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Simple Summary: Ovarian cancer is one of the most lethal cancers affecting women worldwide. Its
high mortality rate is often attributed to the non-specific nature of early symptoms of the disease.
Developing a better understanding of the disease progression and identifying clinically useful
biomarkers that aid in clinical management are requisite to reducing the mortality rate of ovarian
cancer. Reduced oxygen tension (i.e., hypoxia) is not only a characteristic of solid tumors but may
also enhance the metastatic capacity of tumors by inducing the release of tumor growth promoting
factors. Recently, it has been proposed that small tumor-derived extracellular vesicles (sEVs) facilitate
cancer progression. In this study, we established that sEVs produced under low oxygen tension
induce a metabolic switch in ovarian cancer cells associated with changes in glycolytic pathway
proteins that promote resistance to carboplatin. Significantly, we identified a suite of sEV-associated
glycolysis pathway proteins that are present in patients with ovarian cancer that can predict disease
recurrence with over 90% accuracy.

Abstract: Hypoxia is a key regulator of cancer progression and chemoresistance. Ambiguity remains
about how cancer cells adapt to hypoxic microenvironments and transfer oncogenic factors to
surrounding cells. In this study, we determined the effects of hypoxia on the bioactivity of sEVs
in a panel of ovarian cancer (OvCar) cell lines. The data obtained demonstrate a varying degree
of platinum resistance induced in OvCar cells when exposed to low oxygen tension (1% oxygen).
Using quantitative mass spectrometry (Sequential Window Acquisition of All Theoretical Fragment
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Ion Mass Spectra, SWATH) and targeted multiple reaction monitoring (MRM), we identified a
suite of proteins associated with glycolysis that change under hypoxic conditions in cells and sEVs.
Interestingly, we identified a differential response to hypoxia in the OvCar cell lines and their secreted
sEVs, highlighting the cells’ heterogeneity. Proteins are involved in metabolic reprogramming such
as glycolysis, including putative hexokinase (HK), UDP-glucuronosyltransferase 1–6 (UD16), and
6-phosphogluconolactonase (6 PGL), and their presence correlates with the induction of platinum
resistance. Furthermore, when normoxic cells were exposed to sEVs from hypoxic cells, platinum-
resistance increased significantly (p < 0.05). Altered chemoresistance was associated with changes in
glycolysis and fatty acid synthesis. Finally, sEVs isolated from a clinical cohort (n = 31) were also
found to be enriched in glycolysis-pathway proteins, especially in patients with recurrent disease.
These data support the hypothesis that hypoxia induces changes in sEVs composition and bioactivity
that confers carboplatin resistance on target cells. Furthermore, we propose that the expression
of sEV-associated glycolysis-pathway proteins is predictive of ovarian cancer recurrence and is of
clinical utility in disease management.

Keywords: ovarian cancer; hypoxia; exosomes; extracellular vesicles

1. Introduction

Ovarian cancer is the most lethal gynecological cancer [1]. Delayed diagnosis, high
metastatic frequency, and resistance to chemotherapy contribute to the lethality of ovarian
cancer [1]. Carboplatin, paclitaxel, or a combination of both are the first line chemotherapy
treatments for ovarian cancer [2]. Survival rates following treatment are less than 20%, as
ovarian cancer often recurs with chemoresistance, making this type of cancer extremely
difficult to treat [2]. Carboplatin is a DNA-binding alkylating agent (non-specific cell
phase) that displays response rates of ~70% in newly diagnosed patients with advanced
disease [3,4]. In the presence of tissue hypoxia, the response to carboplatin is significantly
reduced [5]. Hypoxia has emerged as a significant feature of the malignant tumor mi-
croenvironment and is considered a critical factor in promoting tumor metastasis and
chemoresistance associated with poor prognosis [6,7].

Typically, hypoxic regions develop within tumors, as their growth cannot be fully sup-
ported by their vascular supply. This results in a spatial disorganization of tumor vascular
networks to meet cell demand for oxygen and nutrition [8]. Disorganized and immature
blood vascular networks can cause unstable blood flow and limit oxygen diffusion [9,10].
Under a hypoxic environment, cancer cells modulate their metabolic programming to meet
their oxygen and nutrient requirements which accelerates cancer progression and increases
cell survival and adaptation. For example, during hypoxic exposure, cancer cells induce the
activity of glycolytic enzymes to convert glucose into lactate, to provide sufficient energy
and biomass supporting cell survival and proliferation [11,12]. This process causes the
cancer cells to secrete CO2 and carbonic acid (low pH) and thus limits the effectiveness
of chemotherapeutic agents [13,14]. The acidic environment produced by hypoxic cells
increases the activity of P-glycoprotein (Pgp) in cancer cells [15]. Pgp is an efflux pump
protein that reduces the cytotoxicity and accumulation of chemo drugs in the cytosol [13].

Recent studies highlight the role of small extracellular vesicles (sEVs) in ovarian
cancer progression [16–18]. sEVs are lipid bilayer-encapsulated vesicles that are natu-
rally released from a wide range of cells including cancer cells [19]. sEVs are selectively
packaged with bioactive molecules, including proteins and small non-coding RNA, that
are secreted by exocytosis into biofluid compartments [20]. EVs modulate the activity
of both proximal and distal cells to modify several biological processes such as angio-
genesis [19], proliferation [21], and metabolism [22]. EVs signaling, thus, represents an
integral pathway mediating cell to cell communication in many cancers, including ovarian
cancer [16]. Small EVs like exosomes released from cancer cells exposed to low oxygen
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tension reduced apoptosis in target cells [23], suggesting that exosomes might be involved
in chemotherapy resistance.

The available evidence suggests that the development of tumor resistance to chemother-
apy is, in part, due to cell-cell transfer of effectors within the tumor microenvironment [24,25].
For example, hypoxia increases the release of exosomes from cancer cells, alters their cargo,
and enhances cell migration and invasion in target cells [26]. Similarly, cells isolated from
ascites obtained from patients with ovarian cancer and cultured under hypoxic condi-
tions release sEVs enriched with STAT3 and FAS; oncogenic proteins can induce both cell
migration (in vitro) and tumor invasion in vivo [27].

The aim of this study was to test the hypothesis that carboplatin-resistant cancer cells
release sEV-associated proteins, under hypoxic conditions, that confer chemoresistance
to recipient cells. This hypothesis was further tested by establishing the capacity of sEV-
associated proteins, isolated from ovarian cancer patients, to predict chemo-resistance and
disease recurrence.

2. Results
2.1. Hypoxia Induces Chemoresistance in Epithelial Ovarian Cancer Cells

To investigate the effects of hypoxia on the response of ovarian cancer cells to the
chemotherapy drug, carboplatin, a panel of nine epithelial ovarian cancer (EOC) cell
lines were cultured under oxygen tensions that approximate those found in normal tis-
sue (8% O2) and hypoxic tumors (1% O2) [28]. Subsequently, cell viability in response
to different concentrations of carboplatin [0.01, 0.1, 1, 10, 100, 1000 µM] was evaluated.
CAOV-3 cells displayed the greatest resistance to carboplatin under 1% O2, followed
by TOV-112D, OVCAR-3, OV90, HEY, OVCA-429, OVTOKO, SKOV-3, and OVCA-420
(Figure 1A–I). Under 8% O2, SKOV-3 and OVCA-420 were the most sensitive EOCs to
carboplatin (IC50 = 3.9 ± 0.5 µM and 4.96 ± 8.68 µM, respectively). Under hypoxic condi-
tions, CAOV-3 developed the highest resistance to carboplatin (IC50 = 28.47 ± 1.45 µM)
and exhibited the most significant dose response curve shift, therefore, this cell line was
selected for further characterization.

2.2. Hypoxia Induced Carboplatin-Resistance Is Characterized by Metabolic
Pathway Dysregulation

Hypoxia may induce proteomic changes that control cell growth, activate the survival
pathway of cells, mediate cell-cycle arrest, and promote cancer progression. We, therefore,
investigated whether hypoxia-induced changes in carboplatin resistance in COVA-3 cells
are associated with changes in the proteomic profile. Changes in protein abundance
were determined by quantitative mass spectrometry analysis using a sequential window
acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH). Information-
dependent acquisition (IDA) and SWATH profile were generated from CAOV-3 cultured
at 8% and 1% O2 using independent samples (n = 6, per each group). The IDA library
was used to identify peptide ions present in SWATH ion profiles. Proteins were identified
and quantified by comparing SWATH-generated peptide ion profiles for each individual
sample against the IDA library (PeakView). IDA of mass spectra from all individual
samples was initially performed and identified 1233 total proteins and analyzed using IDA
and SWATH. The variation in the relative abundance of proteins between cells (8% O2 or
1% O2) was established by comparison with the SWATH profile against the IDA library and
presented as volcano plot (Figure 2A). A total of 30 proteins were significantly differentially
expressed in cells that were cultured under hypoxic conditions when compared with
normoxic cells (i.e., 8% O2) (Supplemental Table S1). From the MS/MS data, we identified
a significant increase in the detoxification and ATP production enzymes: 3-hydroxyacyl-
CoA dehydrogenase type-2 (HCD2) and Succinate—CoA ligase (SUCB1) (p = 0.037 and
p = 0.002, respectively).
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Figure 1. IC50 of a panel of epithelial ovarian cancer cells. The cells ((A–I): SKOV-3, OVCAR-3, OVCA-420, TOV-112D,
CAOV-3, OVTOKO, OV-90, HEY, and OVCA-429) were exposed to either 1% O2 or 8% O2 and treated with carboplatin at
different concentrations (0, 0.001 µM, 0.01 µM, 0.1 µM, 1 µM, 10 µM, 100 µM, and 1000 µM) in the presence of Caspase-3/7
reagent. The viability of the cells was assessed using the IncuCyte™ real-time cell-imaging system every 2 h for 72 h. The
data are represented by the mean ± SEM (n = 6). The IC50 of all EOC cells in this study were higher under hypoxia than
under normoxic in their parental cells. *** p < 0.0005 at 1% oxygen compared with 8% oxygen.
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Figure 2. Quantitative proteomic analysis of CAOV-3 cells exposed to 1% O2 and 8% O2. (A). Volcano plot of the quantified proteins showing the differentially expressed proteins in the
CAOV-3 cells exposed to 1% oxygen tension compared with cells exposed to 8% oxygen tension (upregulated on the right side and downregulated on the left side). 30 proteins were
significantly expressed in the hypoxic cells (1% O2 CAOV-3) than in the normoxic cells. Gene set enrichment analysis (GSEA) of proteomic data illustrate four gene clusters that are
enriched in the 1% O2 CAOV-3 cells compared cells at 8% O2 namely, (B) hypoxia, (C) epithelial–mesenchymal transition, (D) glycolysis, and (E) Myc target genes. The protein subset was
evaluated using the normalized enrichment score (the green line). In the GSEA figures, the black vertical lines identify the positions where the members of a particular pathway appear in
the ranked list of genes. The upregulated genes in red are localized on the left, while the downregulated proteins in blue are on the right.
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To gain further insights into the biological functions of the dysregulated proteins,
MS/MS profile data were subjected to gene enrichment analysis (GSEA), revealing several
gene sets to be significantly enriched in hypoxic cells compared with normoxic cells. This
is demonstrated by the normalized enrichment score that is the primary statistic that
determines whether a gene set is overrepresented in a ranked list of genes and has an
FDR <0.01. GSEA showed an enrichment of proteins involved in hypoxia, epithelial
mesenchymal transition, glycolysis, and MYC targets (Figure 2B–E). These results establish
that hypoxia changes the proteomic profile of CAOV-3 cells, involved in the expression
of the glycolysis signaling pathway and proteins that are important in the metabolic
requirements associated with cellular response to chemotherapy.

2.3. Analysis of sEVs from CAOV-3 Cells

This study further investigated the effects of hypoxia on cellular protein abundance
and if these changes are reflected in sEVs released from ovarian cancer cells. CAOV-3
cells were used because a significant switch in cell apoptosis in response to carboplatin
in 1% oxygen compared with 8% oxygen was observed (i.e., from 11 to 28 µM, Figure 1).
Extracellular vesicles were isolated from CAOV-3 cell-conditioned media and cultured
at 8% and 1% O2 for 48 h. The size distribution of the vesicles is presented in Figure 3A.
No significant differences were observed in the size distribution of the EVs from cells
cultured with 8% O2 and those cultured with 1% O2. The EV preparations contained
vesicles ~100 nm in diameter and were consistent with the size range and morphology of
sEVs (Figure 3A,C). sEVs were positive for CD9 and TSG101 (Figure 3B and Figure S4),
proteins associated with vesicles from an endocytic origin-like sEVs. The EV preparation
was negative for Grp94 (Figure 3B and Figure S4); an endoplasmic reticulum marker used
to establish the purity of EV isolates. The release of EVs from cells incubated under hypoxic
conditions was 2-fold greater (p < 0.05) than that observed under 8% O2 (Figure 3D).

The proteomic profile of sEVs from the CAOV-3 cultured at 8% and 1% O2 was
determined using the IDA of all individual sEV samples as well as SWATH. A total
of 1233 EV-associated proteins were identified and subjected to functional enrichment
analysis using FunRich (http://www.funrich.org (accessed on 20 December 2019)) software
to further elucidate their putative biological relevance. Proteins were characterized as
cytoplasmic (67.3%) and exosomal proteins (52.2%), respectively (Figure 3E). Functionally,
these proteins were found to be involved in protein metabolism (21%), metabolism (18%),
and energy pathways (17%) (Figure 3F). A total of 35 proteins from the 100 exosome-
associated proteins present in the ExoCarta database were identified in the sEV samples.
Overall, these results confirmed the reproducibility of the present method to enrich a
specific type of EVs, sEVs. sEVs were defined by the enrichment of proteins associated with
sEVs (i.e., CD9, and TSG101) as well as a lack of Grp94 (negative control); size distribution
of ~100 nm (within the size of the sEVs); and spherical morphology. SWATH analysis
matched the sEVs database and revealed that an enriched population of sEVs was isolated
in the present study.

2.4. sEVs Protein Cargo Is Altered by Oxygen Tension and Is Selectively Enriched for
Chemoresistant Factors

The difference in the proteomic profiles of sEVs from 1% versus 8% O2 is summarized
in Figure 4A, as a volcano plot. A total of 65 proteins were differentially expressed in
sEVs that were cultured under hypoxic conditions when compared with normoxic cells
(8% O2) (Supplemental Table S2). Moreover, glycolysis pathway-associated proteins and
detoxification enzymes were enriched in sEVs from 1% when compared with 8% O2
(Figure 4B and Supplemental Table S3). A specific set of proteins was selectively enriched
within the sEVs when compared with their cells of origin at 8% and 1% O2, indicating
the specific packaging of proteins into sEVs (Figure 4C–E). 8% sEVs were enriched with
proteins associated with epithelial mesenchymal transition (Figure 4D), and 1% sEVs were
enriched with hypoxia association proteins (Figure 4F). Data were analyzed by GSEA and
are presented in Figure 4B,D,F.

http://www.funrich.org
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Figure 3. Isolation and characterization of 1% O2 and 8% O2 CAOV-3 derived sEVs. (A) Size distribution of sEVs isolated from 1% O2 and 8% O2 CAOV-3 derived sEVs determined using
nanoparticle tracking analysis. (B) Representation of the mean and mode of the 1% O2 and 8% O2 and Western blot of exosomal protein markers CD9, and TSG101, and the negative
control for both the 1% O2 sEVs and 8% O2 sEVs Grp94. (C) Transmission electron microscopy images of the isolated sEVs suggested the presence of vesicles. (D) Quantification of
exosome particles from 1% O2 and 8% O2 sEVs presented as the number of particles/106 cells/48 h. (E) FunRich-based enrichment analysis of the exosome component from the SWATH
analysis of sEVs. (F) FunRich-based enrichment analysis of the biological process of the exosome proteins. ** p < 0.005.
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Figure 4. Proteomic analysis of CAOV-3 cells and their derived sEVs under 1% and 8% oxygen tension. (A) Volcano plot
of proteins differentially expressed between sEVs secreted by the 8% O2 CAOV-3 cells and the 1% O2 CAOV-3 cells. (B).
Volcano plot of proteins differentially expressed between the 8% O2 CAOV-3 cells and their derived sEVs. (C) Volcano
plot of proteins differentially expressed between the 1% O2 CAOV-3 cells and their derived sEVs. (D–F) Identification of
the top candidate protein using gene set enrichment analysis (GSEA) in the 1% O2 CAOV-3 derived sEVs compared with
the 8% O2 CAOV-3 derived sEVs. The GSEA plots of proteomic data illustrate four gene clusters that are enriched in the
1% O2 CAOV-3 derived sEVs involving: (D) glycolysis (E) the epithelial–mesenchymal transition, (F) hypoxia. The two
top networks identified using ingenuity pathway analysis are canonical pathways and diseases and biological functions
analysis for 1% O2 sEVs in compared with 8% sEVs.
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Ingenuity Pathway Analysis (IPA) was used to identify signaling pathways associated
with changes in the proteomic profile in sEVs from cells cultured under hypoxic compared
with normoxic conditions. The main network activated by hypoxic sEVs compared with
normoxic sEVs is mitochondrial dysfunction and NRF2-mediated oxidative stress response
and synaptogenesis signaling pathway (Supplemental Figure S1A). The top regulator effect
networks were associated with movement of endothelial cells and invasion of cancer cells
(Supplemental Figure S1B). Overall, this study suggests that when compared with sEVs
from normoxic cells, sEVs from hypoxic conditions were enriched with signals associated
with metastasis and glycolysis—key factors in chemoresistance [29]. This indicates that
sEVs from hypoxic cells may play a role in regulating recipient-cell responses to carboplatin
and induce chemoresistance in ovarian cancer.

2.5. Targeted Proteomic Analysis of Glycolysis in Ovarian Cancer Cells

The effects of hypoxia on glycolytic pathway proteins were assessed using liquid chro-
matography multiple reaction monitoring (LC-MRM). Proteins involved in core glycolysis,
glycolysis regulation, pentose phosphate and other metabolism pathways were selected
based on previously published data [30] and are detailed in the Supplemental Table S4 and
Figure 5. To ensure assay reproducibility, a Hela digest was injected at the start and in the
middle of the sample set. Figure 5 show the peak areas and retention times for each of the
selected peptides.

2.6. Effect of Hypoxia on Glycolytic Pathway Proteins in Ovarian Cancer Cell and Their Secreted
Extracellular Vesicles

To evaluate whether low oxygen tensions (i.e., 1% oxygen) modified the glycolysis
proteome in ovarian cancer cell lines, and their secreted sEVs, we performed three ex-
perimental analyses: (i) Cellular Proteome: The effect of hypoxia (1% O2 for 48 h) on the
proteome of CAOV-3, SKOV-3, TOV-112D, OVTOKO, HEY and OV-90 cell lines is pre-
sented in as Figure 6A–F. Significant cell-specific differential responses (p < 0.05) in the
expression of glycolytic pathway proteins (e.g., ENO1, LDHA, ENO, PGK1, PKM2 TP1)
were identified; (ii) Extracellular Vesicle Proteome: The effect of hypoxia on extracellular
vesicle-associated proteins isolated from CAOV-3, SKOV-3, TOV-112D, OVTOKO, HEY,
and OV-90 cell-conditioned media are presented as volcano plot in Figure 6A–F. Specific
changes associated with hypoxia for each cell line were identified and included, TPI, PGK,
ENO, PKM, and LDH (p < 0.05); and (iii) Comparison of Cellular and Extracellular Vesicle
Proteomes: A cell-specific comparison of the cellular and extracellular vesicle proteomes is
present in Figure 7. In general, changes in the glycolysis proteome of cells are reflected in
their secreted EVs under both 8%, and 1% oxygen (Figure 7A,B). Specific changes associ-
ated with each cell type were identified, in cells (e.g., TP1, and PGK1 in CAOV-3), and in
EVs (e.g., PKM2 in HEY) at 8% oxygen. Specific differentially abundant proteins in cells
compared with EVs were identified for each cell line (i.e., comparison analysis between
cells and EVs for COV-3, SKOV-3, TOV-112D, OVTOKO, HEY, and OV-90), suggesting
that proteins associated with glycolysis proteome in EVs do not reflect the cell of origin,
perhaps due to the specific packaging of proteins into EVs (Figure 8C,D).

2.7. sEVs Released from Hypoxic Cells Confer Carboplatin Resistance to Recipient Normoxic Cells

Next, we evaluate whether hypoxic sEVs can transfer resistance to carboplatin in
target cells. Effect of sEV on carboplatin-induced apoptosis: The effects of hypoxia on the
capacity of sEVs to inhibit carboplatin-induced apoptosis in CAOV-3 cells is presented
in Figure 9. EVs isolated from CAOV-3 cells cultured under 1% significantly inhibited
carboplatin-induced [0–100µM] apoptosis in normoxic CAOV-3 cells. Effect of sEV on
recipient cell proteome: The effect of EVs isolated from CAOV-3 cells cultured under 1% on
the proteome of recipient normoxic CAOV-3 cells is summarized in Supplemental Table
S5 and Figure 9C. A total of 132 proteins were differentially expressed (p < 0.05) in cells
incubated in the presence of hypoxic sEVs compared with cells incubated with normoxic
sEVs. Gene enrichment analysis (GSEA) identified genes related to oxygen-monitoring
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mechanisms, including hypoxia-inducible factors (HIFs), the major components of hypoxia
signaling pathways, glycolysis, fatty acid synthesis, and protein secretion (Figure 9D). The
data obtained are consistent with the hypothesis that oxygen tension regulates the packing
of specific proteins into sEVs that are involved in the metabolic adaptation of cancer to
enhance glycolytic pathways and that they play a role in inducing carboplatin resistance in
recipient cells.

Figure 5. Peptides in the glycolytic enzyme structure. Left: The peptides are colored by the number for each glycolytic
enzyme structure from the protein data bank (PDB) with the best resolution and coverture available. For each peptide,
the solvent accessible surface (SASA) was calculated with the software freesasa, the average for residue is in parenthesis
(A–P). The structures were prepared with pymol in surface mode and in biological assembly available from PDB (monomer,
dimer, and tetramer). Right: MRM chromatogram of the transition used to trigger MS/MS for each protein associated with
“glycolysis proteome”.
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Figure 6. Relative quantification of the glycolysis proteome in ovarian cancer cells in response to oxygen tensions. Ovarian cancer cells were cultured under 8% or 1% oxygen, and the
protein abundance associated with glycolysis were quantified using a targeting mass spectrometry approach. (A): CAOV-3; (B): SKOV-3; (C): TOV-112D; (D) OVTOKO; (E) HEY; and (F)
OV-90. Volcano plots show the differences in peptides associated with proteins representatives of glycolysis proteome in cells cultured at 8% compared with cells cultured at 1% oxygen.
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Figure 7. Relative quantification of the glycolysis proteome in sEVs secreted from ovarian cancer cells in response to oxygen tensions. sEVs were isolated from ovarian cancer cells cultured
under 8% or 1% oxygen, and the protein abundance associated with glycolysis were quantified using a targeting mass spectrometry approach. (A): CAOV-3; (B): SKOV-3; (C): TOV-112D;
(D) OVTOKO; (E) HEY; and (F) OV-90. Volcano plots show the differences in peptides associated with proteins representatives of glycolysis proteome in sEVs from cells cultured at 8%
compared with cells cultured at 1% oxygen.
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Figure 8. Comparison analysis of the glycolysis proteome in ovarian cancer cells versus their secreted sEVs in response to oxygen tensions. Analysis of the glycolysis proteome in ovarian
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cancer cells and sEVs was performed to evaluate whether changes in cells in response to normoxia or hypoxia is reflected in their secreted sEVs. (A) Comparison analysis of the effect of 8%
oxygen in cells vs. sEVs for each cell line. (B) Comparison analysis of the effect of 1% oxygen in cells vs. sEVs for each cell line. (C) Graphical representation of proteins associated with
glycolysis that changes across all the conditions studied. (D) Summary of the results suggesting that changes in cells are reflected in sEVS, or specific packaging of proteins in sEVs in
response to oxygen tensions.

Figure 9. 1% O2 sEVs induced chemoresistance in 8% O2 CAOV-3 cells. (A) Experimental strategy. (B) Apoptosis in 8% O2 CAOV-3 cells exposed to 8% O2 sEVs, 1% O2 sEVs, or a
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negative control (plain media). The white bar indicates cells without pre-exposure to sEVs (plain media), while the black bar indicates pre-exposure to 1% O2 sEVs. After 24 h, the cells
were treated with different concentrations of carboplatin (0 µM, 0.001 µM, 0.01 µM, 0.1 µM, 1 µM, 10 µM, and 100 µM) in the presence of Caspase-3/7 reagent. The percentage of apoptotic
CAOV-3 cells was measured using the IncuCyte™ real-time cell-imaging system every 2 h for 72 h. The data were normalized using cell confluence. The ∆ rate of cell apoptosis over time
was analyzed as the area under the curve. The data are represented by the mean ± SEM (n = 6). (C) Volcano plot of proteins differentially expressed between 8% O2 CAOV-3 cells treated
with 8% O2 sEVs and 8% O2 CAOV-3 cells treated with 1% O2 sEVs. (D). Identification of the top candidate proteins using gene set enrichment analysis in 8% O2 CAOV-3 cells treated
with 1% O2 sEVs compared with 8% O2 CAOV-3 cells treated with 8% O2 sEVs. The gene set enrichment analysis plots of the proteomic data illustrate four gene clusters that are enriched
in 1% O2 sEVs, hypoxia, glycolysis, and fatty acid metabolism. In (B), * p < 0.05 for exo1%O2 compared with exo8% O2 or control.
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2.8. Analysis of Circulating sEVs in Patients with Ovarian Cancer

To determine if changes in protein expression observed in vitro experiments are re-
capitulated in vivo, sEVs were isolated from the plasma of patients with ovarian cancer
recurrence (n = 9), and controls (i.e., without ovarian cancer, n = 22) after 12 months from
initial diagnosis (Figure 10) (Table S6). No differences were identified in the concentration,
mean, and mode of the circulating sEVs from patients with cancer recurrence and controls
(Figure 10A–C). Morphological analysis using electron microscopy showed vesicles of
around 100 nm (Figure 10D). Information-Dependent acquisition (IDA) mass spectrometry
analysis was performed and identified 353 total proteins (Supplemental Table S7). Interest-
ingly, of the 353 proteins identified in sEVs from plasma samples, a total 89 proteins are
present in sEVs from CAOV-3 cells cultured at 1% oxygen (Supplemental Figure S2). An
Ingenuity Pathway Analysis library identified 4 exosome-associated glycolysis pathway
proteins: pyruvate kinase M1/2, enolase 1, glyceraldehyde-3-phosphate dehydrogenase,
and aldolase fructose-bisphosphate (Supplemental Figure S3). The relative abundance of
these proteins in patients with ovarian cancer recurrence and controls was established by
comparison using SWATH and expression profiling against the IDA library (Figure 10E–H).
The expression of pyruvate kinase M1/2, enolase 1, and aldolase fructose-bisphosphate
were significantly higher in circulating sEVs of patients with ovarian cancer recurrence
compared to the controls (Figure 10E–I). No difference in the expression of glyceraldehyde-
3-phosphate dehydrogenase was identified (Figure 10G).

The classification efficiency (i.e., the proportion of ovarian cancer recurrence cases
correctly identified) by measuring pyruvate kinase M1/2, enolase 1, glyceraldehyde-3-
phosphate dehydrogenase, and aldolase fructose-bisphosphate A, individually, and in
combination, was assessed by ROC curve analysis (Figure 10E–I). The area under the
ROC curves (AUC) for pyruvate kinase M1/2, enolase 1, glyceraldehyde-3-phosphate
dehydrogenase, and aldolase, fructose-bisphosphate A, were 0.80 ± 0.08 (AUC ± SD),
0.69 ± 0.10, 0.60 ± 0.10, 0.71 ± 0.10, respectively. The classification efficiencies for pyru-
vate kinase M1/2, enolase 1, glyceraldehyde-3-phosphate dehydrogenase, and aldolase
fructose-bisphosphate A were 93%, 80%, 76%, and 90%, respectively (Figure 10E–H, right).
Multivariate models (LogitBoost and J48 decision tree) were developed using WEKA soft-
ware. The AUCs were 1.0 and 0.80 (Figure 10I) and the overall classification accuracy was
100% and 73% for the LogitBoost and J48 models, respectively. The data suggest that the
analysis of proteins associated with glycolysis encapsulated in circulating sEVs might be
used as potential biomarkers to identify women at risk of cancer recurrence and may be
useful to determine treatment response in ovarian cancer.
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Figure 10. Receiver operating characteristic (ROC) curves illustrating the ability of proteins within sEVs to distinguish patients with cancer recurrence. sEVs were isolated from plasma
obtained from patients with cancer recurrence and control. sEVs were characterised uisng nanoparticle tracking analysis by (A) concentration; (B) mean; (C) mode; and (D) electron
microscopy. The levels of selected proteins, (E) pyruvate kinase M1/2; (F) enolase 1; (G) glyceraldehyde-3-phosphate dehydrogenase; and (H) aldolase, fructose-bisphosphate were
quantified by SWATH analysis. In (E–H), left: levels of pyruvate kinase M1/2, enolase 1, glyceraldehyde-3-phosphate dehydrogenase, or aldolase, fructose-bisphosphate (A); and
right: ROC curve for each protein. (I) Classification model based on the quantification of all proteins in sEVs and developed using LogitBoost regression analysis, or J48 decision tree
model. PPV = positive predicted values; NPV = Negative Predictive Values; CE: classification Efficiency. * p < 0.05, ** p < 0.005, *** p < 0.0005 and **** p < 0.0001 for cases vs. controls.
Ns = non-significant.
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3. Discussion

The development of chemoresistance in patients with cancer is a major factor limiting
survival [31]. Elucidating the fundamental mechanisms by which cancer cells acquire
resistance to chemotherapeutic agents, therefore, is requisite to developing more efficacious
treatments. Hypoxia is a common feature of malignant tumors [32] and is associated with
reprogramming of cellular metabolism to favor glycolytic energy production, increased
invasiveness, metastatic potential, angiogenesis, and reduced apoptosis and chemoresis-
tance [32–35]. Interestingly, small extracellular vesicles like exosomes have been associated
with platinium resistance in ovarian cancer [36]. This study aimed to test the hypothesis
that hypoxia-induced chemoresistance is propagated within ovarian tumors by extracel-
lular vesicle signaling between cancer cells. In this study, we used the terminology sEVs
as recommended by the International Society of Extracellular Vesicles, due to the mixed
origin of EV preparations and the lack of specific EV subtype markers [37].

The data obtained using a panel of nine epithelial ovarian cancer cell lines, confirm
that carboplatin resistance (as defined by cell the IC50 for cell survival) is regulated by
oxygen tension but varies up to 3-fold between cell lines (IC50 = 8.7 µM for OVCA-420 to
IC50 = 28.5 µM for CAOV-3). The incubation of cells under low oxygen tension induces
the cellular expression of a cassette of proteins associated with hypoxia (e.g., HIF-1),
epithelial mesenchymal transition (e.g., GPC1, PPIB), glycolysis (e.g., CPC1, FKBP4) and
MYC targets (e.g., XP01, and G3BP1), and increases the release of extracellular vesicles by
2-fold (as indicated by the concentration of extracellular vesicles in cell-conditioned media).
Hypoxia-induced cellular proteins were enriched in the extracellular vesicles released from
these cells. The treatment of carboplatin-sensitive ovarian cancer cells with extracellular
vesicles isolated from cells incubated under low oxygen tension conferred carboplatin
resistance. These data support the hypothesis that ovarian cancer cells utilize extracellular
vesicle signaling between cancer cells to propagate chemoresistance. Furthermore, the
data obtained are consistent with recent studies that implicate extracellular vesicles in
hypoxia-induced metabolic changes within the pre-metastatic milieu [38–40] and in the
acquisition of chemoresistance [41–46].

While the mechanisms by which extracellular vesicles derived from hypoxic ovarian
cancer cells induce chemoresistance in recipient cells remains to be elucidated, the protein
cargo they carry has been implicated in metabolic and oncogenic pathways. For example,
HIF-1, increases the flux of the glycolysis pathway, which in turn decreases the flux of the
tricarboxylic acid cycle (TCA). Decreased TCA flux reduces mitochondrial reactive oxygen
species (ROS) production but maintains matrix ATP concentrations under energy-limited
conditions [47]. HIF-1 also increases the flux of the serine synthesis pathway, inducing
the production of antioxidant products, such as NADPH and glutathione, to neutralize
ROS [47]. In this study, 3-hydroxyacyl-CoA dehydrogenase (HAD) was significantly
upregulated. HAD belongs to a family of oxidoreductases that catalyzes 3-hydroxy-2-
methylbutanoyl-CoA in the third step of beta-oxidation and produces NADPH and 2-
methyl-3-COA.

Similarly, hexokinase (HK), UDP-glucuronosyltransferase 1–6 (UD16), 6-phosphogluc-
onolactonase (6PGL), and CTP synthase 1 (PYRG1), the key enzymes involved in the
glycolysis and biosynthesis of phospholipids and nucleic acids [48], were significantly
enriched in the sEVs from hypoxic cells. Patra et al. demonstrated that HK positively
correlates with cancer cell survival through the initiation of glycolysis, an effect that
is abolished when HK is knocked out using an in vivo model [49]. HK expression is
a key factor in inducing tumor progression whilst depletion of HK assists in restoring
the balance between glycolysis and OXPHOS pathways, leading to the upregulation
of mitochondrial biogenesis and induction of intrinsic apoptotic pathways [50]. HK is
also involved in chemoresistance via the enhancement of the autophagy of cisplatin in
ovarian cancer [51]. The enrichment of proteins that are involved in NADH/NADPH
productions (i.e., alcohol dehydrogenase class-3 (ADH5), NAD-dependent malic enzyme
(MAMO), bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTDC)
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and peroxisomal multifunctional enzyme type 2 (DHB4)) was also detected in hypoxic sEVs.
This enrichment could potentially act as a protective mechanism for the targeted cells as it
has been shown that these enzymes reduce oxidative stress under low oxygen consumption.
We, therefore, suggest that the presence of oncogenic molecules secreted from hypoxic
cells via sEVs initiate the metabolic changes of normoxic cells, upregulate the glycolysis
pathway, and drive physiological responses such as cell survival and chemoresistance.

In addition to proteins, EVs can carry a diverse range of molecules, such as lipids or
microRNAs that can mediate chemoresistance by interacting with the immune system [52].
Cytotoxic chemotherapy induces dynamic changes in the cellular immune landscape from
within the tumor microenvironment, impacting overall survival outcomes [53,54]. EVs
obtained from ovarian tumors were found to be immunosuppressive [55], causally linked
by their cargoes of lipid phosphatidylserine (PS) [56,57] and ganglioside GD3 [58,59].
Furthermore, the microRNA-940 was found to be highly expressed in EVs derived from
ovarian cancer cells under hypoxic conditions [60], inducing macrophages to remodel a pro-
tumorigenic microenvironment. Future analyses investigating the role of EVs from hypoxic
ovarian cancer cells could also characterize non-protein cargoes such as PS, ganglioside
GD3 or microRNAs. Thus, further studies are required to determine the role of other
molecules within sEVs from hypoxic conditions on conferring resistance to carboplatin in
target cells.

The data obtained define an extracellular vesicle chemoresistance protein profile that
may be of clinical utility as an aid in the management of patients with disease recurrence.
More than 60% of ovarian cancer patients that present with advanced stage disease develop
recurrent chemoresistant disease [61]. In this study, we identified an increased expression
of pyruvate kinase M1/2, enolase 1, and aldolase, fructose-bisphosphate A, in circulating
extracellular vesicles of patients with ovarian cancer recurrence compared to the controls.
Previously, these enzymes have been implicated in metabolic adaption, tumorigenesis,
chemoresistance and patient survival [62–78]. Multivariate models based on the expression
of these proteins in extracellular vesicle delivered classification efficiencies of 73–100%. A
larger patient study is warranted to validate these findings clinically.

In conclusion, this study advances our understating of the involvement of extracellular
vesicle signaling pathways in the transfer of chemoresistance between ovarian cancer
cells. Such pathways may be targeted for therapeutic intervention and/or improved
patient management.

4. Material and Methods
4.1. Cell Culture

In this study, human ovarian cancer cell lines: TOV-112D, OVCAR-3, OV90, HEY,
OVCA-429, OVTOKO, SKOV-3, and OVCA-420 were used. All cell lines, except OVCA-429,
were maintained in RPMI media supplemented with 10% heat-inactivated fetal bovine
serum (FBS) (PAA Laboratories Pty Ltd., Morningside, QLD, Australia), 1000 U/mL
antibiotic-antimycotic, (Gibco, Life Technologies, Carlsbad, CA, USA). OVCA-429 was
maintained in DMEM media (Life Technologies, Carlsbad, CA, USA) with 10% heat-
inactivated FBS (PAA Laboratories Pty Ltd., Morningside, QLD, Australia), and 1000
U/mL antibiotic-antimycotic solution (Gibco, Life Technologies, Carlsbad, CA, USA). Cells
were cultured as an T175 flasks adherent monolayer under 8% O2 to simulate normoxic,
and under 1% O2 in a humidified chamber to simulate hypoxia.

4.2. Apoptosis Assay

A total of 3 × 104 of TOV-112D, OVCAR-3, OV90, HEY, OVCA-429, OVTOKO, SKOV-3
and OVCA-420, cells were plated in 96-well plates (Corning Life Science, Tewksbury, MA,
USA) under 8% O2 (normoxic) or 1% O2 (hypoxia). After 24 h, cells were treated with
different concentrations of carboplatin (0.01–100 µM) for 72 h. The effect of carboplatin on
cell apoptosis was determined by quantifying Caspase3/7 (ThermoFisher, Waltham, MA,
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USA) using the real-time cell imaging system, IncuCyte™ (Essen BioScience, Ann Arbor,
MI, USA). Images were captured every two hours to monitor apoptosis.

4.3. sEVs Isolation and Characterization

Cells grown to 70% confluence in T175 flasks were washed twice with phosphate-
buffered saline (PBS) before FBS-free media was added. The cells were then incubated
for 48h before conditioned media was collected for sEV isolation. sEV were isolated by
differential centrifugation and ultrafiltration as previously published [16]. Briefly, cell
conditioned media or plasma were centrifuged at 800× g for 10 min, 2000× g for 10 min
at 4 ◦C, and 12,000× g for 10 min at 4 ◦C to remove cells and debris. The resultant
supernatant was centrifuged at 100,000× g for 2 h at 4 ◦C with the Type 70.1 Ti fixed
angle rotor (Beckman Coulter, CA, USA) to pellet the sEVs. The resultant pellet was
resuspended in 10 mL PBS, filtered through a 100 kDa Amicon® Ultra-15 Centrifugal Filter
Units (MERCK, Bayswater, VIC, Australia), and centrifuged at 4000× g for 30 min. The
sEVs were collected and stored at −80 ◦C for further experiments. sEVs were characterized
according to the recommendations of the International Society of Extracellular Vesicles,
by size distribution, abundance of proteins (i.e., CD63 and TSG101) associated with sEVs,
and by a morphological assessment involving Nanoparticle Tracking Evaluation (NTA),
Western blot, and electron microscopy [37].

4.4. Sample Preparation for SWATH) Analysis
4.4.1. Protein Extraction for Tandem Mass Spectrometry (MS/MS)

Protein was extracted from the following sources by SWATH as described previ-
ously [16]: ovarian cancer cells cultured under either 1% O2 (hypoxia) or 8% O2 (normoxic);
sEVs derived from normoxic and hypoxic cells; and CAOV-3 cells cultured under 8% O2
and treated with either 1% O2 sEVs (1% O2 sEVs + 8% O2 cells) or 8% O2 sEVs (8% O2
sEVs + 8% O2 cells). Briefly, cells were washed twice with PBS (Sigma Aldrich) and lysed
using Radio-Immunoprecipitation Assay (RIPA) buffer (Sigma Aldrich). The cell lysate was
transferred to a pre-chilled microcentrifuge tube and centrifuged at 15,000× g for 15 min at
4 ◦C. The supernatant containing total cellular proteins was collected and quantified using
the DC™ Protein Assay kit (BIO-RAD, Gladesville, NSW, Australia). Exosome fractions
were lysed using 8M urea in 50 mM triethylammonium bicarbonate at pH 8.0.

4.4.2. Ion Library Generation and SWATH

Protein (20 µg) from individual samples was reduced, alkylated, and trypsinized in
triplicate using the filter-aided sample preparation (FASP) method in order to generate an
ion library for SWATH mass spectrometry (MS) analysis. The resulting peptide samples
were combined and processed in an information-dependent acquisition (IDA) on an AB
Sciex 5600 TripleTOF MS with the top 20 precursor ions automatically selected for frag-
mentation and processed. For SWATH analysis, a global false discovery rate (FDR) of
1% was used as the threshold for the number of proteins for import to ensure the highest
quality ion library. SWATH acquisition was as described by Menon et al., [79], operating
in a looped product ion mode. Using an isolation width of 26 Da (25 Da of optimal ion
transmission efficiency and 1 Da for the window overlap), a set of 32 overlapping windows
(1 m/z overlap) was constructed covering the mass range 400 to 1200 m/z.

4.4.3. Data Processing

To generate the protein library, ProteinPilot (version 4.5b) software and the Paragon™
Algorithm were used to search against a human SwissProt database. For SWATH process-
ing, the SWATH Acquisition Microapp (version 2.0) within PeakView (version 2.2) was
used. An FDR threshold of 1% was applied by setting three peptides per protein with
the retention time manually realigned with a minimum of five peptides with consistently
high signal intensities and distributed along the time axis. The resulting peak area for each
protein after SWATH processing was exported to MakerView version 1.3.1 (SCIEX) for
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statistical analysis. The resulting data was normalized using Total Area Sum (TAS). The
coefficient of variation in the peptide abundance across the samples was established by
comparing the SWATH peptide ion against the IDA library. Finally, unpaired Student’s
t-tests were performed with p < 0.05 considered statistically significant.

4.4.4. Target Peptide Set Selection for “Glycolysis Proteome”

The proteins involved in core glycolysis, glycolysis regulation, pentose phosphate, and
other metabolism pathways were selected based on a previous study [30]. Also included
were five commonly used reference proteins. The FASTA protein sequence for all proteins
were imported into Skyline software (version 20.2.1.404) for method development and
data processing. For selecting the optimal fragment ions, a targeted MRMHR experiment
was performed using the pre-selected peptides and their corresponding masses as per
the above study. A commercially available Hela tryptic digest (500 ng) was injected
two times into a TripleTOF 5600 mass spectrometer (AbSciex) connected to a NanoLC
400 system with an analytical MicroLC column ChromXP C18CL, 120A, 150 × 0.3 mm
(Eksigent). Chromatography was performed in a trap-elution mode with solvent A (100%
H2O, 0.1% FA) and solvent B (100% ACN, 0.1% FA). Peptide separation was performed at
a total flow rate of 5 µL/mL according to the gradient conditions listed the Supplemental
Table S8. Afterwards, a full scan data extraction from the raw. wiff files were conducted
in Skyline. The fragment ions were manually inspected, and the presence of consecutive
high mass y ion series gives evidence of the correct identification of the peptide. The top
three fragment ions were elected for the MRM experiment based on the highest co-eluting
y ions’ intensities.

The MRM experiments were performed on a 5500 QTRAP hybrid triple quadrupole/linear
ion trap mass spectrometer (ABSciex), equipped with an Eksigent MicroLC 200 System.
Hela digest was again injected, with the retention times of the peptides used to build a
scheduled method with a two-minute window. Cells or cell derived EVs were digested
using FASP as previously described by our group [80]. Tryptic digests of cells or exosomes
were resuspended in 20 uL of H2O, 0.1% FA of which 5 uL was injected and separated
by RP-HPLC in an analytical MicroLC column HALO™ C18 2.7 µm, 90A 0.5 × 100 mm
(Eksigent). Chromatography was performed with solvent A (100% H2O, 0.1% FA) and
solvent B (100% ACN, 0.1% FA) at a total flow rate of 15 µL/mL according to the gradient
conditions listed in Supplemental Table S9. To ensure the assay’s reproducibility, a com-
mercially available hela peptide digest (ThermoFisher) was injected at the start and in the
middle of the sample set (Figure 5). The peak areas and retention times for each of the
selected peptides.

4.5. Gene Set Enrichment Analysis (GESA)

To determine the genes associated with chemoresistance and cancer progression in
1% O2 CAOV-3 cells, 8% O2 CAOV-3 cells, 1% O2 sEVs, 8% O2 sEVs, 1% O2 sEVs + 8%
O2 CAOV-3 cells, and 8% O2 sEVs + 8% O2 CAOV-3 cells, Gene Set Enrichment Analysis
(GSEA, version 3.0) was performed [81] using the normalized SWATH results of these
samples. The protein expression data was processed using the hallmark gene sets within
the MSigDB database v6.2 with permutations set at 1000 and a Signal2Noise metric for
ranking genes. Default values were selected for all other parameters.

4.6. Effect of sEVs on the Response of CAOV-3 Cells to Carboplatin

CAOV-3 cells (3 × 104) were plated in 96-well plates (Corning Life Science, Tewksbury,
MA, USA) and cultured under either 8% or 1% O2. After 24 h, cells cultured under 8%
O2 were co-incubated in the absence or presence of sEVs from hypoxic (1% O2) CAOV-3
cells for 24 h. The cells were then treated with different concentrations of carboplatin
(10–100 µM) for 48 h. The effect of carboplatin on cell apoptosis was determined by quanti-
fying Caspase3/7 using the real-time cell imaging system, IncuCyte™ (Essen BioScience,
Ann Arbor, MI, USA). Images were captured every two hours to monitor apoptosis.
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4.7. Patient Derived Specimens

Using an Oregon Health & Science University (OHSU) Institutional Review Board
approved protocol (OHSU #0921), the participating women consented for blood draw
(10mls in sodium-citrate tube) before surgery for suspected ovarian adenocarcinoma. This
study was approved by the Human Research Ethics Committee of the the University
of Queensland (2021/HE000319). Platelet poor plasma was made by centrifugation at
2500× g for 10 min and 0.5 mL aliquots were banked at −80 ◦C. These banked coded plasma
samples were provided by OHSU for experimental analysis, linked to a coded database
without patient health identifiers extracted from the electronic medical record. Study
subject coded data included patient age, pathological diagnosis (e.g., benign cystadenoma,
borderline tumor, primary ovarian carcinoma including differentiation and grade, or
metastatic carcinoma including classification) that was confirmed by a board certified
anatomic pathologist with expertise in gynecologic pathology (Dr. Morgan, OHSU) [82],
clinical stage, whether the patient was optimally debulked (yes or no), interval from blood
collection to follow up assessment, and clinical outcome at follow up (recurrent disease
(RD), dead of disease (DOD), and alive without disease (AWOD)).

4.8. Statistical Analysis

Data are represented as mean ± SEM. Comparisons between two groups were per-
formed by unpaired Student’s t-tests. Multiple groups were compared using the analysis
of variance (ANOVA). Post hoc analyses were used for pairwise comparisons (Bonferroni
correction test). Statistical significance was defined as at least p < 0.05. Statistical analyses
were preformed using commercially available programs Stata 11 (StatCorp, College Station,
TX, USA) and Prism 6 (GraphPad Inc, La Jolla, CA, USA).

5. Conclusions

Hypoxia induces changes in the composition and bioactivity of small EVs like exo-
somes, that confer carboplatin resistance in recipient target cells. These findings provide a
new insight into tumor cell EV signaling and identify a putative theranostic target for the
prediction and prevention of disease recurrence.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13143388/s1, Figure S1: Ingenuity Pathway Analysis (IPA) was used to identify
signaling pathways associated with changes in proteomic profile in sEVs from cells cultured under
hypoxic compared with normoxic conditions. (A) Canonical Pathways, and (B) Diseases and Bio
Functions. Figure S2. Analysis of the protein identified in small extracellular vesicles isolated
from cells and plasma. sEVs were isolated from CAOV-3 cells cultured at 1% oxygen, and plasma
obtained from patients with ovarian cancer, and global proteomic identification was performed.
Venn diagram shown the unique and common protein identified in sEVs from plasma, and from
cell-conditioned media. Figure S3. An Ingenuity Pathway Analysis library in circulating small
extracellular vesicles identified 4 sEV-associated glycolysis pathway proteins: pyruvate kinase M1/2,
enolase 1, glyceraldehyde-3-phosphate dehydrogenase, and aldolase fructose-bisphosphate. Figure
S4. Uncropped Western blot images. Table S1. Differentially expressed proteins in 1% oxygen
CAOV-3 cells compared to 8% oxygen CAOV-3 cells. Table S2: Differential expressed proteins in
sEVs derived from 1% CAOV-3 cells in compared to exosomes derived from 8% CAOV-3 cells. Table
S3. A comparison of proteins differentially expressed in 1% O2 sEVs and 8% O2 sEVs. Table S4.
Target Set of Metabolic and Reference Proteins. Table S5. Differentially expressed proteins in cells
incubated with hypoxic exosomes compared to cells incubated with normoxic sEVs. Table S6. Clinical
characteristics of the patients involved in this study. Table S7. Proteins identified in circulating sEVs
isolated from plasma. Table S8. Peptide separation was performed at a total flow rate of 5 µL/mL
according to the gradient conditions listed below. Table S9. Chromatography was performed with
solvent A (100% H2O, 0.1% FA) and solvent B (100% ACN, 0.1% FA) at a total flow rate of 15 µL/mL
according to the gradient conditions listed below.
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