
insects

Review

Putative Drone Copulation Factors Regulating Honey
Bee (Apis mellifera) Queen Reproduction and Health:
A Review

Laura M. Brutscher 1,*, Boris Baer 2 and Elina L. Niño 1,*
1 Department of Entomology and Nematology, University of California, Davis, CA 95616, USA
2 Centre for Integrative Bee Research, Department of Entomology, University of California, Riverside,

CA 92521, USA; boris.bar@ucr.edu
* Correspondence: lbrutscher@ucdavis.edu (L.M.B.); elnino@ucdavis.edu (E.L.N.)

Received: 31 July 2018; Accepted: 28 November 2018; Published: 8 January 2019
����������
�������

Abstract: Honey bees are major pollinators of agricultural and non-agricultural landscapes. In recent
years, honey bee colonies have exhibited high annual losses and commercial beekeepers frequently
report poor queen quality and queen failure as the primary causes. Honey bee colonies are highly
vulnerable to compromised queen fertility, as each hive is headed by one reproductive queen. Queens
mate with multiple drones (male bees) during a single mating period early in life in which they obtain
enough spermatozoa to fertilize their eggs for the rest of their reproductive life span. The process of
mating initiates numerous behavioral, physiological, and molecular changes that shape the fertility
of the queen and her influence on the colony. For example, receipt of drone semen can modulate
queen ovary activation, pheromone production, and subsequent worker retinue behavior. In addition,
seminal fluid is a major component of semen that is primarily derived from drone accessory glands.
It also contains a complex mixture of proteins such as proteases, antioxidants, and antimicrobial
proteins. Seminal fluid proteins are essential for inducing post-mating changes in other insects such
as Drosophila and thus they may also impact honey bee queen fertility and health. However, the
specific molecules in semen and seminal fluid that initiate post-mating changes in queens are still
unidentified. Herein, we summarize the mating biology of honey bees, the changes queens undergo
during and after copulation, and the role of drone semen and seminal fluid in post-mating changes in
queens. We then review the effects of seminal fluid proteins in insect reproduction and potential roles
for honey bee drone seminal fluid proteins in queen reproduction and health. We finish by proposing
future avenues of research. Further elucidating the role of drone fertility in queen reproductive health
may contribute towards reducing colony losses and advancing honey bee stock development.
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1. Introduction/Background

Insect pollination of commercial crops is valued worldwide at $175 billion annually and
pollination services provided by commercially managed honey bee (Apis mellifera) colonies in the
United States alone are valued at $14.6 billion annually [1]. However, commercial beekeepers in the US
have reported up to 45% annual colony losses since 2006 [2–9]. Multiple factors have been implicated,
including agrochemical exposure, forage quality and availability, management practices, parasites,
pathogens, and queen reproductive failure [2–9]. However, factors specifically impacting queen
fertility and their subsequent roles in colony health have received limited attention. In fact, commercial
beekeepers have frequently reported queen failure and the ectoparasitic mite Varroa destructor as the
two most common reasons for colony losses in the past several years [4,10]. Queen failure occurs
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when the queen is no longer reproductively fit and she stops efficiently laying eggs or begins laying
unfertilized eggs that become drones (male bees) [11]. While queens can typically live 2–3 years,
commercial beekeepers have started replacing queens at least once per year due to poor queen quality
and frequent queen failure [12].

Honey bee colonies are composed of tens of thousands of sterile female workers, hundreds to
thousands of seasonal haploid male drones, and a single queen, the only member of the colony that can
lay both fertilized and unfertilized eggs [13]. Roughly a week after emerging, virgin queens undertake
one to a few nuptial flights over several days [13]. Honey bee queens are polyandrous and they mate
with multiple drones, which reach sexual maturity about two weeks after emergence [13–20]. During a
nuptial flight, the queen flies up to 3 km away from her hive to rendezvous with thousands of drones
at a drone congregation area (DCA), located 5–40 m above ground [20]. Older reports have determined
that queens mate with an average of 12 drones [13,21], but recent work found that queens can mate up
to 34–77 drones [22]. During copulation, the drone irreversibly everts its endophallus into the female,
transfers his semen into the oviduct, and drops to the ground to die [20,23]. Roughly 10% of each
male’s ejaculate is transferred into the queen’s oviduct [13,20,24,25].

Once a queen has terminated her final nuptial flight and returns to the hive, she starts to store
sperm in her spermatheca, a specialized organ found in many insects to facilitate spermatozoa storage,
and commences egg laying [20]. Only about 3% to 5% of ejaculated spermatozoa from each drone
is stored in the queen’s spermatheca for future egg fertilization [13,20,24,25]. A queen can store
approximately five to six million total spermatozoa in her spermatheca [14,20,26]. While it varies based
on number of stored spermatozoa, queens are highly efficient and fertilize each egg with a median of
two spermatozoa; queens that are inseminated with more semen tend to store more spermatozoa and,
in turn, fertilize eggs with more spermatozoa [27]. Honey bees are parthenogenic and queens lay both
fertilized eggs that hatch into diploid female workers or queens and unfertilized eggs that develop
into haploid drones [20]. The type of egg that is laid depends on the type of comb cells into which the
queen is laying—larger cells are reserved for drones while worker eggs are laid into smaller cells [20].
In addition to her role as the primary reproductive female in a colony, the queen also continuously
releases a blend of pheromones that passively maintain social cohesion of the hive and other aspects of
colony organization [13]. More comprehensive information on the mating biology of honey bees can
be found in Reference [20].

Honey bee queens are typically assessed for their quality based on reproductive longevity, potential
amount of viable brood they can produce, the number of the drones with which they have mated, and
the genetic diversity of her mates [28]. There are several traits that are associated with queen quality,
including overall weight [11,28–33], weight of the ovaries [34–36], weight of the spermatheca, and the
number of viable stored spermatozoa [11,28,29,37–40]. Queen quality is impacted by the age at which
larvae are nutritionally directed into the queen developmental pathway via continued feeding of royal
jelly [12,41–43]. Ideally 1st instar larvae are used, but older larvae may be reared into queens if the
mother queen is unexpectedly lost [12,41–43]. Queen quality is also affected by genetic background [29],
pesticide exposure [44–46], and parasite or pathogen load [28]. For a more comprehensive review
regarding the relationship of these factors to queen quality, see Reference [28].

Importantly, queen reproduction is also affected by mating conditions [47–53]. When a queen
mates with drones, she undergoes extensive behavioral, physiological, and molecular changes,
including reduced sexual receptivity, ovary development, ovulation, modulation in pheromone
production, and transcriptional regulation. These changes contribute to aspects of queen reproductive
quality with potential far-reaching implications [47,54–58]. Studies utilizing instrumental insemination
have determined that drone semen and seminal fluid, a major component of semen containing
numerous proteins and metabolites, initiates many of these post-mating changes in queens and likely
plays an important role in shaping queen quality [47–53]. However, the specific molecules in semen
and seminal fluid involved in initiating post-mating changes in queens have yet to be identified.
Hereinto, we review the currently available work investigating post-mating changes in queens and the
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different copulation factors that influence queen fertility. We then cover recent work identifying the
proteins in drone seminal fluid and their potential roles in queen quality and post-mating changes.
Furthermore, since queens are polyandrous, they are at greater risk of being infected with sexually
transmitted pathogens, such as Nosema spp. or Deformed Wing virus, which may threaten their
health and fitness [59–62]. Therefore, we also review research investigating diseases and antimicrobial
mechanisms of drone seminal fluid and its ability to reduce parasite transmission during mating.
We conclude by discussing future avenues of research.

2. Honey Bee Queen Post-Mating Changes

Mating only occurs for a short period early in a queen’s life, but it initiates multiple
post-mating changes that impact queen reproduction and potentially colony health and productivity
(Figure 1) [47,49,54–57].
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Figure 1. Stressors impacting queen and drone fertility and their downstream effects on queen quality
and post-mating changes and worker behavior and physiology. The small arrows inside of the boxes
indicate an increase or decrease of queen post-mating changes or subsequent worker behavioral or
physiological traits as observed during ideal natural conditions, but disruptions in male fertility may
subsequently affect the intensity and manifestation of these phenotypes. Multiple stressors impact
queen and drone fertility, including pathogens and parasites, such as Nosema spp. and Varroa destructor
mites, which affect drone mating flight behavior and seminal fluid proteome composition. These and
other drone mating factors, such as insemination volume and insemination fluid composition also
impact queen fertility, which subsequently affect the behavior and physiology of workers. In turn,
altered queen-worker interactions may affect colony level productivity and health.
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2.1. Behavioral Post-Mating Changes

Virgin queens are highly phototatic (attracted to light) and undertake one or more nuptial flights
before they cease performing mating flights [13]. Once the queen has taken her final mating flight
and has stored spermatozoa in her spermatheca, she permanently exhibits reduced phototaxis and
sexual receptivity. The queen remains in the hive to lay eggs, unless she participates in a swarming
event [13,63]. Swarming is initiated by the production of virgin queens, followed by the departure
of the resident queen with approximately half of the workers [13]. The remaining workers then
attend the new virgin queens [13]. Post-mating changes in the queen’s pheromones, a crucial mode
of chemical communication between honey bees, also alter the behavior of surrounding workers
in the hive [47–49,51,54,55,64,65]. For example, mated queens and older virgins are more readily
accepted and elicit a greater worker retinue response than virgin queens because older virgins and
mated queens produce a more complete suite of pheromones [47,55,66,67]. The retinue response is
defined by workers licking and antennating the queen to transmit her pheromones throughout the
colony [13]. Aged virgins eventually exhibit ovary activation and increased pheromone production,
but mated queens still produce more pheromones and are more attractive to workers than older
virgins [55,68]. In addition, if the workers are acclimated to the pheromone profile of one queen,
they may aggressively respond to queens with “foreign” pheromone profiles by surrounding and
balling them [69]. Pheromones produced from mated queens also inhibit ovary activation, egg-laying,
and queen cell building and rearing in workers [47–49,51,54,55,64,65]. Furthermore, the colonies
headed by mated queens collect more pollen then colonies headed by virgin queens [70]. This has
substantial consequences for long term colony survival because pollen collection is associated with
winter survival [71].

2.2. Physiological Post-Mating Changes

The ovaries of queens are essential for egg production and are approximately eight times bigger
in mated, egg-laying queens compared to virgin queens [72,73]. Mating also has a strong impact on
queen pheromone production [47–53]. The queen possesses several glands (i.e., mandibular, labial,
Dufour’s, tergal, and tarsal) that produce pheromones that are essential for maintaining colony social
organization and are substantially different from those of workers or males [69,74–83].

The best-studied glands are the queen’s mandibular glands which are large sacs attached to the
mandibles and generate queen mandibular pheromone (QMP), which is primarily composed of five
chemicals: (E)-9-keto-2-decenoic acid (9ODA), (R,E)-(−)- and (S,E)-(+)-9-hydroxy-2-decenoic
acid (9HDA), methyl p-hydroxybenzoate (HOB), and 4-hydroxy-3-methoxyphenylethanol
(HVA) [47–52,54,74,77]. Pheromones produced in the queen’s mandibular gland are largely
responsible for inducing the behaviors that other castes exhibit when headed by a mated queen: Worker
retinue response, reduced rearing of new queens, and reduced swarming [69,75,77–83]. It also slows
the ontogeny of foraging and regulates pollen collecting behavior [69,75,77–83]. In addition to having
effects on worker behavior, QMP also inhibits worker ovary activation, increases worker resistance to
starvation, and induces changes in worker brain and fat body gene expression [69,75,77–83]. Virgin
queens, six and 12 days after eclosion, exhibit low levels of HOB and moderate levels of 9HDA and
9ODA in their mandibular glands, whereas one-year-old mated queens exhibit increased levels of HOB,
HVA, 9ODA, and 9HDA [54,55,84]. Interestingly, the mandibular pheromone of queens that are newly
mated (two days post-natural mating) are more similar to that of virgin queens than queens one year
after mating [49]. Thus, pheromone production does not immediately change after mating [49].

The Dufour’s gland also elicits retinue responses in workers and may signal ovary activation
when produced in workers [85,86]. The Dufour’s gland is located near the dorsal vaginal wall and
its secretions are primarily composed of hydrocarbons (e.g., tricosane, pentacosanes, heptacosane)
and esters [65]. Mated queens typically produce greater relative amounts of hydrocarbons and lower
relative amounts of esters in the Dufour’s gland as compared to unmated queens [65]. The tergal
glands also elicit the retinue response, but they do not evoke as strong of a response compared to
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QMP [87]. After natural mating, tergal glands produce greater amounts of alkenes [88]. Less is known
about the composition and function of other pheromone-producing glands in queens.

2.3. Molecular Post-Mating Changes

After copulation, queens exhibit transcriptional and protein-level changes in the spermatheca,
ovaries, and brain [57,68,89–91]. Specifically, mated queens exhibit higher expression of antioxidant
genes in the spermatheca, which may aid in maintaining the viability of stored spermatozoa [91].
Previous studies have utilized microarray analyses to determine what genes are differentially
regulated in the brains and ovaries of virgin queens, recently-mated queens, and egg-laying queens
(Table 1) [57,68]. Ovary activation, ovary gene expression, and mandibular gland pheromone
composition are correlated with each other, indicating that these processes are linked temporally and/or
mechanistically [57,68]. Likewise, the pheromone composition and ovary gene expression profiles of
recently-mated queens are more similar to virgin queens than they are to laying queens [57,68].

In addition, brain gene expression and sexual receptivity are correlated [57,68]. Interestingly,
natural mating induces differential expression of vision, chemo-reception, metabolic, and
immune-related genes as compared to virgins, which may be linked with reduced queen phototaxis
and sexual receptivity after mating [92]. Similarly, carbon dioxide (CO2), a substance commonly used
to sedate queens during instrumental insemination and also happens to induce queen ovary activation,
causes effects similar to mating by inducing changes in gene expression in the brains of queens, such
as reduced expression of cognition and vision-related genes [92,93]. Reproductively activated bumble
bee queens (Bombus terrestris) and distantly related Drosophila melanogaster regulate expression of
vision-related genes involved in phototransduction after mating [94,95]. Thus, these processes are
likely to be conserved across insects.

Mating also alters the morphology of the brain [90] and results in differential protein levels of
neurotransmitters and their associated metabolites in the brain [89]. These changes may also be related
to the behavioral changes and ovary activation observed in queens. Specifically, mated queens exhibit
lower levels of the biogenic amine dopamine as compared to virgin queens [89]. Similarly, when
exposed to CO2, queens exhibit decreased brain gene expression of dopamine receptors and activation
of ovaries [96]. In contrast, workers also produce less dopamine in the brain, but ovary activation is
inhibited after CO2 exposure [97]. This suggests that dopamine plays important and contrasting roles
in regulating ovary activation in honey bees [96].

In summary, there is good empirical evidence that copulation alters numerous biological aspects
of queen reproduction. These now well-characterized post-mating changes are important and
quantifiable proxies that can be used for testing the effects of different copulation factors on queen
post-mating changes.

3. Copulation Factors Influencing Queen Post-Mating Changes and Reproduction

Methods for instrumentally inseminating honey bee queens were developed in the early 1900s [98]
and have been essential in understanding how specific aspects of mating affect queen quality and
post-mating changes [98]. Queens that are five to seven days old are used for instrumental insemination.
During insemination, they are anesthetized via exposure to a constant stream of CO2 [98]. Semen
is expelled into the queen’s median oviduct using a glass microsyringe [98]. Studies involving the
use of instrumental insemination have been used to disentangle how factors such as queen sexual
receptivity, pheromone composition, and worker retinue response are affected by several copulation
and instrumental insemination factors: CO2 exposure, physical manipulation of the vaginal tract,
insemination volume, and insemination fluid composition (Table 1). It is important to note that
exposure to CO2 alone or in combination with the physical manipulation that takes place during
insemination can induce ovary activation and cessation of mating flight attempts (Table 1) [93,99].
Therefore, it is important to keep this in mind, especially when drawing conclusions in future research.
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Table 1. Effects of different copulation factors on queen post-mating changes. Shown are outcomes of different treatments on queen post-mating changes, worker
behavior, and colony longevity. Carbon dioxide (CO2) indicates queens that were exposed to CO2 alone but were not instrumentally inseminated. Virgins are control
queens that were handled similarly to the other treatments, but were not inseminated or treated with any substance. CPM indicates queens that were both exposed to
CO2 and physically manipulated in the oviduct to simulate the physical aspects of instrumental insemination. SDI are queens that were inseminated with semen from
one drone (~1 µL) and MDI are queens that were inseminated with semen from multiple drones (~10 µL). The outcome of inseminating queens with 8 µL versus 1 µL
semen is also shown. Saline serves as an insemination and volume control for semen in order to test the effects of semen components on post-mating changes. Lastly,
seminal fluid is a component of semen that contains proteins (SFPs) that are likely important for inducing post-mating changes and Hayes solution is often used as a
semen and seminal fluid diluent. “Yes, ns” in the table indicates that results trended toward the respective phenotype, but they were not statistically significant.

Mating/Insemination Factors

Queen Post-Mating Outcomes CO2 vs. Virgins CPM vs.
Virgins

SDI and MDI
vs. Virgins SDI vs. MDI

Insemination
Volume: 8 µL

vs. 1 µL
Semen vs. Saline Seminal Fluid vs.

Hayes
Naturally Mated

vs. Virgin

Reduced sexual receptivity? Yes [99] Yes [93] unknown unknown Yes, ns [58] Yes, ns [55] Yes [93] Yes [13,63,68]

Greater ovary activation? Yes, ns [93];
Yes [96,99] Yes [93] unknown unknown Yes [58] Yes [55] unknown Yes [72,73,96]

Enhanced worker retinue
response? Yes [93] No [93] Yes [47,48] Yes [47,48] Yes [50,51] Yes [51]

Yes, ns [49] Yes [93] Yes [47,49,67]

Modulated Mandibular gland
pheromone production? Yes [93] Yes [93] Yes [47] Yes [47] Yes [51] Yes [51] unknown Yes [49,54,55,84]

Modulated Dufour’s gland
pheromone production? No [93] No [93] Yes [48] Yes [48] No Difference

[51] No Difference [51] unknown Yes [65]

# genes differentially expressed
in brain out of all transcripts that

were detected
234/9091 [93] 504/9091 [93] unknown unknown unknown 44/9850 [68] unknown 576/10,468 [57]

180/9850 [68]

# genes differentially expressed
in ovaries out of all transcripts

that were detected
unknown unknown unknown unknown unknown unknown unknown

217/7377 [57]
regulation of

biogenic amine
receptor genes [96]
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3.1. Effects of Drone Number and Insemination Volume on Post-Mating Changes

One of the earliest studies to suggest that insemination volume and/or drone mating number may
contribute to differences in post-mating changes studied queens inseminated with semen from different
number of drones [48]. Mandibular gland extracts [47] and Dufour’s gland extracts [48] from queens
inseminated with semen from one drone (Single Drone Inseminated or SDI) (~1 µL) are less effective at
stimulating worker retinue response than extracts from queens inseminated with semen from multiple
drones (10 drones, ~10 µL) (Table 1). Furthermore, SDI queens are not as efficient as naturally mated
queens in inhibiting worker ovary activation, likely due to differential modulation of mandibular
gland pheromones [52]. On that same note, colonies headed by multiple-drone inseminated queens
exhibit greater worker retinue response, build more comb, collect more pollen, store more honey,
produce more brood, rear more drones, and exhibit higher rates of overwintering survival as compared
to colonies headed by single-drone inseminated queens [47,100]. Furthermore, colonies headed by
multiple-drone inseminated queens exhibit greater pathogen resistance [101–103].

Other studies specifically examined the effect of insemination volume on queen fertility and
controlled for genetic diversity by inseminating all queens with semen from a single semen source
pooled from a large number of drones. Queens inseminated with 8 µL of semen or saline solution
tend to exhibit decreased sexual receptivity and increased ovary activation as compared to queens
inseminated with 1 µL of semen or saline and virgins (Table 1) [58]. Furthermore, colonies headed by
queens inseminated with lower volume tend to exhibit higher queen cell building/queen supersedure
rates [50]. Increased insemination volume (8 µL versus 1 µL) also results in greater retinue response
towards mandibular gland extracts [50,51], regardless of whether queens were inseminated with
semen or saline (Table 1). In contrast, volume does not seem to effect Dufour’s gland extract
composition, suggesting that activation of stretch receptors in the genital tract regulate mandibular
gland secretions, but not Dufour’s gland secretions (Table 1) [51]. There are possibly stretch receptors
in the queen’s median or lateral oviducts that expand during insemination and that are differentially
activated based on insemination volume [51], similar to a mechanism found in moths; mechanical
stimulation of the genital tract in the females of several moth species results in reduced production of
sex pheromone [104].

At the worker and colony scale, Dufour’s glands of workers in colonies headed by queens
inseminated with 8 µL of semen exhibited decreased proportions of esters, suggesting greater inhibition
of worker ovary activation via QMP [50]. Intriguingly, colonies headed by queens inseminated with the
higher volume exhibited higher overwintering mortality suggesting a potential trade-off between high
pheromone production and queen/colony health [50], something that warrants further investigation.

3.2. Effects of Insemination Fluid Composition on Post-Mating Changes

In order to tease apart the role of components within semen in post-mating changes, saline serves
as a good control when administered at the same volume. Most queens inseminated with semen or
saline cease mating flights while virgin queens and queens that had recently accomplished one mating
flight tend to remain sexually receptive [68]. While mandibular gland extracts of queens inseminated
with 1 µL or 8 µL semen elicit a greater retinue response as compared to queens inseminated with
saline solution of the same respective volumes, different insemination fluid composition does not affect
Dufour’s gland extract composition [51]. This indicates that semen has components (e.g., proteins or
metabolites) that initiate post-mating changes in queen mandibular gland secretions but not Dufour’s
gland secretions [51].

Insemination fluid composition (saline versus semen) also differentially affects brain and ovary
gene expression and has a greater impact on ovary gene expression than insemination volume, as
queens inseminated with either 1 µL or 8 µL of semen had more similar ovary expression profiles than
queens inseminated with saline of either volume [68]. However, insemination fluid composition does
not affect brain gene expression, since queens instrumentally inseminated with semen or saline have
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expression profiles that are most similar to each other two days post-insemination and both exhibit an
intermediate expression state between naturally-mated and virgin queens [68].

A recent study examined the role of seminal fluid, a component of semen, on queen visual
perception using queens that were sedated on ice lieu of using potentially confounding CO2 exposure
(Liberti et al. Baer, in review [105]). Queens inseminated with seminal fluid exhibit reduced brain
expression of genes involved in phototransduction, similar to naturally mated queens (Liberti et al.
Baer, in review [105]). They also start and finish mating flight attempts before control queens
inseminated with buffer (Liberti et al. Baer, in review [105]). Further, preliminary data also suggests
that drone seminal fluid, when injected in the queen abdominal cavity, reduces sexual receptivity and
affects QMP production; queens injected with seminal fluid make fewer attempts at mating flights
and tend to provoke higher worker retinue response compared to buffer-injected controls (Personal
Communication with Elina L. Niño [106]).

The aforementioned studies indicate that the processes involved in queen post-mating changes
are complex and are differentially affected by numerous factors such as insemination volume and
insemination fluid composition. Honey bee seminal fluid contains proteins that likely serve as key
drivers of seminal fluid-dependent post-mating changes in queens. Substantial work in Drosophila and
other insects has determined that female post-reproductive changes can be largely attributed to the
receipt of seminal fluid proteins rather than other mating components [107,108].

4. Seminal Fluid Proteins and Their Potential Roles in Queen Post-Mating Changes and Health

4.1. Seminal Fluid Functions in Drosophila and Other Insects

Male insect semen is composed of both spermatozoa cells and seminal fluid components [109–114].
Seminal fluid is a complex mixture of proteins and other small molecules, including peptides, sugars,
and lipids, and is primarily derived from the male accessory glands, but other structures such as the
ejaculatory bulb may contribute [110,115]. Mating results in fundamental changes in Drosophila females,
where mated females exhibit shorter lifespans, lower metabolism, decreased receptivity to mating,
increased oviposition rates, increased expression of immune-related genes, and overall differential gene
expression compared to virgin flies [107,115–125]. These post-mating changes are caused, in large part,
by the receipt of male accessory gland-derived seminal proteins during mating [126]. The influence of
seminal fluid and seminal fluid proteins (SFPs) on male and female fertility and behavior, spermatozoa
viability, and susceptibility to infection has been intensively studied for decades in Drosophila and
increasingly studied and supported in other insects, including mosquitos, crickets, ants, moths, and
beetles [14,107,108,115–117,119–141]. Insect SFPs typically encompass several different functional
classes including proteases, protease inhibitors, lectins, coagulants, cysteine-rich secretory proteins,
antioxidants, and antimicrobial proteins [107], which indicates conserved seminal fluid protein function
across different insect species. However, SFPs vary highly at the primary sequence level and/or relative
protein abundance and molecular mass, even when comparing sub-species or strains [107,142,143].
Research on Drosophila has identified specific proteins that reduce female sexual receptivity (i.e., sex
peptide), maintain spermatozoa viability (i.e., Acp29AB), promote uterine contractions (i.e., Acp36DE),
and ovulation (i.e., ovulin [144]). Interestingly, homologs of these specific proteins have not been
identified within the honey bee genome, underscoring the uniqueness of the honey bee mating system
and the need for specific investigation in this system.

4.2. Identification of Honey Bee Seminal Fluid Proteins and Their Potential Roles in Queen
Post-Mating Changes

To date, mass spectrometry has been used to identify the proteins in honey bee drone semen [111],
accessory gland-associated proteins [111], seminal fluid [110,145–148], and spermatozoa cell-associated
proteins [149]. Roughly 260 proteins have been identified in honey bee seminal fluid [148]. However,
relative abundances and post-translational modifications of seminal fluid proteins differ between
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different genetic lineages of bees, which might at least be partially driven by sexual selection [145].
Male honey bees and other social hymenopteran insects are under strong selective pressures to
produce high-quality ejaculates because queens only mate for a short period early in their lives and
need to acquire sufficient numbers of spermatozoa to fertilize eggs for the rest of their reproductive
lifespans [14,138,141,150–152]. Furthermore, seminal fluid influences spermatozoa competition, as the
seminal fluid from one male can incapacitate the spermatozoa of other competing males [138].

Honey bee SFPs encompass several different biological pathways, including reactive oxidative
species defense (e.g., superoxide dismutase 2) and metabolism (e.g., phosphoglycerate kinase),
suggesting their roles in protecting spermatozoa against oxidative damage and supporting
spermatozoa metabolism [110,148]. Indeed, whole seminal fluid maintains spermatozoa
longevity [137,153]. While there is some research exploring potential functions of seminal fluid, their
specific roles in initiating and maintaining queen post-mating changes have yet to be fully investigated.
In regards to honey bee SFPs with potential effects on queen post-mating changes, drone seminal
fluid also contains several odorant binding proteins and chemosensory protein 3 [110,148], which is
present in bee antennae and binds to fatty acids in order to influence behavior [40]. Male bumblebees
transfer fatty acids to queens, which results in reduced sexual receptivity [154–156]. Several odorant
binding proteins also likely aid in solubilization and release of pheromones [157]. Thus, the transfer of
chemosensory protein 3 and odorant binding/chemosensing proteins from honey bee drone seminal
fluid into queens may induce chemical changes in the brain that influence queen cessation of mating
flights and pheromone production/release [110]. However, this has not been tested empirically.

4.3. Roles of Honey Bee Seminal Fluid Proteins in Pathogen Defense

Several immune-related proteins are also found in honey bee seminal fluid, including chitinases,
Osiris 7, and heat shock proteins, which have been associated with immune defense against
pathogens [158–161]. Correspondingly, recent studies have determined that seminal fluid markedly
reduces spore viability of the fungal pathogen Nosema apis [147,148]. Both protein and non-protein
fractions of seminal fluid are able to reduce N. apis spore viability via two respective mechanisms [147].
Seminal fluid proteins induce germination-like rupture of the Nosema spore walls, whereas the
non-protein fraction of seminal fluid directly decreases spore viability without cell wall rupture
or spore germination [147]. When seminal fluid proteins are further separated into five fractions using
solid phase extraction, three protein fractions exhibit antimicrobial activity against N. apis spores,
which indicates there are multiple seminal fluid proteins with antifungal activity [147]. Components in
the non-protein fraction have not yet been characterized, but they may be interesting research targets
as potential mediators of queen post-mating changes.

It remains to be studied whether drone seminal fluid proteins also exhibit antibacterial or antiviral
activity, but the honey bee seminal fluid proteome includes several heat shock proteins, which are
important for antiviral immunity in Drosophila [162] and likely honey bees [158,159,161]. Queens
mate with multiple males and therefore have an increased risk of acquiring pathogens through
ejaculates [163]. Although they are ostensibly more resistant to pathogen infections as compared to
workers [164,165], several pathogens, including viruses and Nosema spp., have been detected in queens
(reviewed [28]). Viruses such as Deformed Wing virus can be transmitted to queens via instrumental
insemination with contaminated semen [60] and queens from healthy colonies taking mating flights in
areas containing colonies with high V. destructor mite infestation are more likely to be infected with
Deformed Wing virus than queens located in low-mite infested areas [61]. In addition, Deformed Wing
virus and Acute Bee Paralysis Virus have been detected in drone semen and endophalli [62,166,167].
Drones exhibiting high levels of Deformed Wing virus, >106 genome copies per endophallus, have
been detected in drone congregation areas (DCAs), so even highly infected drones are physically able
to travel to DCAs and potentially mate and infect queens [167]. In contrast, drones parasitized as
pupae by V. destructor mites, a major vector of Deformed Wing virus, exhibit decreased flight ability
and spermatozoa counts [168]. Most notably, spores of the widespread fungal pathogens N. apis
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and Nosema ceranae have also been detected in honey bee semen [59]. They are able to infect queens
if transferred during mating [59,169], even though they typically are transmitted via the fecal-oral
route [170]. Drones infected with N. ceranae exhibit altered flight patterns but are able to maintain
spermatozoa viability [171].

Drones infected by N. apis exhibit differential expression of 111 seminal fluid proteins, a large
proportion of which are involved in immunity and detoxification [148]. The antifungal activity of
seminal fluid collected from infected males is comparable to seminal fluid from healthy drones, except
in diluted samples, for which seminal fluid derived from infected drones has reduced antimicrobial
activity [148]. As Nosema infection alters pheromone production in queens [172], it would be relevant to
address if semen of drones infected with N. apis also causes differences in other reproductive changes in
queens. In addition, since viruses and V. destructor are prevalent throughout colonies and infect/infest
drones, it will be important to determine how they alter seminal fluid composition and subsequent
queen reproductive changes and health.

There is now solid evidence that seminal fluid proteins are key drivers of post-reproductive
changes in many species, and it is likely that honey bee drone seminal fluid proteins also influence
post-mating changes in queens [110,148]. Furthermore, proteomic studies suggest that many of the
proteins present in drone seminal fluid play key roles in spermatozoa maintenance, regulation of
queen pheromone production and behavior, and antimicrobial defense [110,137,147,148]. Of these
roles, the antimicrobial nature of drone seminal fluid/proteins has been the best studied thus far.

5. Conclusions and Future Directions

The queen is an important member of the honey bee colony and can be a major determinant of
colony health and productivity. Drones, too, are very important players as they can have a strong
impact on queen post-mating changes and subsequent colony health. Specifically, drone seminal fluid
modulates queen sexual receptivity, pheromone production and seminal fluid proteins are likely the key
drivers of these changes [105,106]. In order to further solidify the role of SFPs in queen post-reproductive
changes, additional studies involving the separation of proteins from the non-protein fraction of seminal
fluid and testing their effects on queen post-mating changes are forthcoming. Furthermore, specific
SFPs and their functions could be identified via fractionation of proteins (e.g., ion chromatography)
and testing their individual effects [147]. RNAi mediated gene knockdown [173] or CRISPR-Cas9 gene
knockout [174] of genes encoding SFPs in drones will also likely provide exciting and enlightening
paths towards a more holistic understanding of the functions of drone SFPs.

In addition, drone seminal fluid proteomes vary based on genetic lineage [145]. Based on these
differences, future investigations should seek to understand if protein-level differences in honey bee
seminal fluid composition due to genetic background (e.g., European versus Africanized bees) result in
differential queen post-mating changes and if queens from different genetic lineages exhibit differential
post-mating changes.

Furthermore, it is important to reiterate that honey bee seminal fluid is composed of both proteins
and unidentified non-protein components, which are likely peptides, lipids, and sugars [110,115].
In addition to having antimicrobial activity against N. apis [147], the non-protein fraction of seminal
fluid may also impact queen post-mating changes and reproduction. In two cricket species, Teleogryllus
commodus and Acheta domesticus, prostaglandins present in their seminal fluid are responsible for
reducing sexual receptivity and inducing oviposition in recipient females [175,176]. Prostaglandins are
important for honey bee immunity [175], but it is unknown if they are also present in drone seminal
fluid. Thus, more comprehensive studies, including metabolomics or peptidomics approaches, should
yield insights into the role of non-protein fractions of seminal fluid in queen health and reproduction.

Lastly, identifying the specific roles of SFPs in queen reproduction could have an important
impact on improving bee breeding practices in order to develop more resilient genetic honey bee
stock. For example, being able to manipulate the production of specific SFPs in drones could lead
to improved queen reproductive fitness particularly in breeder queens. Such selective breeding
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practices were utilized to develop V. destructor-resistant honey bees that exhibit higher expression of
proteins associated with V. destructor resistance [177,178]. Ultimately, improving and understanding
the underlying mechanisms of, and improving drone reproductive health has a great potential to
improve resultant queen and colony health and contribute towards reducing colony losses.
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