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Abstract

Background

Insecticide use continues as the main strategy to control Aedes aegypti, the vector of den-

gue, Zika, chikungunya, and yellow fever. In the city of Tapachula, Mexico, mosquito control

programs switched from pyrethroids to organophosphates for outdoor spatial spraying in

2013. Additionally, the spraying scheme switched from total coverage to focused control,

prioritizing areas with higher entomological-virological risk. Five years after this strategy had

been implemented, we evaluated the status and variability of insecticide resistance among

Ae. aegypti collected at 26 sites in Tapachula.

Methodology/Principal findings

We determined the lethal concentrations at 50% of the tested populations (LC50) using a

bottle bioassay, and then, we calculated the resistance ratio (RR) relative to the susceptible

New Orleans strain. Permethrin and deltamethrin (pyrethroids), chlorpyrifos and malathion

(organophosphates), and bendiocarb (carbamate) were tested. The frequencies of the sub-

stitutions V1016I and F1534C, which are in the voltage-gated sodium channel and confer

knockdown-resistance (kdr) to pyrethroid insecticides, were calculated. Despite 5 years

having passed since the removal of pyrethroids from the control programs, Ae. aegypti

remained highly resistant to permethrin and deltamethrin (RR > 10-fold). In addition, follow-

ing 5 years of chlorpyrifos use, mosquitoes at 15 of 26 sites showed moderate resistance to

chlorpyrifos (5- to 10-fold), and the mosquitoes from one site were highly resistant. All sites

had low resistance to malathion (< 5-fold). Resistance to bendiocarb was low at 19 sites,

moderate at five, and high at two. Frequencies of the V1016I ranged from 0.16–0.71, while
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C1534 approached fixation at 23 sites (0.8–1). Resistance profiles and kdr allele frequen-

cies varied across Tapachula. The variability was not associated with a spatial pattern at the

scale of the sampling.

Conclusion/Significance

Mosquito populations respond to selection pressure at a focal scale in the field. Spatial vari-

ation across sites highlights the importance of testing multiple sites within geographical

regions.

Author summary

Aedes aegypti is a major vector of dengue, chikungunya, Zika, and yellow fever. In the

absence of effective vaccines or treatments, the suppression of mosquito populations

using insecticides commonly has been implemented by public health programs. Unfortu-

nately, few insecticides are available to target adult mosquitoes with outdoor spraying.

The mismanagement of insecticides can lead to resistance selection in mosquitoes, affect-

ing our ability to control arboviral diseases. Ideally, screening insecticide susceptibility in

local mosquito populations allows public health entities to support insecticide manage-

ment strategies that will prevent the development of resistance. In this study, we evaluated

insecticide resistance in Ae. aegypti collected across 26 sites in Tapachula, Mexico. The

results reveal the response of populations to its historic use of insecticides. High resistance

to pyrethroids, used for 10 years, but not in the previous 5 years, and moderate to high

resistance to chlorpyrifos, an insecticide from a different toxicological group and used for

the past 5 years, were confirmed. High variation in resistance across Ae. aegypti sites sug-

gests that focal selection plays an important role in the evolution of insecticide resistance

in the field. Screening several collections sites within a geographical region provides better

evidence to support strategies of insecticide management.

Introduction

Aedes aegypti is the main vector of several arboviruses, including dengue, Zika, chikungunya,

and yellow fever. The control of this mosquito species is challenging, mainly because it is

highly adapted to urban and suburban areas and because it is widely dispersed in endemic

regions [1]. Except for yellow fever, safe and effective treatments or vaccines for these diseases

are still under study. Therefore, the suppression of Ae. aegypti remains the cornerstone to pre-

vent transmission and control of outbreaks of these diseases [2].

Effective vector control involves several strategies, such as the elimination of potential

breeding sites, application of chemical insecticides, and implementation of biological control.

However, the application of chemical insecticides has become a common form of control

because as a control is highly efficient and can be implemented promptly [3]. The most used

insecticides in vector control have been the organophosphates temephos, used as a larvicide,

and malathion, used as an adulticide by ultra-low volume application (ULV). Pyrethroids were

introduced as adulticides in most Latin American countries in the 1990s [3]. In Mexico,

according to the Mexican official policy for vector surveillance and control [4], the adulticide

ULV formulation of permethrin, bioallethrin, and piperonyl butoxide (PBO) was used for

more than 10 consecutive years (1999–2010). In the following 3–4 years, the pyrethroid d-
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phenothrin + PBO was introduced. Subsequently, the use of organophospates returned in

2013, with chlorpyrifos and malathion being used as adulticides, while carbamates were rec-

ommended for indoor residual application [5].

The prolonged use of pyrethroid insecticides resulted in the evolution of resistance to them

in Ae. aegypti worldwide, including Mexico, where failures in dengue control strategies are

due in part to resistance [5]. Given that resistance to insecticides has been reported in popula-

tions of Ae. aegypti globally, the World Health Organization (WHO) recommends testing to

ensure an effective insecticide management program. Decisions based on evidence of the resis-

tance and/or susceptibility of Ae. aegypti will ensure a better selection of insecticides in vector

control programs [6].

Two mechanisms of resistance to insecticides have been identified: resistance due to the

enhanced metabolism of insecticides and insensitivity at the target site of the insecticides. Both

mechanisms are involved in resistance to pyrethroids [7]. Knockdown resistance (kdr) refers

to a phenomenon in which insects are not knocked down immediately after exposure to pyre-

throids. kdr is caused by specific mutations at the voltage-gated sodium channel (VGSC),

which is the target site for pyrethroids and DDT [8]. The amino acid substitutions V1016I [9],

F1534C [10], and V410L [11,12] frequently have been associated with resistance to pyre-

throids. Once these mutations are fixed in a population, reversion to susceptibility is difficult

to achieve [9]. Therefore, the detection and characterization of kdr mutations in mosquito

populations before resistance fixation occurs is essential for insecticide management strategies.

In Mexico, Chiapas is one of the states with the highest rate of endemic dengue cases. In

particular, the city of Tapachula reports the highest incidence of dengue in the state [13],

which is attributed to the proliferation of vectors that transmit emerging and re-emerging dis-

eases. Under the region’s tropical climate conditions, Ae. aegypti maintains high densities

throughout the year. Consequently, dengue and other arboviruses transmitted by this vector

have been prevalent in the region for a long time [14].

In the context of insecticide resistance management, we investigated the status of insecti-

cide resistance to five insecticides, including two pyrethroids (permethrin and deltamethrin),

two organophosphates (chlorpyrifos and malathion), and one carbamate (bendiocarb) and the

spatial distribution of such resistance in populations of Ae. aegypti throughout the city of Tapa-

chula. We expect that after 5 years of heavy use of organophosphates and the removal of pyre-

throids from vector control campaigns, pyrethroid resistance will be lower, whereas

organophosphate resistance will appear in focal points of the city. We tested 26 collection sites

located in the city of Tapachula. Each collection site consisted of nine blocks and these were

selected based on vehicle access for outdoor spraying. To minimize the effects of mosquito

migration by flight range (50–150 m), sites were located at least 250 m apart. The spatial corre-

lation between resistance and geographical distance was calculated for the 26 collection sites.

In addition, since Tapachula’s vector control program uses a quadrant subdivision for spraying

activities, we included a second analysis to test this source of variation by assigning sites to one

of the four cardinal geographical quadrants (NE, NW, SE, and SW).

Materials and methods

Collections

The study was conducted in the city of Tapachula, Chiapas, located in southern Mexico at 177

meters above sea level. The 26 collection sites located in four quadrants in the city: Northwest

(NW), Northeast (NE), Southwest (SW), and Southeast (SE) are shown in Table 1. The biologi-

cal material was collected from January to April 2018 using ovitraps of 1-L capacity [15].

Twelve ovitraps were installed at each collection site. Ovitraps were made by hand with
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transparent, inert, non-toxic polypropylene (PP) cups of a 1 L capacity, and painted black on

the outside following the guidelines for Entomological Surveillance with Ovitraps of the Mexi-

can Ministry of Health [15]. The interior of each ovitrap was lined with Whatman filter paper

(No. 1) and filled with water to ¾ capacity; the paper was replaced weekly up to five times. The

egg strips were transported to the insectary of the Regional Center for Research in Public

Health/National Institute of Public Health (CRISP/INSP). The egg strips were submerged in 4

L of water in plastic containers (40 cm x 30 cm x 15 cm). On the third and sixth day, the

hatched larvae were fed a diet of Harlan 5001 proteins, with 0.4 gr or 0.8 gr / 1.2 L for 1st-2nd

stadium and 3rd-4th stadium at the 3rd and 6th day, respectively.

Aedes aegypti mosquitoes were identified to species and placed in cages (30 cm3). Females

were bloodfed from rabbit (under accepted procedures by the Ethical Commission of the Insti-

tuto Nacional de Salud Pública) to obtain the F1 generation. Environmental conditions con-

sisted of a temperature of 27 ± 2˚C, 70–80% humidity, and a 12:12 hour photoperiod. We used

the insecticide-susceptible New Orleans reference strain of Ae. aegypti, provided by Dr. Wil-

liam Black and maintained in the CRISP/INSP insectary.

Table 1. Geographic location of 26 Aedes aegypti collection sites in Tapachula, Chiapas, Mexico, in 2018.

Quadrant Site Neighborhood Abbreviation Latitude Longitude

Northeast

NE-1 Colinas del Rey Col 14˚55’50.9” 92˚14’50.2"

NE-2 Galaxias Gal 14˚55’11.2” 92˚15”06.5"

NE-3 Barrio Nuevo Bar 14˚54’51.0” 92˚15’05.3”

NE-4 San Juan de los Lagos SJL 14˚54’26.3” 92˚15’13.4”

NE-5 Coapantes Coa 14˚54’23.0” 92˚14’57.1”

NE-6 Bonanza Bon 14˚54’02.8” 92˚14’31.7”

NE-7 Centro (Country-Club) CCC 14˚54‘22.7” 92˚15‘32.8”

Southeast

SE-1 Galeana Gal 14˚54’00.2” 92˚15’56.0”

SE-2 16 de Septiembre 16S 14˚53’44.0” 92˚15’42.1”

SE-3 Calcáneo Beltrán Cal 14˚53’28.0” 92˚15’43.4”

SE-4 Benito Juárez 1 BJ1 14˚53’21.8” 92˚16’04.1”

SE-5 Benito Juárez 2 BJ2 14˚53’11.7” 92˚16’10.3”

SE-6 Emiliano Zapata Zap 14˚53’02.1” 92˚16’14.2”

Southwest

SW-1 Raymundo Enrı́quez Ray 14˚52’01.4” 92˚18’48.8”

SW-2 Pobres Unidos Pob 14˚53’14.0” 92˚17’6.1”

SW-3 Palmeiras Pal 14˚53’22.1” 92˚18’06.4”

SW-4 Nuevo Milenio Nue 14˚53’24.8” 92˚17’59.4”

SW-5 Primavera Pri 14˚53’39.3” 92˚17’38.6”

SW-6 Democracia Dem 14˚54’23.7” 92˚16’33.5”

Northwest

NW-1 5 de febrero 5Fe 14˚55’33.7” 92˚15’22.4”

NW-2 Xochimilco 1 Xo1 14˚55’48.9” 92˚15’37.8”

NW-3 Xochimilco 2 Xo2 14˚56’02.2” 92˚15’29.9”

NW-4 Vergel 1 Ve1 14˚56’21.2” 92˚15’52.4”

NW-5 Vergel 2 Ve2 14˚56’32.9” 92˚15’52.4”

NW-6 Paraı́so Par 14˚56’35.2” 92˚15’19.7”

NW-7 Centro (Nva. España) CNE 14˚54‘35.0” 92˚15‘43.5”

https://doi.org/10.1371/journal.pntd.0009746.t001
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Bioassays

The F1 adults were exposed to the insecticides using a modified CDC bottle bioassay (Centers

for Disease Control) [16]. Sigma brand technical grade insecticides were used to determine the

lethal concentrations that killed 50% (LC50) at each site. The pyrethroids permethrin (Type I)

and deltamethrin (Type II), the organophosphates malathion and chlorpyrifos, and the carba-

mate bendiocarb were used to represent the toxicological groups used by vector control pro-

grams in Mexico.

To determine the LC50, we tested five to six insecticide concentrations, which caused 10 to

90% mortality, in four replicates. Each insecticide LC50 required approximately 500 mosqui-

toes. Table 2 shows the insecticide concentrations (μg/bottle) used to coat 250 ml Wheaton

bottles using acetone as the solvent. During the bioassay, 15 to 20 (2–3 day old) females were

gently aspirated into each bottle. The knockdown effect was recorded every 10 minutes for 1

hour. After 1 hour of exposure, the mosquitoes were transferred to plastic containers and

maintained in the insectary to observe the mortality at 24 hours. The LC50 of each insecticide

was also determined for the susceptible New Orleans reference strain (NO) using a different

set of insecticide concentrations (Table 2). Each insecticide LC50 was replicated at least five

times during a 7-month period. As control, a bottle impregnated only with acetone was used

each time a test with field or susceptible mosquitoes was run.

The LC50, 95% confidence intervals, slope, intercept, and p values were determined using

the binary logistic regression model with QCal software [17]. The null hypothesis (Ho)

assumes the observed mortality curve adjusts to a binary logistic regression model. Thus, we

expected p values higher than 0.05 to accept the Ho. When the Ho was rejected, the bioassay

was repeated.

To estimate the level of resistance among sites, a resistance ratio (RR) was calculated by

dividing the LC50 of the field sites by the LC50 of the NO strain. The RR criterion according to

Mazzarri and Georghiou [18] classifies high resistance as RR values greater than 10, moderate

resistance as RR values between 5 and 10, and low resistance as RR values less than 5.

Genotyping kdr-associated mutations

Genomic DNA was isolated from 50 F1 individual female mosquitoes from each collection site

following the method of Black and DuTeau [19]. The DNA was resuspended in TE buffer (10

mM Tris-HCl, 1 mM EDTA pH 8) and stored at -20˚C. The V1016I and F1534C mutations

were genotyped according to the protocols of Saavedra-Rodrı́guez et al. [9] and Yanola et al.

[10], respectively. The genotype and allelic frequencies were tested for Hardy-Weinberg (HW)

equilibrium. The null hypothesis is that equilibrium is present in the population, which was

verified with a chi-square test (df = 1 and p value > 0.05).

Table 2. Concentrations (μg/bottle) used to determine the LC50 of five different insecticides in the bottle bioassay for field Aedes aegypti and the susceptible refer-

ence strain.

Class Mode of action Insecticide Concentration in μg/bottle

Field colonies New Orleans reference

PYRs sodium channel activators Permethrin 10, 20, 40, 80, 160 0.8, 1.2, 2.4, 3.2, 6

Deltamethrin 1, 2, 4, 6, 8, 16 0.75, 0.1, 0.15,0.2, 0.4

OPs cholinesterase inhibitors Malathion 2, 3, 4, 6, 8 2, 3, 4, 6, 8

Chlorpyrifos 2, 4, 6, 8, 12 0.2, 0.4, 0.8, 1.6, 3.2

CARBs Bendiocarb 0.5, 0.75, 1, 1.5, 3 0.25, 0.3, 0.4, 0.6, 1.2

PYRs = pyrethroids, OPs = organophosphates, CARBs = carbamates.

https://doi.org/10.1371/journal.pntd.0009746.t002
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We tested the spatial variation of the LC50s between the quadrants in the city using a linear

model and ANOVA in R (car package). To test the hypothesis of resistance correlation with

space, we created Moran’s I correlograms as implemented in PASSaGE 2.0 [20]. Mosquitoes

from different collection sites were considered neighbors if the sites were within 250 meters of

each other. We expected that the LC50s or kdr frequencies would be associated with geographi-

cal distance (i.e., that closer neighbor sites would show similar resistance levels, compared to

those farther away). A second analysis to test the variation of the LC50s and kdr frequencies

between and within quadrants using a linear regression model and ANOVA in R (car package)

was conducted. Since the city is uniformly sprayed during a cycle, we did not expect variation

between or within quadrants. Correlation between kdr frequencies and LC50s for permethrin

and deltamethrin was tested using a Spearman test.

Results

The geographic distributions of the resistance ratios (RR) for each insecticide in the 26 sites in

Tapachula are shown in Fig 1. The LC50 and confidence intervals for each of the five insecti-

cides are shown in S1 Table. For the pyrethroids, we observed high levels of resistance wide-

spread across sites. Fig 2A shows the permethrin RRs across Tapachula. High RRs were

identified at 24 sites (RR from 11.4 to 43.1-fold). Only two sites—NE-3 and NW-2—showed

moderate RRs (5.3 and 5.9-fold, respectively). The variation in RRs among quadrants was not

significant (F = 0.56, df = 3, p value = 0.64). For deltamethrin, high RRs were determined in all

26 sites (10.6 to 101-fold). The variation among quadrants was not significant (F = 1.08, df = 3,

p value = 0.37). Except for SW, all quadrants had at least one site with RR higher than 90-fold

(Fig 2B).

The RRs for cholinesterase inhibitors (organophosphates and carbamates) are shown in Fig

3. For chlorpyrifos (Fig 3A), the RRs varied from low at 10 sites (0.68- to 4.9-fold) to moderate

at 15 sites (5.2- to 7.2-fold) to high at one site (10.2-fold). No significant difference in RRs was

found between quadrants (F = 1.08, df = 3, p value = 0.37). For malathion (Fig 3B), low resis-

tance (0.86- to 4.5-fold) was identified at all 26 sites. However, a significant difference was

observed between quadrants (F = 3.53, df = 3, p value = 0.03), with SE showing a mean RR of

2.6-fold (95% CI 1.9- to 3.2-fold). Resistance to bendiocarb was low (1.2- to 4.8-fold) at 19

sites, moderate (7.3- to 9.9-fold) at five sites, and high (10.3- to 11.2-fold) at two sites. No dif-

ference between quadrants was identified (F = 0.68. df = 3, p value = 0.57).

Kdr-associated mutations

Genotype frequencies at the V1016I and F1534C loci in the voltage-gated sodium channel

gene were determined in a sample of 45–50 individuals from each site (Table 3). The allele fre-

quencies of the resistant allele I1016 fluctuated from 0.16–0.71. The lowest allele frequency

(0.16) was scored for NE-3, whereas the highest frequency was from NW-6 (0.71). The remain-

ing sites ranged from 0.2 to 0.5. Except for NE-2 and SW-4, the genotype frequencies at the

V1016I loci were in HW equilibrium.

High allele frequencies of the resistant C1534 allele were determined at 22 of the 26 sites,

ranging from 0.85 to 1.0. Lower frequencies (0.38–0.41) were found in NE-3, NW-5, and NW-

7. While NE-7 was calculated with an intermediate value of 0.61. Most sites were in HW dis-

equilibrium due to fixation of the resistant allele. We conducted a Spearman correlation test

between the pyrethroid LC50s and the expected frequencies of resistant homozygous geno-

types. We found significant correlation coefficients among permethrin LC50s, I1016/I1016

homozygotes (S = 2588, rho = 0.53, p value = 0.002), and C1534/C1534 homozygotes

(S = 1966, rho = 0.515, p value = 0.004). Although it is known that C1534 shows protection
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only against permethrin (12), for deltamethrin a significant correlation was observed between

the LC50 and I1016/I1016 homozygotes (S = 2643, rho = 0.467, p value = 0.008) and the

C1534/C1534 homozygotes (S = 2945, rho = 0.507, p value = 0.002). However, the significance

for both insecticides disappeared when observations from the New Orleans reference strain

were removed.

To assess the correlation of LC50s with space, we generated Moran’s I correlograms for each

of the five insecticides (Fig 4). The analysis included all 26 collection sites. We did not detect a

discernable pattern in any of the tested insecticides. We expected a positive correlation

Fig 1. Spatial distribution of insecticide resistance to five compounds in Aedes aegypti collected in Tapachula. The number above each bar corresponds to the

resistance ratio (RR). The RR was calculated relative to the susceptible New Orleans reference strain. Map obtained from the National Institute of Statistics and

Geography (INEGI). Digital Map of Mexico. MDM: http://gaia.inegi.org.mx/mdm6.

https://doi.org/10.1371/journal.pntd.0009746.g001
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(Moran’s I statistically > 0) between nearby sites, then as the distance increased (between the

samples) the correlation would decrease, and later would turn negative (Moran’s I

statistically < 0). However, this was not observed. Although, few of the distance classes were

statistically different from zero (eg. bendiocarb at 3250 m, 3750 m, 4750 m, and 6250 m; mala-

thion at 1500 m; and deltamethrin at 3750 m, and 4250 m), a caveat in our analysis is the possi-

bility that there is autocorrelation at smaller distances than the ones we selected (x < 250 m).

Our experimental design was not geared towards the detection of spatial correlation at smaller

distances; there were a small number of samples below 250 meters.

Discussion

Efforts to control Ae. aegypti populations are hindered by widespread insecticide resistance

worldwide. Local insecticide resistance monitoring is necessary for the design of specific and

successful resistance management programs [21]. In Latin America, pyrethroids have been

used for adult mosquito control since the 1990s. The switch to pyrethroids was based on envi-

ronmental concerns that led to the use of less toxic classes of insecticides [22]. In Mexico, vec-

tor control programs implemented the use of permethrin in 1999 and continued their use

until 2010. Local selection pressure caused a rapid evolution of pyrethroid resistance in Ae.
aegypti across Mexico [9,23–27], resulting in policy modifications that recommended the use

of insecticides with different toxicological modes of action.

In Tapachula, vector control programs replaced the use of permethrin with a different Type

I pyrethroid (d-phenothrin + piperonyl butoxide) from 2010 to 2013. In 2013, pyrethroids

were replaced by the organophosphate chlorpyrifos, and in 2017, by malathion. This study

reveals the current status and response of local Ae. aegypti populations to these insecticide

shifts. Despite the switch to organophosphates in the last 5 years, we observed that high levels

of pyrethroid resistance remain widespread in Tapachula. An assumption in insecticide resis-

tance management is that insecticide resistance has negative fitness costs. Therefore, when

insecticide pressure is removed, populations are expected to reverse to susceptibility [28,29].

Currently, we are conducting a study to determine the degree of loss of resistance to pyre-

throids from 2016 to 2020 in this study area, which will demonstrate whether mosquito popu-

lations in Tapachula are undergoing a process of decreasing resistance that will take several

years. Another explanation is that pyrethroid resistance is maintained in Ae. aegypti popula-

tions by the domestic use of pyrethroids [30]. Surveys in Merida, Mexico, indicate that 85% of

households took action to kill pests, and 89% exclusively targeted mosquitoes. Interestingly

most of the aerosol spray cans contained pyrethroid insecticides [31].

Interestingly, RRs for deltamethrin—a Type II pyrethroid—were higher than permethrin

RRs across sites. Deltamethrin was authorized by CENAPRECE for indoor residual use in

2009 for control of the malaria vector, but its use was restricted to rural areas. Therefore, direct

selection pressure from the use of deltamethrin in public health is unlikely to be responsible

for the high RRs in Ae. aegypti from Tapachula. Although all pyrethroids act at the same target

site, the variability of resistance to their different types is attributed to different binding sites

for Type I and Type II pyrethroids at the voltage-gated sodium channel. Additionally, the pres-

ence of enzymes that have a greater affinity to metabolize specific molecules within the same

toxicological group might explain this variability [32].

Fig 2. Pyrethroids resistance ratios (RRs) of Aedes aegypti collected in 26 sites across Tapachula in 2018. A) Permethrin and B)

Deltamethrin. Dots represent the RR50 with 95% confidence intervals for each site. Horizontal lines indicate the threshold for low

resistance (< 5-fold), moderate resistance (5- to 10-fold) and high resistance (> 10-fold).

https://doi.org/10.1371/journal.pntd.0009746.g002
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Knockdown resistance (kdr) is a major mechanism of pyrethroid resistance in Ae. aegypti
from Mexico. In this study, we measured the frequency of this mechanism by molecular tests

that identify mutations that confer changes to amino acids in the VGSC. The allele frequencies

of the resistant allele I1016 ranged from 0.4 to 0.7, and for the resistant allele C1534, from 0.85

to 1.0 (except for three sites that had ~0.4). Historical data of kdr mutations indicated that

C1534 confers low level of resistance on its own, and that resistance increased dramatically

when I1016 evolved from the V1,016/C1,534 haplotype in field mosquito collected in different

Fig 3. Cholinesterase inhibitors resistance ratios (RRs) of Aedes aegypti collected in 26 sites across Tapachula in 2018. A)

Chlorpyrifos (organophosphate), B) Malathion (organophosphate), and C) Bendiocarb (carbamate). Dots represent the RR50 with 95%

confidence intervals for each site. Horizontal lines indicate the threshold for low resistance (< 5-fold), moderate resistance (5- to

10-fold) and high resistance (> 10-fold).

https://doi.org/10.1371/journal.pntd.0009746.g003

Table 3. Genotype counts and allele frequencies for two kdr-associated substitutions (V1016I and F1534C) from Aedes aegypti collected at 26 sites in Tapachula.

RR = homozygote resistant, RS = heterozygote, and SS = homozygote susceptible. � indicates a lack of Hardy-Weinberg equilibrium.

V1016I genotypes F1534C genotypes

Site Abv N I/I V/I V/V I1016 frequency C/C F/C F/F C1534 frequency

RR RS SS RR RS SS

NE-1 Col 48 4 23 21 0.32 47 1 0 0.99

NE-2 Gal 48 5 30 13 0.42� 39 8 1 0.90

NE-3 Bar 48 1 13 34 0.16 7 22 19 0.38

NE-4 SJL 48 6 22 20 0.35 47 1 0 0.99

NE-5 Coa 45 5 24 16 0.38 42 3 0 0.97

NE-6 Bon 48 8 22 18 0.4 43 5 0 0.95

NE-7 CCC 50 15 25 10 0.55 11 39 0 0.61�

Subtotal 335 44 159 132 0.37 236 79 20 0.82�

SE-1 Gal 48 12 28 8 0.54 42 6 0 0.94

SE-2 16S 48 5 29 14 0.4 48 0 0 1�

SE-3 Cal 48 7 25 16 0.41 46 2 0 0.98

SE-4 BJ1 48 4 28 16 0.38 46 2 0 0.98

SE-5 BJ2 48 11 25 12 0.49 47 1 0 0.99

SE-6 Zap 48 10 25 13 0.47 34 14 0 0.85

Subtotal 288 49 160 79 0.45 263 25 0 0.96

SW-1 Ray 48 5 28 15 0.39 48 0 0 1�

SW-2 Pob 48 14 21 13 0.51 47 1 0 0.99

SW-3 Pal 48 2 17 29 0.22 46 0 2 0.96�

SW-4 Nue 48 0 26 22 0.27� 48 0 0 1�

SW-5 Pri 48 8 22 18 0.39 47 1 0 0.99

SW-6 Dem 48 13 20 15 0.48 41 7 0 0.93

Subtotal 288 42 134 112 0.38 277 9 2 0.98�

NW-1 5Fe 48 9 22 17 0.42 48 0 0 1�

NW-2 Xo1 48 10 29 9 0.51 48 0 0 1�

NW-3 Xo2 48 1 21 26 0.24 48 0 0 1�

NW-4 Ve1 48 11 23 14 0.47 48 0 0 1�

NW-5 Ve2 50 8 17 25 0.33 2 37 11 0.41�

NW-6 Par 48 24 20 4 0.71 48 0 0 1�

NW-7 CNE 50 4 26 20 0.34 0 38 12 0.38�

Subtotal 340 67 158 115 0.43 242 75 23 0.82�

Total 1251 202 611 438 0.41 1018 188 45 0.89�

https://doi.org/10.1371/journal.pntd.0009746.t003
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places from Mexico [33]. Those results demonstrated that I1016 was unlikely to have evolved

independently, and that both mutations need coexist in the same mosquito in order to confer

higher levels of resistance. Moderate correlations were significant between the resistant allele

frequencies and the RRs for permethrin and deltamethrin only when including the New Orle-

ans datapoints. This significance might be explained by most of the allele frequencies being

distributed within a small range of variability.

This study was conducted after chlorpyrifos had been used for 5 years in outdoor spraying

by vector control programs. Our results provide evidence of the response of Ae. aegypti popu-

lations to chlorpyrifos pressure. Ten sites showed low RRs, 15 sites showed moderate resis-

tance, and one site was highly resistant. Interestingly, Ae. aegypti from all 26 sites were

susceptible or had low RRs to malathion, thereby indicating that resistance to chlorpyrifos

does not predict the lack of effectivity of malathion. Additionally, the RRs to bendiocarb were

variable: mosquitoes from 19 sites had low RRs, those from three were moderate, and those

from two were highly resistant. Only a few sites showed moderate to high resistance to both

chlorpyrifos and bendiocarb (NE-5, NW-6, and SE-4). The lack of cross-resistance between

organophosphates and carbamates suggests that the resistance mechanisms are not due to the

insensitivity of their target site (the acetylcholinesterase) [34] and, in fact, no mutations have

been found in ace-1 gene in Aedes aegypti [35].

A survey in Veracruz, Mexico, identified high RRs to chlorpyrifos in Cosoleacaque

(RR = 13.9), moderate RRs in Poza Rica (RR = 7.9), and low RRs in five sites in Veracruz [36].

By using a discriminating dose of 50 μg/bottle and 85 μg/bottle for 30 minutes, two additional

studies were able to identify chlorpyrifos resistance in Mexico [26,37]. Since neither of these

studies found a history of chlorpyrifos use in vector control programs, the resistance might be

explained by indirect exposure to chlorpyrifos through the extensive use of this insecticide to

control agricultural pests [36].

During vector control programs, the city of Tapachula is uniformly sprayed, using the same

insecticide, frequency and intensity. More yet, we selected sites based in their accessibility to

Fig 4. Moran’s I correlograms as implemented in PASSaGE 2.0 assessing the correlation of LC50s with space for permethrin (pyrethroid), deltamethrin

(pyrethroid), chlorpyrifos (organophosphate), malathion (organophosphate), and bendiocarb (carbamate). The analysis included 26 collection sites in Tapachula,

Chiapas, Mexico. Aedes aegypti mosquitoes from different collection sites were considered neighbors if the sites were within 250 meters of each other.

https://doi.org/10.1371/journal.pntd.0009746.g004
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spraying-vehicles. Assuming that no spatial heterogeneity in frequency and intensity of spray-

ing, we did not expect the high levels of variation in resistance profiles across the city. For

example, significant heterogeneity in the frequency of kdr haplotypes was detected in Ae.
aegypti collected between city blocks in a town of Yucatan, suggesting that selection for these

haplotypes occurs at a fine spatial scale (37). However, in contrast to our study, insecticide

application was highly variable in space and time, creating a mosaic of selection pressures. In

our study, some sources of heterogeneity could occur from mosquito migration from

untreated sites due to vehicle inaccessibility, including parks, cemeteries, steep and unpaved

streets. A second source of insecticide pressure is by use of household aerosol insecticides. For

example, in a previous study from Merida, Mexico approximately 87% of households used

commercially available pyrethroid products to control mosquitoes in their homes (31). Future

studies should include an assessment of this source of selection pressure in Tapachula.

The spatial variability in insecticide resistance observed across the 26 sites in Tapachula is

likely associated with the presence or appearance of “hot spots or dengue foci,” which contrib-

ute to the persistent transmission of the diseases and therefore to focal areas with greater spray

intervention [38]. In addition, the spatial variability of resistance highlights the importance of

evaluating resistance in multiple sites within a defined geographic area for the application of

appropriate vector control decisions. Although no geographical correlation/association/pat-

tern between resistance was found in Tapachula, more specific and finer environmental char-

acteristics must not be discarded in future studies. A previous study used mitochondrial ND4

haplotypes to determine gene flow patterns among 38 Ae. aegypti coastal collections in Mexico

[39]. Three genetic clusters were identified, the Northeast, Pacific, and Yucatan peninsula. For

all sites, genetic distances remained small below geographic distances of 90 km and became

large at distances >150 km. The Pacific cluster had the highest gene flow and diversity. A sec-

ond study in the Yucatan Peninsula showed high gene flow occurring across 27 Ae. aegypti col-

lection sites located up to 150 km of distance. Single nucleotide polymorphism (SNPs) at

eleven loci did not vary across sites, suggesting high levels of gene flow. In contrast, insecticide

resistance loci, including kdr alleles (I1016 and C1534) were highly variable across sites, indi-

cating that insecticide resistance offsets the homogenizing effects of gene flow [40]. In this

study, we assume complete gene flow among collection sites because: 1) Tapachula belongs to

the Pacific cluster, 2) Ae. aegypti is well established throughout the year and, 3) collection sites

are within 10 km of distance. However, this remains to be tested.

Conclusion

Despite more than 5 years having passed since the removal of pyrethroids from vector control

programs in Tapachula, high levels of pyrethroid resistance and kdr-associated alleles persist

in Ae. aegypti populations. Future resistance surveys will reveal if pyrethroid resistance is

maintained in mosquito populations. We observed that, after 5 years of chlorpyrifos use in vec-

tor control programs, more than 50% of the sites have moderate to high chlorpyrifos resistance

but complete susceptibility to malathion. Since malathion was introduced later in 2017, future

studies to evaluate the selection of malathion resistance in the field are needed. Two different

analyses were conducted 1) the spatial analysis included all 26 sites and, 2) the quadrant analy-

sis to identify operational sources of heterogeneity. The quadrant analysis doesn’t include a

geographical component and has limitations. Insecticide resistance varied spatially, most likely

as a consequence of the pattern of insecticide use combined with environmental factors. Based

on the results of our study, we suggest that both of the studied organophosphates and the car-

bamate remain viable options for use in the control strategy for this vector. The return to a

pyrethroid (at least permethrin and deltamethrin) for outdoor spraying is recommended when
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the levels of resistance have decreased to RR less than 10-fold and once mechanisms other

than kdr have been elucidated for pyrethroid resistance.
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GG = homozygote for Cys1534, resistant; TG = heterozygote Phe1534/Cys1534.

(XLSX)

Acknowledgments

The authors would like to thank Biol. Elsa Contreras, Geovanni Vázquez and Francisco Pozos

from the Programme of Vector Control in Tapachula for contributions in the field work.

Author Contributions

Conceptualization: Americo D. Rodriguez, R. Patricia Penilla-Navarro, William C. Black, IV.

Data curation: Francisco Solis-Santoyo, Alfredo Castillo-Vera, Alma D. Lopez-Solis, Karla

Saavedra-Rodriguez.

Formal analysis: Francisco Solis-Santoyo, Americo D. Rodriguez, Alma D. Lopez-Solis, Saul

Lozano, William C. Black, IV, Karla Saavedra-Rodriguez.

Funding acquisition: Americo D. Rodriguez, William C. Black, IV.

Investigation: Francisco Solis-Santoyo, Americo D. Rodriguez, R. Patricia Penilla-Navarro,

Daniel Sanchez, Alma D. Lopez-Solis, Saul Lozano, William C. Black, IV, Karla Saavedra-

Rodriguez.

Methodology: Francisco Solis-Santoyo, Americo D. Rodriguez, Daniel Sanchez, Alma D.

Lopez-Solis, Eduardo D. Vazquez-Lopez, Saul Lozano, Karla Saavedra-Rodriguez.

Project administration: Americo D. Rodriguez, Alma D. Lopez-Solis, William C. Black, IV,

Karla Saavedra-Rodriguez.

Software: Saul Lozano.

Supervision: Americo D. Rodriguez, R. Patricia Penilla-Navarro, Daniel Sanchez, Alfredo Cas-

tillo-Vera, Eduardo D. Vazquez-Lopez, Karla Saavedra-Rodriguez.

Validation: Americo D. Rodriguez, R. Patricia Penilla-Navarro, Alfredo Castillo-Vera, Alma

D. Lopez-Solis, Saul Lozano, Karla Saavedra-Rodriguez.

Visualization: Francisco Solis-Santoyo, Eduardo D. Vazquez-Lopez.

Writing – original draft: Francisco Solis-Santoyo.

PLOS NEGLECTED TROPICAL DISEASES Spatial variation of insecticide resistance in Aedes aegypti

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009746 September 27, 2021 14 / 17

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0009746.s001
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0009746.s002
https://doi.org/10.1371/journal.pntd.0009746


Writing – review & editing: Americo D. Rodriguez, R. Patricia Penilla-Navarro, Daniel San-

chez, Alfredo Castillo-Vera, Alma D. Lopez-Solis, Eduardo D. Vazquez-Lopez, Saul Lozano,

William C. Black, IV, Karla Saavedra-Rodriguez.

References
1. Amelia-Yap ZH, Chen CD, Sofian-Azirun M, Low VL. Pyrethroid resistance in the dengue vector Aedes

aegypti in Southeast Asia: present situation and prospects for management. Parasit Vectors. 2018; 11

(1):332. Available from: https://doi.org/10.1186/s13071-018-2899-0 PMID: 29866193

2. Roiz D, Wilson AL, Scott TW, Fonseca DM, Jourdain F, Muller P, et al. Integrated Aedes management

for the control of Aedes-borne diseases. PLoS Negl Trop Dis. 2018; 12: e0006845. Available from:

https://doi.org/10.1371/journal.pntd.0006845 PMID: 30521524

3. Bisset JA. Rodriguez MM, San Martı́n JL, Romero JE. Montoya R. Evaluación de la resistencia a insec-

ticidas de una cepa de Aedes aegypti de El Salvador. Rev. Panam. Salud Pública. 2009; 26:229–234.

Available from: https://iris.paho.org/bitstream/handle/10665.2/9778/07.pdf?sequence=1&isAllowed=y

4. Norma oficial mexicana NOM-032-SSA-2002, para la vigilancia epidemiológica, prevención y control
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