of the bases, the quality
information in the FASTQ [42] file is used. In contrast, the removal
of sequences identified as adapters is performed by similarity
search [38].

A tool that can also be used in sequence quality analysis is
FASTQC [43]. Despite its popularity in quality analysis, FASTQC is
a tool that generates quality reports and does not perform the
removal of low-quality sequences or adapters. It does, however,
provide information to guide these cleanings. Table 1 provides
information on tools that can be used as both functionalities:
removal of adapters and low-quality sequences.

An additional point to observe in quality assessment are batch
effects. Batch effects arise from differences between samples that
are not rooted in the experimental design and can have various
sources, spanning from different handlers or experiment locations
to different batches of reagents and even biological artifacts such
as growth location [44]. Various methods have been developed to
detect and/or remove batch effects in genomics data, particularly
RNA-seq data. For example, svaseq [45], Combat-Seq [46].

2.2. Alignment

After trimming the sequences, the mapping and counting of
mapped reads occur. In this process, the aim is to identify how
many reads are aligned to a genome region. The result is a read
count table aligned to each gene. Among the difficulties in the
mapping process are processing time and the computational
capacity required, which have major challenges.

Table 2 shows the main mapping methodologies, where it can
be observed that the methodologies recurrently apply Burrows-
Wheeler Transformation algorithm [47].

The principal sequence mapping methodologies are briefly
described bellow.

e BWA [438]: is based on the backward search associated with the
Burrows-Wheeler transform. This method efficiently aligns
short reads to large reference sequences, such as the human
genome. BWA allows gaps and mismatches. In terms of memory
optimization and search technique used, it performs a similar
strategy adopted by the Bowtie method [56];

RUM [49]: is based on an aggregation of methods, in which
reads are mapped against the genome and transcriptome using
the Bowtie tool. The reads not mapped by Bowtie are aligned to
the genome with the BLAT tool [57]. The result of the mappings
is presented in SAM format;

e Bowtie 2 [50]: describes the application of the Burrows-

2 In next-generation sequencing, a read refers to the DNA sequence from one
fragment (a small section of DNA).
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Table 1
Main methodologies for the removal of adapters and low-quality sequences. The
methodologies are ordered chronologically considering the year of publication year.

Name Year Reference
Btrim 2011 [36]
CutAdapt 2011 [37]
Trimmomatic 2014 [38]
AdapterRemoval v2 2016 [27]
Atropos 2017 [39]
fastp 2018 [40]

Table 2

The principal sequence mapping methods. The methodologies are ordered chrono-
logically considering the publication year.

Name Algorithm Year Reference
BWA Burrows-Wheeler Transform 2009 [48]
RUM Burrows-Wheeler Transform 2011 [49]
Bowtie2 Burrows-Wheeler Transform 2012 [50]
BWBBLE Burrows-Wheeler Transform 2013 [51]
STAR Maximal Mappable Prefix (MMP) 2013 [52]
Tophat2 Burrows-Wheeler Transform 2013 [53]
HISAT2 Graph Based 2019 [54,55]

Wheeler transform. Thus, for each read, the method performs
four key steps (i) the extraction of “seeds” (sequence snippets)
from the read and their reverse complement; (ii) the alignment
of the seeds to the genome (reference), producing Burrows-
Wheeler alignment bands; (iii) the selection of the bands ran-
domly and repeatedly (weighted by priority), applying the dis-
placement of each selected lane on the reference genome, using
a method to compress the suffix matrix, and still effectively
support the search for arbitrary patterns, called FM index [58],
and applying the “walk-left” strategy of the FM index; and
(iv) the resolution of similar alignments, observing the edges.

e BWBBLE [51]: based on mapping using multiple genomes as a
reference, proposing the concept of a linear reference multi-
genome. This concept incorporates the catalog of all known
gene variants with a reference genome (e.g. SNPs, insertions,
deletions and inversions), and uses a read alignment algorithm
based on the Burrows-Wheeler transform;

e STAR [52]: proposed to specifically address many of the chal-
lenges of mapping RNA-seq data, such as junction detection
and characterization and mapping sequences derived from
non-contiguous genomic regions. In addition, it uses a novel
strategy for junction alignments. The alignment comprises
two major steps: seed search and clustering. The main idea
behind the STAR seed search step is the sequential search for
a Maximum Mappable Prefix (MMP). In the clustering step,
STAR builds alignments of the entire read sequence by joining
all the seeds that were aligned to the genome in the first step.

o Tophat 2 [53]: directs attention to the problem of multiple
alignments in junction reads. It uses the Bowtie 2 tool as a
dependency. In the mapping step, reads aligned to over one
exon are treated as unmapped. These reads are fragmented
and aligned to the genome. Tophat 2 considers that the align-
ment distance between fragments may indicate possible splice
regions. The genomic sequences around these junction sites
are concatenated, and the resulting spliced sequences are trea-
ted as a set of potential transcription fragments. Any reads not
mapped in the previous stages (or poorly mapped) are then rea-
ligned with Bowtie2 against this new transcript.

e HISAT2 [55]: has a graph-based search strategy as its funda-
mental characteristic. HISAT2 starts the alignment process by
generating a linear graph of the reference genome and then it
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adds mutations, insertions and deletions as alternative paths of
the graph. The authors claim that graph representations are
more efficient in terms of memory utilization and/or alignment
speed compared to the linear reference representation of gen-
omes and alleles.

Considering the summarized presentation of the alignment
methodologies, it is possible to highlight that each method pre-
sents a key strategy and is concerned with some specific alignment
problems, which must be considered during the selection of the
differential expression analysis pipeline.

The choice of mapping method is directly related to the objec-
tives of a study, like those aiming to identify new transcripts.
The mapping method should consider these findings or focus on
this type of identification.

For analyses without a reference genome there are a few
options: i) It is possible to generate a transcriptome assembly using
the reads from the experiment itself and map it to the generated
assembly, using tools such as tools such as RSEM [14], Cufflinks
[28]; ii) Map against the transcriptome, using HISAT2 [55], TopHat
[53] and/or kallisto [59]; iii) Map considering several genomes,
with tools such as HISAT2.

As mapping methods evolve, we note the trend of using multi-
ple genomes as a reference, as seen in the HISAT2 tool [55], pre-
sented as the successor to TopHat. More detailed information on
mapping techniques can be obtained in the literature [60].

As a result of mapping, the methods produce mapping files in
formats such as SAM (Sequence Alignment/Map format) and/or
BAM (Binary Alignment/Map format) [48]. The resulting file con-
tains all the mappings of a read and information such as alignment
position and alignment score identified as MAPQ (acronym for
MAPping Quality), which is presented in Phred (Phred-scaled)
scale. Phred (Q) scale [61] is a quality indicator based on the prob-
ability of error in the alignment of a read at a reference position.

The approach in considering these mappings allows variations.
It is possible to consider only mappings with Phred values above a
threshold or reads that obtained unique mapping (in only one
region of the reference genome). To support this task, counting
tools are used, which process files in SAM and/or BAM format
and produce a table with genes and the number of mapped reads.
Some counting methods and their fundamental properties are pre-
sented in Section 2.4.

2.3. Pseudoalignment

Besides the Burrows-Wheeler transform and graph-based align-
ments, some strategies prioritize the balance between computa-
tional performance and the results produced. In this context, the
methods that use the pseudoalignment strategy are applied.

It is important to note that most of the mapping methods
described earlier could be applied to analyses in which the refer-
ence genome and its respective annotation are available. When
an assembled genome is unavailable, there is a need for mapping
without reference (Fig. 1). The transcriptome is assembled, and
expression is estimated based on this assembly. In general, there
are two types of approaches to transcriptome assembly: (i)
genome-guided (or genome-based) assembly; and (ii) de novo
assembly.

Some methods have been developed to generate transcript
identification, such as Trinity [62] and Oases [63]. There are also
strategies to estimate expression levels from data without a refer-
ence genome, including RSEM [14] and eXpress [64]. Several
strategies perform both steps - transcript identification and esti-
mation of expression levels - such as Scripture [65], Cufflinks [7]
and StringTie [66], Salmon [67] and Kallisto [59].
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One important method that uses pseudoalignment and tran-
script quantification is Salmon [67]. Salmon uses the quasi-
mapping strategy [68], which requires a set of transcripts as a ref-
erence (which can be a reference assembly or de novo) or only the
reads, to quantify the transcripts. This strategy comprises three
steps (i) a simplified mapping model, (ii) a phase that estimates
initial expression levels and model parameters, and (iii) a phase
that refines the expression estimates. This inference procedure
allows Salmon to build a probabilistic model based on the
sequencing data, which includes more information, and then
improves the conditional probability that a fragment is part of a
transcript.

In pseudoalignment strategies, it is important to point out that
the methods for transcript identification and quantification will
report normalized quantification values as output and not counts
of mapped reads. Therefore, the choice of the method for differen-
tial expression analysis should consider the type of data input
expected (count or normalized values).

2.4. Counting

The count of mapped reads is the step to identify how many
reads were mapped in each genomic region (reference). This step
does not define which genes are differentially expressed; how-
ever, it represents the basis for the following analytical steps
because, for each sequencing file presented to the mapper, a
count of reads mapped to a particular gene will be produced.
Consequently, there is a need for an annotation file of the refer-
ence genome. Tools like RSubread [69] and QuasR [70] are good
options for this task.

The annotation file is usually a GFF (General Feature Format),
which consisting of one row per feature: each row presents nine
data columns. The file columns are separated by tabs and arranged
in the following order: < seqname >, < source>, < feature >, < start >,
<end >, < score >, < strand >, < frame > |attributes] [comments] (<>
mandatory fields and [ ] optional fields) [71]. The GTF (General
Transfer Format) is identical to the GFF in its version 2. Files have
the same format and fields, but have different extensions.

GFF is a widely used text file format for storing genome annota-
tions, describing sequence-based annotations. In addition, GFF files
present genome features in a tab-delimited, single-feature-per-line
table, making it ideal for use with multiple [72] data analysis pipe-
lines. More details on sequencing data format are available in [71].

Before performing the count, it is necessary to consider the
alignments options, including (i) read fully aligned to a gene; (ii)
read partially aligned to a gene; (iii) read aligned to a junction (in-
tron and exon); (iv) read aligned to a junction of exons (no align-
ment with intron); (v) read partially aligned to two genes, and
(vi) read aligned to two genes. For this task some methods can
be used together or alone, such as the HTSeq-count [73] which is
part of the HTSeq framework, the BEDTools [74] toolkit and the
featureCounts [75]. Implemented in R language, the Rsubread
[69] method has functionality for alignment, quantification and
analysis of RNA-seq data and can also be a counting option.

The choice of method and how to consider mappings in the
count should be made based on the dataset and its properties.
For eventual situations, where little prior knowledge is available,
a comparison is recommended between the count in the most
restrictive mode and most permissive mode of each software tool
to define an adequate parameterization.

2.5. Normalization

This step of differential expression analysis aims to define
which variations in the mapping count will be considered as differ-
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ential expressions. If a gene has more mapped reads, it does not
mean that it is differentially expressed because as each gene has
an extension of base pairs, a smaller sequence in base pair sizes
may have a proportionally smaller quantity of aligned reads. In this
context, normalization is one of the basic steps for differential
expression analysis.

The Reads per Kilobase per Million (RPKM) method was pro-
posed in 2008 to generate accurate quantification of gene expres-
sion from RNA-seq [8] data. This method normalizes the
expression of RNA-seq data using as a basis the total transcript size
and the number of reads sequenced. In this way, RPKM allows
small genes or transcripts not to be penalized compared to larger
sequences.

The Fragments Per Kilobase Million (FPKM) normalization
approach is analogous to RPKM, but supports one, two or more
sequences from the same molecular source [7]. FPKM considers
fragments and reads. In paired-end experiments, forward and
reverse reads of the same sequence are considered as a fragment.

In 2012, the Transcripts Per Million (TPM) normalization was
presented as a modification of the RPKM approach and aimed to
remove RPKM bias [76].

The Trimmed Mean of M-values (TMM) [77] method aims to
ensure that a gene with equal expression level in two samples is
not detected as differentially expressed. To accurately estimate
expression levels, it is necessary to quantify total RNA production,
which cannot be estimated directly. However, the relative RNA
production between two samples can be more easily determined
by calculating the overall fold-change. The TMM method has been
proposed as a robust and straightforward way of estimating RNA
production. The TMM method is used by the edgeR package [11],
in practice very similar to the method used by the DESeq package
[6]. The results of these two methods are also similar in some
points [78,79].

Although normalization methods like TMM, RPKM are classic
and therefore widely used, important to note that recent methods
also provide good results. The method: deviation based on the
number of conditions, or cdev, to quantify the success of normal-
ization, cdev measures how much one expression array differs
from another. More information about this method can be found
at [80]. Other options that can be considered are [81,82].

With normalized count data, it is possible to identify the
expression variation evaluated under different conditions coher-
ently. For these analyses, several methods are used to identify
expression variations, assuming that these data follow a particular
statistical distribution or not. A review of the principal methods,
their characteristics and applications are presented in the next sec-
tion, the focus of this review.

3. Methods for differentially expressed gene analysis

While the overview of differential expression and its steps is
presented, this review focuses on presenting and discussing differ-
ential expression identification/inference methods and their
properties.

In the identification of DEG, the aim is to infer which genes have
decreased or increased transcriptional activity in certain experi-
mental assays. Thus, the methods for identifying DEGs consider
the quantification of RNA transcription. There are several ways to
quantify transcripts (as presented in the Pseudoalignment Sec-
tion 2.3) and define differential expression.

Contextualizing the differential expression analysis requires
going back to 1991, when the identification of the transcriptional
profile in mammals was proposed [83] using the Expressed
Sequence Tag (EST) technique, based on the partial sequencing of
cloned cDNAs to evaluate expression. Some years later, the Serial
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Analysis of Gene Expression (SAGE) method [84] was proposed
and, in parallel, publications using the Microarray technique
emerged [85], which became for years the most popular choice
among transcriptional pattern studies.

In 2006 the first study with RNA-seq (high-throughput platform
mRNA sequencing) data [86] was published, using Roche’s 454
technology. This sequencing technique generates large numbers
of short reads called high-throughput sequencers, in platforms that
perform this type of sequencing.

Initially aiming to present an overview and the relations between
the main methodologies and the computational tools available in
the literature, we identified those most cited the early RNA-seq pop-
ularization in 2009. These methodologies were organized in tempo-
ral form, generating a timeline, which is presented in Fig. 2.

Confirmation of the popularity of the RNA-seq technology
occurred in 2008, with the encouragement of a trio of papers
[8,10,9], bringing novel approaches to the analyses. These studies
did not specifically generate computational tools. However, they
paved the way for the expression analysis from RNA-seq data.
For this reason, these studies are identified in Fig. 2 in gray as a
group of seminal studies.

Initial studies sought to build a consensus on the methodologies
for DEG analysis. In this context, the study by [8] proposed the
Enhanced Read Analysis of Gene Expression (ERANGE) software,
while in the study by [10] the expression data were only normal-
ized. The study by [9] performed a correlation with hybridization
data.

Among the most popular technologies for generating RNA-seq
data are Illumina Genome Analyzer and HiSeq [87], which enable
the production of single or paired-end reads. In this way, RNA-
seq also produces quality mappings, accurate identification of
alternative splicing, and transcript reconstruction, among other
types of studies. Regarding its predecessor, the Microarray, RNA-
seq allows the study of new transcripts, offers higher resolution,
better detection range and less technical variability. These factors
have led to a major expansion of RNA-seq, and it has become the
first choice in transcriptome analysis for many research groups
[88].

With the popularization of the RNA-seq technique, computa-
tional tools (software) and proposals of new methodologies for
DEG analysis emerged [121]. Since the proposal of the ERANGE tool
[8], several other tools have been and continue to be proposed in
the literature, as presented in Fig. 2. To evaluate gene expression
data generated with RNA-seq, the starting point, after mapping
and counting mapped reads, is usually the decision on the type
of tool to be used to identify DEGs.

Expression analysis aims to identify genes whose mapped read
count between two conditions has a significant difference. If the
difference is greater than a random variation, the gene is identified
as differentially expressed [89]. Differential expression analysis
methods need to validate the statistical significance of this varia-
tion [90], which is done by adopting statistical tests such as Wald
Test, Fischer’s exact test, F-test, T-test, Likelihood ratio test, p-
values and g-values, to cite just a few. The cut-off (threshold)
adopted to indicate DEGs and non-DEGs, is decided from evaluat-
ing the distribution of the mapped reads.

In this review, methodologies were considered regarding the
statistical distribution applied in the differential expression analy-
sis, proposing a division into four groups: parametric, non-
parametric, parametric or non-parametric, and hybrid. Only com-
putational tools for DEG analysis, implemented and made available
in software, were considered, regardless of the programming lan-
guage or form of access. Methodologies without computational
tools were not considered since this is an essential criterion for
application in real problems. The adopted criteria to select the
computational tools are describe in supplementary material.
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Fig. 2. Timeline with the main methodologies and computational tools for DEG analysis. In blue are shown the computational tools that use parametric methods to indicate
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methods developed in the context of single-cell sequencing analysis.

All computational tools that adopt or describe the use of some
parametric statistical distribution for the inference of DEGs, as well
as tools that make partial or total use of this class of statistical dis-
tribution were considered parametric. The tools that do not use
parametric distributions in their analysis and/or do not present
any a priori statement about the data distribution for DEG infer-
ence were considered non-parametric. In this review, computa-
tional tools described as hybrid use parametric methods
associated with non-parametric methods for DEG inference.

The explanation considering parametric, non-parametric and
hybrid was adopted in this review to present the main methodolo-
gies in the literature in order to organize and contextualize them.
Considering this scenario, the following sections will describe the
respective particularities of parametric, non-parametric and hybrid
methods.

3.1. Parametric methods

Parametric methodologies are those that start from the premise
that data present a certain distribution. When using these tools,
input data are considered to be distributed according to the statis-
tical distribution adopted by the method, such as Negative Bino-
mial, Poisson or Gaussian. This strategy is adopted by the first
computational tools developed for DEG analysis [12,11,6].

Poisson distribution is adopted with some frequency to repre-
sent of RNA-seq data by computational tools [91-93]. Methods
that use parametric analysis represent most of the tools developed
and made available for use since the popularization of RNA-seq, as
presented in Fig. 2.

Some considerations are essential when choosing parametric
methods for DEG analysis. The parametric methods assume that
the expression data is distributed according to a statistical distri-
bution. Therefore, identification of DEGs in this context can be
defined as the genes at the extremities of the distribution chosen,
according to the experiment and sampling using a statistical signif-
icance value as the p-value.

Among the most widely used distributions for DEG analysis are
the Negative Binomial [30,12,11,6], Poisson [94,95,91-93] and
Gaussian [96-98] distributions.

The Poisson distribution is characterized by its suitability in
application to technical replicate data [94]. On the other hand, data
from biological replicates have higher variance and, for this reason,
are best represented by a Negative Binomial distribution
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[99,15,16,100,101]. Gaussian distribution or normal distribution
is a bell-shaped curve, and it is assumed that during any measure-
ment, values will follow a normal distribution with an equal num-
ber of measurements above and below the mean value [102]. The
Gaussian or normal distribution is used in simulation data [98],
parameters estimation [97] and in expression analysis with
Microarray data [96].

These and many other characteristics of parametric methods
made them a suitable model to be followed, which generated a
large volume of tools that use parametric methods of analysis, as
visualized in Fig. 2, in which many of the initially proposed meth-
ods were the basis for most of the recently proposed methods.

3.2. Non-parametric methods

Non-parametric methods for DEG analysis arise in a context of
innovation, with the need for solutions to the analysis of experi-
ments with few replicates, in which the estimation of variance
with precision becomes difficult. By observing the distribution of
the groups of methods in Fig. 2, it is possible to notice that the
main non-parametric computational tools for DEG analysis were
presented between 2010 and 2013 [13,14,103,99].

Non-parametric methods include inference, non-parametric
descriptive statistics, statistical models, and statistical tests. These
methods do not determine a data distribution model a priori. The
structure of the models is defined based on the distribution of
the data, commonly known as data-driven. The non-parametric
expression, associated with a tool for DEG analysis, shows that
the number and nature of the parameters are adjusted according
to the distribution of the data [104].

Among the principal tools identified in this review, NOIseq is a
method that assesses differential gene expression between groups
through the relationship between expression change and absolute
expression differences [13,105]. NOIseq uses mapped, corrected,
and normalized count reads and, models the noise distribution
by contrasting the logarithm of expression change and absolute
expression differences between groups. NOIseq defines a gene as
differentially expressed between groups if the corresponding loga-
rithm of expression change and absolute expression difference val-
ues have a high probability of being higher than the noise values
[106].

Another tool for non-parametric DEG analysis is SAMseq [99].
For comparisons between groups, SAMseq uses the Wilcoxon
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two-sample classification statistic. On the other hand, SAMseq con-
siders the different depths through a re-sampling process in differ-
ential data analysis. In the Wilcoxon and FDR classification
statistics, the null distribution is estimated using the mutation
method [106].

3.3. Hybrids

For this review, hybrid methods were considered to be those
approaches that associate parametric and non-parametric method-
ologies for the identify DEG.

The approach identified as hybrid in this review was the con-
sexpression [18]. Consexpression approach is a pipeline for gene
expression analysis that adopts the identification of DEGs from
the joint analysis of nine tools. Among them, two are non-
parametric: NOISeq [13] and SAMSeq [99], and seven are paramet-
ric [12,6,11,100,107,97,98]. Genes so indicated by the consensus of
five or more tools are considered differentially expressed. In addi-
tion, the tools for the option of parametric or non-parametric anal-
yses shown in Fig. 2 use one method according to the user’s choice
in an isolated manner.

3.4. Single-cell methods

Analysis of gene expression at the single-cell level provides
insight into the oscillatory or non-linear behavior in asynchronous
cells and reveals the cell-to-cell variability due to gene expression’s
stochastic nature [108]. Despite research possessing interest in the
stochastic nature of gene expression and its implications for many
years, the techniques available to quantify gene expression were
limited in some early single-cell experiments [109,110].

Developing of a collection of fluorescent proteins, with unique
biochemical characteristics, has enabled single-cell experiments
[111]. The raw data generated through sequencing is processed
to obtain molecular count arrays (count arrays) or alternatively
read arrays (read arrays), depending on whether unique molecular
identifiers (UMIs) have been incorporated into the single-cell
library construction protocol.

The generated read or count matrices have the dimensions of
barcodes X number of transcripts. At this point, the term “barcode”
is used because all the reads associated with the same barcode may
not correspond to the read of the same cell. A barcode may misla-
bel multiple cells (doublet) or may not mark any cells (empty dro-
plet/well) [111].

Before evaluating DEG data, it is necessary to ensure that all
barcodes correspond to cells; this is quality control in single-cell
analysis. Three covariates are commonly used: count depth, genes
per barcode and the fraction of mitochondrial gene counts per bar-
code [112].

As with bulk RNA-seq analyses, it is necessary to normalize
single-cell data. The most commonly used normalization is counts
per million or CPM normalization, which comes from bulk expres-
sion analysis and normalizes the count data using a size factor pro-
portional to the count depth per cell. The normalization process in
single-cell data is detailed in [113].

After normalizing the matrices, the data is typically trans-
formed with log(x + 1). This transformation make the distance
between transformed expression values represent log-fold
changes, as many expression analysis tools created for bulk analy-
sis [97,98,114] assume that data are normally distributed.

Some tools for expression analysis with single-cell data use as a
basis (totally or partially) bulk analysis tools, such as the tools pre-
sented in Table 3.

The dependence of single-cell methods on bulk methods for
expression analysis indicates the particular applicability of previ-
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Table 3
Single-cell expression analysis methods. The methods are ordered chronologically
considering the publication year.

Method Based on previous methods Year
trendsceek* [115] DESeq2 [107] 2014
alona* [114] limma-voom [97] 2020

ously created methods for expression analysis with single-cell
data. On the other hand, some tools were also identified that pro-
pose new methods for expression analysis with no dependency on
previous method, such as SCDE* [116].

4. Discussion

This review presents a temporal overview of the computational
tools developed for differential gene expression analysis. This anal-
ysis is processed in several steps, as briefly described in the Meth-
ods for DEG analysis section. Then, based on the principal methods
identified in the literature and addressed in this review, their prop-
erties and applications are presented.

In the context of the trimming step, the study by [41], the
authors stated that by applying more aggressive parameters at
the sequence trimming stage, over ten percent (10%) of the genes
had significant changes in estimated expression levels. Still regard-
ing quality, several studies report that by applying more aggressive
and commonly used parameters such as Phred quality rate > 20
and read size > 50bp, no significant differences in results are found
[88,117], suggesting that a soft cut or even no cut at all results in
the most biologically accurate gene expression estimates.

One study also indicate that most expression changes could be
mitigated by imposing a minimum length filter after the cut-off,
suggesting that differential gene expression may be driven primar-
ily by spurious mapping of short reads [41].

Regarding the methods for differential expression analysis, this
review identified that many of the available computational tools
dedicated to DEG analysis are derived from previous methods or
used them as part of their solutions. Therefore, a study was per-
formed to recover the relationships between computational tools
from the current literature. As a result, a network of interactions
between the computational tools for DEG analysis was produced
(Fig. 3).

The edges of the network were defined through the dependency
between the tools. When a tool has an edge directed to another
tool, it indicates that it uses the tool pointed at in the DEG identi-
fication. The relationship was identified based on the methodology
described or the dependencies of the software.

It is possible to notice that few methodologies can be consid-
ered totally original (diamond-shaped node in Fig. 3), which shows
the development of various computational methodologies for
expression analysis are based on some specific methodologies. It
is possible to notice that edgeR [11], DESeq2 [107] and limma-
voom [97]| methods are highlighted in this criterion, which are
used by other methods as a basis for differential gene expression
analysis. More specifically, considering only the principal methods
available in the literature, edgeR is adopted by 14 methods other,
DESeq?2 by 12 methods, and, limma-voom by 10 methods.

Another interesting aspect that deserves to be highlighted is
that the methodologies that adopt parametric statistical distribu-
tions in their analyses (in blue) are more abundant in the literature
than non-parametric (in green) and hybrid methodologies (in red).
The discrepancy between the number of parametric and non-
parametric methodologies shows a scenario that needs improve-
ments in the methods, since the tools used as the basis of their pre-
decessors bring some improvement or functionality to the DEG
analysis.
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Only one hybrid tools was identified by this review: consex-
pression [18]. This tool present the ability to combine the advan-
tages of parametric and non-parametric methods.

It is also possible to observe that some methodologies have not
been adopted by other methods and appear at the bottom without
edges in this network. The most recent methodologies containing *
in their name indicate methods developed in the context of single-
cell sequencing analysis.

An issue that arises from the analysis of these interactions is
that computational tools that implement non-parametric methods
may represent a necessary solution, because, in the interaction net-
work, non-parametric methodologies are used as a basis for other
parametric and hybrid methods. This may indicate a direction in
the development of more adequate analysis methods, and in this
scenario, there is a certain convergence among parametric meth-
ods. Another point that draws attention is the opportunities to



J. Costa-Silva, D.S. Domingues, D. Menotti et al.

explore the development of non-parametric (data-driven) and
hybrid methodologies.

The observation regarding the number of methods among of the
tools considered in this review is also relevant to point out the
most used. The Fig. 4 depicts this analysis, indicating preference
as edgeR, DESeq2 and limma-voom. The preference can be associ-
ated with maintenance, ease of use and the vast documentation
made available by developers and community regarding these
tools.

Among the 56 tools analyzed by this review, only 9 are used as a
base for other studies, indicating that there are many tools, but
most of them (24 tools) use a base method previously created.
The data also show that most of the computational solutions for
DEG analysis are based on the same analysis method.

Among the analyzed tools, few were identified that do not use
other methods as a base (called original in this review). Among
them, approximately half are not used as a basis for the develop-
ing other methods, some because they were developed to be used
in a defined pipeline, such as Cuffdiff2 [16] and sleuth [98]. The
complete list of tools analyzed in this review is available in sup-
plementary material, including selected tools and references
[121-149].

Single-cell RNA expression analysis (scCRNA-seq) is revolutioniz-
ing organismal science, allowing unbiased identification of previ-
ously uncharacterized molecular heterogeneity at the cellular
level [118]. Single-cell sequencing has become popular [119] and,
in this review, some tools for the expression analysis using
single-cell data are pointed out with an “*” in the name. The meth-
ods proposed in the literature for single-cell data analysis are
based on methods proposed for the analysis of other more general
RNA-Seq experiments (Fig. 4).

In this context, a comparison considering different methods for
DEG analysis among scRNA-Seq populations is presented in
[21,120]. Three different scenarios were considered, showing sig-
nificant differences between the methods in terms of the number
of genes identified with differential expression. Besides, it is
reported that DEG methods specific for scRNA-Seq did not perform
systematically better than non-specific methods (DESeq [6] and
limma-voom [97]). These findings reinforce that scRNA-Seq speci-
fic DEG analysis tools use as a basis the tools developed for bulk
RNA-Seq analysis.

The alona* [114] tool uses limma-voom [97], while the trend-
sceek™ [115] uses DESeq2 [107].

Although single-cell expression analysis is an important topic, it
is still in its infancy and has its own characteristics. This topic has
also been supported by previous studies such as [120]. Clearly,
there is a need that future studies can and should include analyti-
cal techniques for single-cell data as an emerging topic, and that
deserves a dedicated review.

5. Conclusion

A review of computational methods for DEG analysis since the
popularization of RNA-seq in 2009 was presented, reporting and
discussing the most important tools in the current literature, con-
tributing to the understanding of the steps involved, and the
methods available, along with their particularities and
applications.

The development of expression analysis pipelines by including
new functionalities has become a trend. Avoiding the need for
many replicates, required by RNA-seq sequencing, and yet main-
taining satisfactory results, is a challenge that deserves attention
in the developing DEG analysis methodologies.

The review presents fundamental concepts and computational
tools for expression analysis, in which it is possible to identify

95

Computational and Structural Biotechnology Journal 21 (2023) 86-98

the tendency to reuse methodologies in the development of com-
putational tools (software) and also, to incorporate new function-
alities to the existing software.

Therefore, it was possible to verify that the context of paramet-
ric methodologies presents a more stable scenario, revealing con-
vergence with the methods available in the literature. In contrast,
this review points out a challenge in developing non-parametric
(data-driven) and hybrid methodologies for DEG analysis.

In conclusion, this review brings a discussion about different
methodologies applied in differential expression analysis. In addi-
tion, it contributes with notes and directions to the community to
clarify some aspects of the analysis and serves as support to begin-
ners data analysts in bioinformatics at beginning of their careers.
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