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Abstract: Diabetic retinopathy is the leading cause of blindness in the working-age population
worldwide. Although the cause of diabetic retinopathy is multifactorial, IL-17A is a prevalent
inflammatory cytokine involved in the promotion of diabetes-mediated retinal inflammation and the
progression of diabetic retinopathy. The primary source of IL-17A is Th17 cells, which are T helper
cells that have been differentiated by dendritic cells in a proinflammatory cytokine environment.
Aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can manipulate
dendritic cell maturation, halt the production of IL-6 (a proinflammatory cytokine), and suppress
Th17 cell differentiation. In the current study, we examined the efficacy of an AhR agonist, VAF347, as
a potential therapeutic for the onset of non-proliferative diabetic retinopathy in streptozotocin (STZ)-
induced diabetic C57BL/6 mice. We determined that diabetes-mediated leukostasis, oxidative stress,
and inflammation in the retina of STZ-diabetic mice were all significantly lower when treated with
the AhR agonist VAF347. Furthermore, when VAF347 was subcutaneously injected into STZ-diabetic
mice, retinal capillary degeneration was ameliorated, which is the hallmark of non-proliferative
diabetic retinopathy in this diabetes murine model. Collectively, these findings provide evidence
that the AhR agonist VAF347 could be a potentially novel therapeutic for non-proliferative diabetic
retinopathy.
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1. Introduction

With 463 million diabetics in the world, diabetes is one of the most prevalent non-
communicable diseases worldwide [1–3]. Previous studies have provided evidence that
diabetes mediates chronic, low-grade inflammation, which leads to vascular impairment in
the heart, kidney, and retina [4–6]. Inflammation is a physiological response to infection,
wherein cytokines such as Interleukin-17A (IL-17A) are produced at the mucosal site to
clear the host of extracellular pathogens. In immune competent individuals, after the
pathogen is cleared, only negligible levels of IL-17A are produced and inflammation
subsides [7,8]. However, in diabetes, IL-17A is constantly produced and inflammation does
not halt, which can lead to kidney failure, heart disease, or vision loss [4–6,9].

In the retina, these microvascular alterations can induce capillary non-perfusion and
the onset of diabetic retinopathy, which is the leading cause of blindness in the working-age
population worldwide [2,10]. Previously, we determined that diabetes induced IL-17A
production, which enhanced retinal inflammation, oxidative stress, and retinal capillary de-
generation in streptozotocin (STZ)-induced diabetic mice [11,12]. The most prevalent source
of IL-17A is CD4+ T helper-17 (Th17) cells, which are RORγt+ T cells that have been differ-
entiated by dendritic cells in a proinflammatory cytokine environment [13,14]. Recently,
when diabetes-mediated IL-17A production was ablated by therapeutically inhibiting
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RORγt, retinal capillary degeneration was ameliorated and the onset of non-proliferative
diabetic retinopathy was halted [15]. In our current study, we examined an aryl hydrocar-
bon receptor (AhR) agonist, VAF347, that can inhibit Th17 cell differentiation as another
potentially novel therapeutic for diabetic retinopathy.

Aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that can
be activated by aromatic hydrocarbons found in many different synthetic, dietary, and
environmental products [16]. When activated, AhR translocates to the nucleus and binds
to the dioxin- or xenobiotic-responsive element in the promoter site of monocytes and
manipulates dendritic cell maturation and T cell differentiation [16,17]. By selectively
expanding specific types of dendritic cells and regulating MHC-II expression during
antigen presentation, AhR can halt the production of pro-inflammatory cytokines, enhance
the proliferation of T regulatory (Treg) cells, and suppress Th17 cell differentiation [18,19].
Previous studies in other autoimmune disorders provide evidence that the AhR agonist
VAF347 inhibited the production of proinflammatory cytokines and IL-17A, as well as
suppressed Th17 cells while enhancing T regulatory (Treg) cell differentiation [20,21].
Taken together, we postulated that AhR agonist VAF347 will halt Th17 cell differentiation
and IL-17A production, which will ameliorate retinal inflammation, and halt the onset of
non-proliferative diabetic retinopathy in STZ-diabetic mice.

In this current study, we determined that when the AhR agonist VAF347 was therapeu-
tically administered to diabetic mice, Th17 cells and IL-17A production was ameliorated.
This significantly decreased leukostasis, oxidative stress, and retinal inflammation in STZ-
induced diabetic mice, halting capillary degeneration and early-stage non-proliferative
diabetic retinopathy. Taken together, these results suggest that VAF347 is a potentially
novel therapeutic for the onset and progression of non-proliferative diabetic retinopathy.

2. Results
2.1. Hyperglycemia in STZ-Induced Diabetic Mice

Diabetes-mediated hyperglycemia was sustained throughout a two-month (n = 30/group,
except +VAF347-ND (n = 10)) or an eight-month (n = 10/group) period in STZ-induced
diabetic C57BL/6 mice. Fasted (6 h) blood glucose levels were measured 17 days after
the last STZ-injection (day 22) to confirm diabetic conditions in untreated C57BL/6 mice,
whereas all diabetic mice had an average blood glucose level of 500 mg/dL or greater. Sera
were evaluated in both untreated (C57BL/6) and AhR agonist VAF347-treated (+VAF347)
non-diabetic (ND) and STZ-diabetic (DB) mice to quantify average blood glucose levels
through a glycated hemoglobin A1c (HbA1c) analysis at week 6 and 29 after diabetes was
confirmed (Table 1). Both the diabetic untreated and the diabetic VAF347-treated mice had
significantly higher A1c blood glucose levels than their non-diabetic controls at both 6- and
29-weeks post-diabetes. However, there was no significant difference amongst the A1c
blood glucose levels of the untreated and VAF347-treated diabetic C57BL/6 mice (Table 1).

Table 1. Glycated Hemoglobin A1c Data of Non-Diabetic (ND) and Diabetic (DB) Mice.

Group %HbA1c (Week 6) %HbA1c (Week 29)

C57BL/6-ND 5.2 ± 0.2 5.4 ± 0.4
C57BL/6-DB 11.5 ± 1.9 * 12.4 ± 2.3 *
+VAF347-ND 5.2 ± 0.3 5.2 ± 0.3
+VAF347-DB 11.4 ± 2.1 * 12.3 ± 1.5 *

Data are mean ± SD. * = p < 0.01 diabetic (DB) compared to non-diabetic (ND) per group.

2.2. Injections of AhR Agonist VAF347 Inhibit Diabetes-Mediated IL-6 and IL-17A Production,
and Systemically Ablates Th17 Cells in STZ-Diabetic Mice

Previously, it was determined that administering 30 mg/kg of a derivative of the
AhR agonist VAF347 (VAG539) inhibited dendritic cell maturation and IL-6 production,
while skewing T cell differentiation [21,22]. In this study, we administered 30 mg/kg of
VAF347 in 100 µL subcutaneous injections after diabetes was confirmed. To determine
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if this treatment regimen was sufficient to inhibit IL-6 and IL-17A production, sera were
collected from mice (n = 5) two and eight months after diabetes was confirmed, and the
levels of IL-6 and IL-17A were quantified by ELISA. Negligible levels of IL-6 (Figure 1A)
and no IL-17A (Figure 1B) was detected in the sera of non-diabetic mice (white) at both
time points. However, at both two and eight months, ~140 pg/mL of IL-6 was detected
in the sera of untreated STZ-diabetic mice (black), which was significantly decreased to
negligible levels in the VAF347-treated STZ-diabetic (grey) mice (Figure 1A). Furthermore,
~175 pg/mL of IL-17A (Figure 1B) was detected in the sera of untreated diabetic mice
(black), which was ablated in the VAF347-treated diabetic mice (grey).
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diabetic mice. The adhesion of leukocytes to the capillary endothelium can lead to blood–
retina barrier (BRB) breakdown, followed by vascular leakage, capillary non-perfusion, 
and the onset of non-proliferative diabetic retinopathy [23]. To determine if the AhR ago-
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Figure 1. Levels of IL-6 and IL-17A in sera, and IL-17A in CD4+ T cells of STZ-diabetic mice. ELISA quantification of
IL-6 (A) and IL-17A (B) in sera collected from non-diabetic (white, n = 5), VAF347-treated STZ-diabetic (grey, n = 5), and
untreated STZ-diabetic (black, n = 5) C57BL/6 mice; two and eight months after diabetes was confirmed. (C) Quantification
of IL-17A in protein lysates of CD4+ T cells isolated from spleens of non-diabetic (white), VAF347-treated STZ-diabetic
(grey), and untreated STZ-diabetic (black) C57BL/6 mice two and eight months after diabetes was confirmed. * = p < 0.01
per two-way ANOVA and unpaired Student’s t-test. ND = not detected. Data are representative of two separate experiments
with similar results.

To ascertain if the VAF347 therapeutic regimen was sufficient to ameliorate diabetes-
mediated Th17 cell differentiation, spleens were collected from non-diabetic, diabetic,
and VAF347-treated diabetic mice two and eight months after diabetes was confirmed
(n = 3/group per time point), CD4+ T cells were isolated by negative selection columns, and
the levels of IL-17A in T cell lysates was quantified by ELISA analysis. As shown in Figure
1C, no IL-17A was detected in the T cells of non-diabetic mice (white), yet ~150 pg/mL of IL-
17A was detected in the untreated diabetic (black) which was ameliorated to undetectable
levels of IL-17A in the T cells of the diabetic mice treated with VAF347 (grey). Taken
together, these results suggest the VAF347 treatment regimen is sufficient to halt diabetes-
mediated IL-17A and Th17 cell differentiation.

2.3. AhR Agonist VAF347 Treatment Significantly Decreases Leukostasis in STZ-Diabetic Mice

Leukocytes adhere to the vasculature wall (referred as leukostasis) in the retinas of
diabetic mice. The adhesion of leukocytes to the capillary endothelium can lead to blood–
retina barrier (BRB) breakdown, followed by vascular leakage, capillary non-perfusion,
and the onset of non-proliferative diabetic retinopathy [23]. To determine if the AhR
agonist VAF347 is capable of inhibiting leukostasis, FITC-stained adherent cells in flat
mounts of retinas from non-diabetic, diabetic, and VAF347-treated diabetic mice were
manually quantified (n = 3/group). Red arrows highlight adherent leukocytes in the retinal
vasculature of non-diabetic, untreated STZ-diabetic, and VAF347-treated STZ-diabetic
mice (upper quadrant, Figure 2A). Each representative image in the lower quadrant of
Figure 2A is a magnification of a leukocyte adhered to the vessel wall in the retina. As
shown in Figure 2A, there were very few leukocytes adhered to the vessel walls in the
retina of non-diabetic mice, and a significantly higher number of adherent leukocytes in
the vessels of the retinas of untreated STZ-diabetic mice (Figure 2A,B). Yet, leukostasis was
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significantly decreased in the retinas of diabetic mice that received the VAF347 treatment
when compared to the untreated STZ-diabetic mice (Figure 2B). Although leukostasis was
slightly higher in the retinal vasculature of the VAF347-treated diabetic mice than the
non-diabetic mice, this was not a statistically significant increase. These results suggest
that the AhR agonist VAF347 is sufficient to significantly decrease diabetes-mediated
leukostasis, which can lead to capillary non-perfusion and the onset of non-proliferative
diabetic retinopathy.
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to the retinal vasculature in all mice (n = 3/group). Scale bars = 500 µm (upper quadrant) and 50 µm (lower quadrant) are
displayed as a visual indicator of the size of the representative image. * = p < 0.01; p-value was first equated by two-way
ANOVA and then an unpaired t-test with Tukey’s post-hoc analysis.

2.4. VAF347 Treatment Significantly Decreases Oxidative Stress and Retinal Inflammation in
STZ-Diabetic Mice

To test the efficacy of the AhR agonist VAF347 against retinal oxidative stress during
diabetes, reactive oxygen species (ROS) was quantified two months after diabetic conditions
were confirmed in STZ-diabetic mice. Levels of ROS were detected using lucigenin in the
retinas of non-diabetic (white circles), VAF347-treated diabetic (grey squares), and untreated
diabetic (black squares) C57BL/6 mice (n = 5/group). ROS was significantly increased in
the retinas of untreated diabetic mice when compared to non-diabetic mice, which was
significantly lowered when the diabetic mice were treated with VAF347 (Figure 3A). There
was no significant difference in the levels of ROS in the retinas of diabetic mice treated with
the AhR agonist VAF347 and the non-diabetic mice (Figure 3A).

Vascular endothelial growth factor (VEGF) is one of the most prevalent proinflam-
matory proteins induced by diabetic hyperglycemia and plays a pivotal role in diabetes-
mediated vascular permeability, leakage, and proliferation in the retina [24]. Likewise,
IL-17A, IL-6, and TNF-α are the primary cytokines involved in retinal inflammation, retinal
vascular impairment, and the progression of diabetic retinopathy [11,25]. To evaluate the
efficacy of AhR agonist VAF347 to inhibit retinal inflammation, retinal protein lysates were
analyzed by ELISA. Retinas were collected and protein lysates isolated from non-diabetic
(white), diabetic (black), and VAF347-treated diabetic (grey) C57BL/6 mice (n = three sepa-
rate samples of three pooled retinas/group); two months after diabetic conditions were
confirmed. Levels of VEGF, IL-17A, IL-6, and TNF-α were quantified by ELISA analysis. As
shown in Figure 3B–E, no IL-17A or IL-6, and only negligible levels of TNF-α were detected
in the retinas of non-diabetic mice. Approximately 20 pg/mL of VEGF was detected in
the retinas of non-diabetic mice (Figure 3B). Conversely, ~135 pg/mL of VEGF, IL-17A,
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and TNF-α and ~40 pg/mL of IL-6 were detected in the retinas of untreated STZ-diabetic
mice (Figure 3B–E). However, all inflammatory proteins were significantly decreased in
the retinas of the VAF347-treated diabetic mice, whereas no IL-17A or IL-6 were detected
(Figure 3C,D), and only ~20 pg/mL of VEGF (Figure 3B) and TNF-α (Figure 3E) were
detected in the protein lysates of retinas. Collectively, this provides evidence that VAF347
can sufficiently halt diabetes-mediated retinal inflammation and oxidative stress in the
retina, which is the precursor to diabetic retinopathy.
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pillary beds of retinas (n = 5) from non-diabetic, VAF347-treated STZ-diabetic, and un-
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Figure 3. Oxidative stress and retinal inflammation in STZ-diabetic mice. (A) Quantification of
reactive oxygen species (ROS) in the retinas of non-diabetic (white circles), VAF347-treated STZ-
diabetic (grey squares), and STZ-diabetic (black squares) C57BL/6 mice; each data point represents an
individual retina (n = 5/group). ELISA quantifications of VEGF (B), IL-17A (C), IL-6 (D), and TNF-α
(E) in retinas (n = three samples of three pooled retinas/group) of non-diabetic (white), STZ-diabetic
VAF347-treated (grey), and STZ-diabetic (black) C57BL/6 mice. ROS and inflammatory protein
analysis were performed two months after diabetic conditions were confirmed. ND = not detected.
* = p < 0.01 wherein p-value was first equated by two-way ANOVA analysis and then unpaired
Student’s t-test. Data are representative of two separate experiments with similar results.

2.5. VAF347 Treatment in STZ-Diabetic Mice Halts Retinal Capillary Degeneration

In the early stages of diabetic retinopathy and in this eight-month murine model,
retinal endothelial cells die, causing acellular and degenerative capillaries. This is the
first clinical sign of diabetic retinopathy [26,27]. To determine if the AhR agonist VAF347
treatment is sufficient to halt capillary degeneration in the diabetic retina, we isolated
the capillary beds of retinas (n = 5) from non-diabetic, VAF347-treated STZ-diabetic, and
untreated STZ-diabetic C57BL/6 mice, eight months after diabetes was confirmed. All
acellular capillaries (representative examples are highlighted by red arrows in Figure 4A)
were manually quantified. The number of acellular capillaries in the retinas of untreated
STZ-diabetic mice was significantly higher than in non-diabetic C57BL/6 mice (Figure 4B).
However, the number of acellular capillaries in the retinas of STZ-diabetic mice receiving
VAF347 therapeutics was significantly decreased and similar to that of non-diabetic mice
(Figure 4B). This indicates that VAF347 is sufficient to halt diabetes-mediated retinal
endothelial cell death and capillary degeneration, which is a clinically relevant hallmark of
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non-proliferative diabetic retinopathy. Hence, these results suggest that the AhR agonist
VAF347 would be a good therapeutic candidate for non-proliferative diabetic retinopathy.
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3. Discussion

Inflammation is one of the leading causes of all diabetic complications, including
diabetic retinopathy [28]. Hyperglycemic spikes continuously occur in diabetics that
induce low-grade inflammation, which initiates leukostasis and asymptomatic alterations
in the retinal microvasculature [25]. This leads to retinal inflammation, oxidative stress,
and blood–retina barrier breakdown. Chronic retinal inflammation induces capillary
degeneration and non-perfusion, as well as vascular permeability and leakage, which are
the first clinically detectable signs of non-proliferative diabetic retinopathy. This vascular
impairment initiates angiogenic signaling, which induces neovascularization in the retina,
proliferative diabetic retinopathy, and vision loss [29–32]. Although laser treatments,
steroids, and anti-angiogenic VEGF inhibitors have minimized vision loss, all of these
therapeutics are administered in diabetics with late-stage proliferative diabetic retinopathy
or diabetic macular edema. Currently, therapeutics for early-stage non-proliferative diabetic
retinopathy is very limited. Nevertheless, our current study provides strong evidence
that the AhR agonist-VA347 could be a good therapeutic candidate for early-stage non-
proliferative diabetic retinopathy.

The cause of diabetic retinopathy is multifactorial, with many studies providing
evidence that multiple proinflammatory proteins play a pivotal role in the progression
and pathogenesis of diabetic retinopathy [11,12,24,25,33]. In our current findings, we
discovered that the AhR agonist VAF347 not only inhibited diabetes-mediated VEGF and
retinal inflammation, but also systemically ablated hyperglycemic induced IL-6 production.
Previous studies provide evidence that IL-6 plays a role in the onset and progression
of diabetic retinopathy. In both animal and human studies, IL-6 has been linked to an
increased production of reactive oxygen species [34], retinal endothelial cell death [34,35],
vascular permeability [35], and choroidal neovascularization [36]. In our current studies,
we discovered that VAF347 significantly decreased reactive oxygen species and retinal
endothelial cell death (acellular capillaries detected in Figure 4). It is feasible to suggest
that the significant decreases in these retinal pathologies may be partially due to VAF347
inhibiting IL-6 production.

Alternatively, the therapeutic impact of the AhR agonist VAF347 may be due to its
inhibitory effect on Th17 cell differentiation and IL-17A production. AhR plays a critical
role in Th17, Th22, and Treg differentiation [18,19]. The AhR agonist-VA347 inhibits
the differentiation of monocytes to CD86 and HLA-DR-expressing dendritic cells, which
are relevant in Th17 cell differentiation [19]. This inhibitory activity can halt Th17 cell



Int. J. Mol. Sci. 2021, 22, 4335 7 of 11

differentiation and IL-17A production. In our previous studies, we determined that Th17
cells adhered to the retinal vasculature in diabetic mice, which led to retinal inflammation,
vascular leakage, and capillary degeneration [11,12]. In this current study, we discovered
that leukostasis was significantly decreased in the retinal vasculature of diabetic mice
treated with VAF347. Additionally, retinal inflammation and capillary degeneration were
ameliorated in the diabetic mice that received VAF347 treatment. Collectively, these data
suggest that the VAF347 inhibitory impact on both Th17 cell differentiation and IL-17A
production played a pivotal role in this potential therapeutic, negating the onset of diabetic
retinopathy.

The most eminent finding in this study was the therapeutic impact of VAF347 on
the onset of non-proliferative diabetic retinopathy. However, it is also notable that this
study further defines the role of Th17 cells in the pathogenesis of diabetic retinopathy.
Previous studies provide evidence that diabetes mediates Muller glia to produce IL-17A,
which plays a role in the onset and progression of diabetic retinopathy [37]. Until this
study, the exact role of Th17 cells and IL-17-producing Muller glia was unclear. Since
AhR is not expressed in Muller glia [38], and Muller glia are not differentiated by AhR-
expressing dendritic cells, the AhR agonist VAF347 should only impact Th17 cells [16].
Hence, the retinal pathology that was ameliorated by VAF347 is the Th17-dependent retinal
pathology. Future mechanistic studies need to be performed to fully delineate the role of
Th17 cells in the onset and progression of diabetic retinopathy, which goes beyond the
scope of this study. However, our current findings suggest that Th17 cells are the primary
source of diabetes-mediated IL-17A, which enhance retinal pathology and the onset of
non-proliferative diabetic retinopathy.

IL-17A and Th17 cells have been previously identified as pivotal components in the in-
duction of autoimmune type I diabetes [39], initiation of obesity-driven type II diabetes and
insulin resistance [40], and the onset of multiple diabetic complications [4,5,12]. However,
in this STZ-induced diabetes model, we did not detect any difference in hyperglycemia or
body weight after the mice received VAF347 treatment. This is probably due to the limiting
parameters of this diabetes murine model, wherein the pancreatic beta cells are perma-
nently damaged by the streptozotocin without the ability to recover metabolic function.
The STZ-diabetes murine model is optimal for diabetic retinopathy studies because retinal
pathogenesis progresses to retinal capillary degeneration, which is a clinically relevant
hallmark of non-proliferative diabetic retinopathy. Yet, to further examine the therapeutic
impact of VAF347 in the onset and progression of diabetes and hyperglycemia, another
diabetes model would have to be used in future studies. Hence, it is still feasible that
VAF347 could be used as a therapeutic for both diabetes and diabetic complications.

Since there is an FDA approved anti-IL-17A drug available, it is possible that this drug
could be used to halt the progression of diabetes and its complications. However, anti-IL-
17A is a monoclonal antibody that is too large to cross the blood–retina barrier. If anti-IL-
17A was administered systemically, it could potentially halt the systemic progression of
diabetes and some of its complications. However, since it cannot cross the blood–retina
barrier, it would not provide any therapeutic impact for diabetic retinopathy. Alternatively,
anti-IL-17A could be administered by intravitreal injections, but this would only provide
treatment for retinal pathogenesis and diabetic retinopathy. Hence, a small molecule
therapeutic that could be administered systemically, which could cross the blood–retina
barrier and provide treatment for the retina as well as other organs impacted by diabetes
would be the optimal therapeutic for diabetes and its complications. We suggest that these
findings provide evidence that the AhR agonist VAF347 is capable of crossing the blood–
retina barrier and can systemically ablate pathogenic Th17 cells and IL-17A. Accordingly,
we propose that the AhR agonist VAF347 would be a good therapeutic candidate for
diabetes and its complications, especially non-proliferative diabetic retinopathy.
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4. Materials and Methods
4.1. Streptozotocin (STZ)-Induced Diabetic Mice

All experimental procedures were approved by CWRU IACUC (2016-0025 first ap-
proved on 2/13/2016) and LSCVAMC ACORP (16-012-MS-19-002-C first approved on
3/1/2016). Animals were housed under SPF conditions at Case Western Reserve University
Animal Resource Center Health Sciences Animal Facility according to NIH guidelines.
Male C57BL/6 mice aged 8 to 10 weeks were obtained from Jackson Laboratories (Bar
Harbor, ME, USA). Diabetes was induced over five consecutive days with intraperitoneal
injections of streptozotocin (STZ) at 60 mg/kg body weight. Diabetes was defined by 6-h,
fasted-blood-glucose concentrations greater than 275 mg/dL, which was verified using
glucose-dehydrogenase-based strips 17 days after the last STZ injection (day 22). Hyper-
glycemia was quantified by hemoglobin A1c levels using the Crystal Chem Mouse A1c kit
at six and 29 weeks after diabetes was confirmed. Subcutaneous insulin (Eli Lilly NPH)
was administered as needed (0 to 0.2 U, one to three times per week) to maintain body
weight and prevent catabolism. Retinal inflammation, oxidative stress, and leukostasis
analyses were performed at a two-month diabetic time point, while capillary degeneration
analyses were performed at an eight-month diabetic time point. As previously described,
these durations are optimal for these analyses in this murine model [23,26].

Briefly, the research design of this study was as follows: 30 mice per group (non-
diabetic, VAF347-treated diabetic, and untreated diabetic mice), and 10 non-diabetic
VAF347-treated (controls for VAF347 treatment toxicity) totaling 100 mice were used in
this study; all HbA1c scores are shown in Table 1. All 10 non-diabetic VAF347-treated mice
were euthanized eight months after diabetes was confirmed for toxicity examination. Non-
lethal blood collections of five mice per group were performed two and eight months after
diabetes was confirmed for sera analysis of IL-6 and IL-17A. Two months after diabetes
was confirmed, 20 mice/group (n = 60 mice total) were euthanized and used to analyze:
the number of T helper cells in the spleen (n = 3 mice/group), the number of adherent
leukocytes in the retinal vasculature (n = 3 mice/group), the level of oxidative stress in the
retina (n = 5 mice/group), and the level of VEGF, IL-17A, IL-6, and TNF-α in the retina
(n = 9 mice/group). Eight months after diabetes was confirmed, 10 mice/group (n = 30
mice total) were euthanized and used to analyze: the number of T helper cells in the spleen
(n = 3 mice/group), the number of acellular capillaries in the retinal vasculature (n = 5
mice/group), and toxicity comparisons (n = 2 mice/group).

4.2. AhR Agonist VAF347 Treatment

VAF347((4-(3-Chloro-phenyl)-pyrimidin-2-yl)-(4-trifluoromethyl-phenyl)-amine) was
purchased from Calbiochem. VAF347 is a cell-permeable, small-molecule agonist of the
aryl hydrocarbon receptor (AhR). Directly targeting AhR binding, VAF347 controls the
biological activity of AhR by interrupting signaling, while inhibiting dendritic cell matura-
tion [20,21]. VAG539 is a water-soluble derivative of VAF347. In murine models of diabetes
and asthma, orally administering 30 mg/kg of VAG539 inhibited dendritic cell maturation
and proinflammatory cytokine production that would halt Th17 cell differentiation [21,22];
hence, we used 30 mg/kg of VAF347 in this injectable treatment regimen. Lyophilized
VAF347 was suspended in DMSO and diluted in sterile saline to 30 mg/kg. Diabetic mice
received weekly subcutaneous injections beginning one week after diabetes was confirmed
(day 29). Mice analyzed at the two-month time point received 7 injections, while mice ana-
lyzed at the eight-month time point received 28 injections. Toxicity parameters of VAF347
in this model were defined by weekly measures of body weight, an assessment of body
condition, and an analysis of lethargy and respiratory distress, as well as mortality and
autopsy organ appearance. No toxicity was observed in any of the VAF347-treated mice.

4.3. CD4+ T Cell Isolation and IL-17A ELISA Analysis

Splenocytes were collected as previously described [41]. Briefly, individual spleens
(n = 3 spleens/group) were removed, and a single cell suspension was generated and
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incubated in erythrocyte lysis buffer (eBioscience; ThermoFisher Scientific Waltham, MA,
USA) for 5 min at 37 ◦C. CD4+ T cells were then isolated from the splenocytes by negative
selection, using mouse CD4+ T cell enrichment columns (R&D Systems Minneapolis,
MN, USA). Isolated T cells were >95% CD4+ whereas positivity was confirmed by flow
cytometry analysis. After CD4+ positivity was confirmed, protein lysates were collected
and analyzed using a two-site mIL-17A ELISA according to the manufacturer’s instructions
(R&D Bioscience Minneapolis, MN, USA).

4.4. ELISA Analysis of Sera and Retina Protein

Retina protein lysates were collected and pooled from three retinas (n = 3 pooled
samples of nine mice/group). Alternatively, sera were collected from five different mice
for individual sample analysis (n = 5 samples/group). All retina lysate and sera samples
were analyzed using a two-site mIL-6, mIL-17A, mTNF-a, and mVEGF ELISA according to
the manufacturer’s directions (R&D Bioscience).

4.5. Staining of Retinal Vasculature for Leukostasis Analysis

Retinal vasculature was stained and leukostasis was analyzed as previously de-
scribed [15,23]. Saline was perfused into the aorta to clear non-adherent leukocytes, then
10 mL of fluorescein-labeled concanavalin A lectin (1 mg/mL in PBS; Vector laboratories
Burlington, ON Canada) was perfused to stain the retinal vasculature. After enucleation
and isolation of the retina, flat mounts were imaged using a fluorescent stereoscope and the
number of leukocytes adhered to the vasculature wall were counted (n = 3 samples/group).
The 500 µm and 50 µm scale bar displayed gives a visual indicator of the size of the
representative image.

4.6. Quantification of Oxidative Stress

Mice were perfused with 0.9% physiological saline; retinas were collected and incu-
bated in Krebs-HEPES buffer (with 5 mmol/L glucose) for 25 min at 37 ◦C in 5% CO2.
Luminescence was measured using Promega GLOMAX 20/20 luminometer at 5 min after
the addition of 0.5 mmol/L of lucigenin, as previously described [11,42], to quantify the
level of reactive oxygen species per retina (n = 5 retinas/group).

4.7. Retinal Capillary Degeneration Analysis

Acellular capillaries were quantified in the retinal vasculature, as previously de-
scribed [10,26]. Enucleated globes were fixed with 10% formalin prior to retinal isolation.
Retinas were incubated in elastase for 2 h, followed by acidic buffer overnight. Retinal vas-
culature was mechanically isolated and stained with hematoxylin and periodic acid-Schiff
(n = 5/group). Acellular capillaries were quantified in seven field areas between the optic
nerve and the periphery (200× magnification). Representative pictures were taken using
a 40× objective mounted on an Olympus BX-60 microscope equipped with a Q-imaging
Retiga Exi camera and Metamorph imaging software. The 10 µm scale bar displayed is a
visual indicator of the size of the representative image.

4.8. Statistical Analysis

Statistical analysis was performed in Prism (GraphPad Software San Diego, CA,
USA) using a two-way ANOVA and an unpaired t-test with Tukey’s post-hoc analysis. A
p-value < 0.05 was considered significant.

Author Contributions: Each author has made substantial contributions in the conception and design
of this work, or acquisition, analysis, and interpretation of the data. The following is each author’s
contributions: T.E.Z.: conceptualization, methodology, validation, formal analysis, investigation,
data curation, writing—original draft preparation; S.I.L.: methodology, validation, formal analysis,
data curation, writing—original draft preparation; J.C.B.: validation, formal analysis, data curation,
writing—original draft preparation; C.A.L.: conceptualization, methodology, validation, formal
analysis, data curation, writing—original draft preparation; B.E.T.: methodology, validation, formal



Int. J. Mol. Sci. 2021, 22, 4335 10 of 11

analysis, data curation, writing—original draft preparation; S.J.H.: conceptualization, methodology,
validation, formal analysis, data curation, writing—original draft preparation; P.R.T.: conceptual-
ization, methodology, validation, formal analysis, investigation, resources, data curation, writing,
reviewing, and editing original draft and preparation of manuscript, supervision, project adminis-
tration, and funding acquisition. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the following grants: VA BX003403, NEI RO1 EY030487, NEI
P30 EY011373, the Ohio Lions Eye Research Foundation, the Cleveland Eye Bank Foundation, and
the Research to Prevent Blindness Foundation.

Institutional Review Board Statement: This animal study was conducted according to the guidelines
of the Institutional Animal Care & Use Committee of Case Western Reserve University (#2016-0025;
2/13/2016) and the guidelines of the Animal Component of Research Protocol of the Cleveland VA
Medical Center (#16-012-MS-19-002-C; 3/1/2026).

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is available upon request to the corresponding author.

Acknowledgments: We would like to thank Dawn Smith, John Denker, Heather Butler, Maryanne
Pendergast, Denice Major, and Catherine Doller for outstanding technical assistance.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Forouhi, N.G.a.W. Epidemiology of Diabetes. Medicine 2019, 47, 22–27. [CrossRef]
2. Yau, J.W.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Cho, N.H.; Kowalski, J.W.; Bek, T.; Chen, S.J.; Dekker, J.M.; Fletcher, A.;

et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012, 35, 556–564. [CrossRef]
3. Williams, R.; Colaguiri, S.; Almutairi, R.; Karuranga, S.; Malanda, B.; Saeedi, P.; Salpea, P. The Global Picture. In IDF Diabetes

Atlas, 9th ed.; International Diabetes Federation: Brussels, Belgium, 2019.
4. Ma, J.; Li, Y.J.; Chen, X.; Kwan, T.; Chadban, S.J.; Wu, H. Interleukin 17A promotes diabetic kidney injury. Sci. Rep. 2019, 9, 1–12.

[CrossRef]
5. Robert, M.; Miossec, P. Effects of Interleukin 17 on the cardiovascular system. Autoimmun. Rev. 2017, 16, 984–991. [CrossRef]
6. Semeraro, F.; Cancarini, A.; dell’Omo, R.; Rezzola, S.; Romano, M.R.; Costagliola, C. Diabetic Retinopathy: Vascular and

Inflammatory Disease. J. Diabetes Res. 2015, 2015, 582060. [CrossRef] [PubMed]
7. Harrington, L.E.; Hatton, R.D.; Managan, P.R.; Turner, H.; Murphy, T.L.; Murphy, K.M.; Weaver, C.T. Interleukin 17-producing

CD4+ effector T cells develop via a lineage distinct from the T helper 1 and 2 lineages. Nat. Immunol. 2005, 6, 1123–1132.
[CrossRef]

8. Park, H.; Li, Z.; Yang, X.O.; Chang, S.H.; Nurieva, R.; Wang, Y.H.; Wang, Y.; Hood, L.; Zhu, Z.; Tian, Q.; et al. A distinct lineage of
CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 2005, 6, 1133–1141. [CrossRef]

9. Jagannathan-Bodgan, M.; McDonnell, M.E.; Shin, H.; Rehman, Q.; Hasturk, H.; Apovian, C.M.; Nikolajczyk, B.S. Elevated
proinflammatory cytokine production by a skewed T cell compartment requires monocytes and promotes inflammation in type 2
diabetes. J. Immunol. 2011, 186, 1162–1172. [CrossRef] [PubMed]

10. Kern, T.S.; Tang, J.; Berkowitz, B.A. Validation of structural and functional lesions of diabetic retinopathy in mice. Mol. Vis. 2010,
16, 2121–2131. [PubMed]

11. Sigurdardottir, S.; Zapadka, T.E.; Lindstrom, S.I.; Liu, H.; Taylor, B.E.; Lee, C.A.; Kern, T.S.; Taylor, P.R. Diabetes-mediated IL-17A
enhances retinal inflammation, oxidative stress, and vascular permeability. Cell Immunol. 2019, 341, 103921. [CrossRef] [PubMed]

12. Lindstrom, S.I.; Sigurdardottir, S.; Zapadka, T.E.; Tang, J.; Liu, H.; Taylor, B.E.; Smith, D.G.; Lee, C.A.; DeAngelis, J.; Kern,
T.S.; et al. Diabetes induces IL-17A-Act1-FADD-dependent retinal endothelial cell death and capillary degeneration. J. Diabetes
Complicat. 2019, 33, 668–674. [CrossRef] [PubMed]

13. Iwakura, Y.; Ishigame, H.; Saijo, S.; Nakae, S. Functional specialization of interleukin-17 family members. Immunity 2011, 34,
149–162. [CrossRef]

14. Korn, T.; Bettelli, E.; Oukka, M.; Kuchroo, V.K. IL-17 and Th17 cells. Annu. Rev. Immunol. 2009, 27, 485–517. [CrossRef] [PubMed]
15. Zapadka, T.E.; Lindstrom, S.I.; Taylor, B.E.; Lee, C.A.; Tang, J.; Taylor, Z.R.R.; Howell, S.J.; Taylor, P.R. RORgammaT inhibitor-

SR1001 halts retinal inflammation, capillary degeneration, and the progression of diabetic retinopathy. Int. J. Mol. Sci. 2020, 21,
3547. [CrossRef]

16. Gutierrez-Vazquez, C.; Quintana, F.J. Regulation of the immune response by aryl hydrocarbon receptor. Immunity 2018, 48, 19–33.
[CrossRef] [PubMed]

17. Ho, P.P.; Steinman, L. The aryl hydrocarbon receptor: A regulator of TH17 and Treg cell development in disease. Cell Res. 2008,
18, 605–608. [CrossRef] [PubMed]

http://doi.org/10.1016/j.mpmed.2018.10.004
http://doi.org/10.2337/dc11-1909
http://doi.org/10.1038/s41598-019-38811-4
http://doi.org/10.1016/j.autrev.2017.07.009
http://doi.org/10.1155/2015/582060
http://www.ncbi.nlm.nih.gov/pubmed/26137497
http://doi.org/10.1038/ni1254
http://doi.org/10.1038/ni1261
http://doi.org/10.4049/jimmunol.1002615
http://www.ncbi.nlm.nih.gov/pubmed/21169542
http://www.ncbi.nlm.nih.gov/pubmed/21139688
http://doi.org/10.1016/j.cellimm.2019.04.009
http://www.ncbi.nlm.nih.gov/pubmed/31076079
http://doi.org/10.1016/j.jdiacomp.2019.05.016
http://www.ncbi.nlm.nih.gov/pubmed/31239234
http://doi.org/10.1016/j.immuni.2011.02.012
http://doi.org/10.1146/annurev.immunol.021908.132710
http://www.ncbi.nlm.nih.gov/pubmed/19132915
http://doi.org/10.3390/ijms21103547
http://doi.org/10.1016/j.immuni.2017.12.012
http://www.ncbi.nlm.nih.gov/pubmed/29343438
http://doi.org/10.1038/cr.2008.63
http://www.ncbi.nlm.nih.gov/pubmed/18516065


Int. J. Mol. Sci. 2021, 22, 4335 11 of 11

18. McAleer, J.P.; Fan, J.; Roar, B.; Primerano, D.A.; Denvir, J. Cytokine regulation in human CD4 T cells by aryl hydrocarbon receptor
and Gq-coupled receptors. Sci. Rep. 2017, 8, 10954. [CrossRef]

19. Platzer, B.; Richter, S.; Kneidinger, D.; Waltenberger, D.; Woisetschlager, M.; Strobl, H. Aryl hydrocarbon receptor activation
inhibits in vitro differentiation of human monocytes and Langerhans dendritic cells. J. Immunol. 2009, 183, 66–74. [CrossRef]

20. Lawrence, B.P.; Denison, M.S.; Novak, H.; Vorderstrasse, B.A.; Harrer, N.; Neruda, W.; Reichel, C.; Woisetschlager, M. Activation
of aryl hydrocarbon receptor is essential for mediating anti-inflammatory effects of a novel low-molecular-weight compound.
Blood 2008, 112, 1158–1165. [CrossRef]

21. Ettmayer, P.; Mayer, P.; Kalthoff, F.; Neruda, W.; Harrer, N.; Hartmann, G.; Epstein, M.M.; Brinkmann, V.; Heusse, C.;
Woisetschlager, M. A novel low molecular weight inhibitor of dendritic cells and B cells blocks allergic inflammation. Am. J.
Respir. Crit. Care Med. 2006, 173, 599–606. [CrossRef] [PubMed]

22. Hauben, E.; Gregori, S.; Draghici, E.; Migliavacca, B.; Olivieri, S.; Woisetschlager, M.; Roncarolo, M.G. Activation of the aryl
hydrocarbon receptor promotes allograft-specific tolerance through direct and dendritic cell-mediated effects on regulatory T
cells. Blood 2008, 112, 1214–1222. [CrossRef]

23. Liu, H.; Tang, J.; Lee, C.A.; Kern, T.S. Metanx and early stages of diabetic retinopathy. Investig. Ophthalmol. Vis. Sci. 2015, 56,
647–653. [CrossRef] [PubMed]

24. Semeran, K.; Pawlowski, P.; Lisowski, L.; Szczepaniak, I.; Wojtowicz, J.; Lawicki, S.; Bakunowicz-Lazarczyk, A.; Bossowski, A.
Plasma levels of IL-17, VEGF, and adrenomedullin and S-cone dysfunction of the retina in children and adolescents without signs
of retinopathy and with varied duration of diabetes. Mediat. Inflamm. 2013, 2013, 274726. [CrossRef] [PubMed]

25. Tang, J.; Kern, T.S. Inflammation in diabetic retinopathy. Prog. Retin. Eye Res. 2011, 30, 343–358. [CrossRef] [PubMed]
26. Veenstra, A.; Liu, H.; Lee, C.A.; Du, Y.; Tang, J.; Kern, T.S. Diabetic Retinopathy: Retina-Specific Methods for Maintenance of

Diabetic Rodents and Evaluation of Vascular Histopathology and Molecular Abnormalities. Curr. Protoc. Mouse Biol. 2015, 5,
247–270. [CrossRef]

27. Bresnick, G.H.; Davis, M.D.; Myers, F.L.; de Venecia, G. Clinicopathologic correlations in diabetic retinopathy. II. Clinical and
histologic appearances of retinal capillary microaneurysms. Arch. Ophthalmol. 1977, 95, 1215–1220. [CrossRef] [PubMed]

28. King, G.L. The role of inflammatory cytokines in diabetes and its complications. J. Peridontol. 2008, 79, 1527–1534. [CrossRef]
29. Li, G.; Veenstra, A.A.; Talahalli, R.R.; Wang, X.; Gubitosi-Klug, R.A.; Sheibani, N.; Kern, T.S. Marrow-derived cells regulate the

development of early diabetic retinopathy and tactile allodynia in mice. Diabetes 2012, 61, 3294–3303. [CrossRef]
30. Antonetti, D.A.; Barber, A.J.; Khin, S.; Lieth, E.; Tarbell, J.M.; Gardner, T.W. Vascular permeability in experimental diabetes is

associated with reduced endothelial occludin content: Vascular endothelial growth factor decreases occludin in retinal endothelial
cells. Penn State Retina Research Group. Diabetes 1998, 47, 1953–1959. [CrossRef]

31. Tonade, D.; Liu, H.; Palczewski, K.; Kern, T.S. Photoreceptor cells produce inflammatory products that contribute to retinal
vascular permeability in a mouse model of diabetes. Diabetologia 2017, 60, 2111–2120. [CrossRef]

32. Limb, G.A.; Chignell, A.H.; Green, W.; LeRoy, F.; Dumonde, D.C. Distribution of TNF alpha and its reactive vascular adhesion
molecules in fibrovascular membranes of proliferative diabetic retinopathy. Br. J. Ophthalmol. 1996, 80, 168–173. [CrossRef]
[PubMed]

33. Feng, S.; Yu, H.; Yu, Y.; Geng, Y.; Li, D.; Yang, C.; Lu, Q.; Lu, L.; Liu, T.; Li, G.; et al. Levels of Inflammatory Cytokines IL-1β, IL-6,
IL-8, IL-17A, and TNF-α in Aqueous Humour of Patients with Diabetic Retinopathy. J. Diab. Res. 2018, 2018, 1–7. [CrossRef]

34. Valle, M.L.; Dworshak, J.; Sharma, A.; Ibrahim, A.S.; Al-Shabrawey, M.; Sharma, S. Inhibition of interleukin-6 trans-signaling
prevents inflammation and endothelial barrier disruption in retinal endothelial cells. Exp. Eye Res. 2019, 178, 27–36. [CrossRef]

35. Yun, J.H.; Park, S.W.; Kim, K.J.; Bae, J.S.; Lee, E.H.; Paek, S.H.; Kim, S.U.; Ye, S.; Kim, J.H.; Cho, C.H. Endothelial STAT3 Activation
Increases Vascular Leakage Through Downregulating Tight Junction Proteins: Implications for Diabetic Retinopathy. J. Cell
Physiol. 2017, 232, 1123–1134. [CrossRef] [PubMed]

36. Izumi-Nagai, K.; Nagai, N.; Ozawa, Y.; Mihara, M.; Ohsugi, Y.; Kurihara, T.; Koto, T.; Satofuka, S.; Inoue, M.; Tsubota, K.; et al.
Interleukin-6 receptor-mediated activation of signal transducer and activator of transcription-3 (STAT3) promotes choroidal
neovascularization. Am. J. Pathol. 2007, 170, 2149–2158. [CrossRef] [PubMed]

37. Qiu, A.W.; Bian, Z.; Mao, P.A.; Liu, Q.H. IL-17A exacerbates diabetic retinopathy by impairing Muller cell function via Act1
signaling. Exp. Mol. Med. 2016, 48, e280.

38. Grosche, A.; Hauser, A.; Lepper, M.F.; Mayo, R.; von Toerne, C.; Merl-Pham, J.; Hauck, S.M. The proteome of native adult Muller
glia cells from murine retina. Mol. Cell Proteom. 2016, 15, 462–480. [CrossRef]

39. Shao, L.; Feng, B.; Zhang, Y.; Zhou, H.; Ji, W.; Min, W. The role of adipose-derived inflammatory cytokines in type 1 diabetes.
Adipocyte 2016, 5, 270–274. [CrossRef]

40. Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin
resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419.
[CrossRef]

41. Taylor, P.R.; Leal, S.M., Jr.; Sun, Y.; Pearlman, E. Aspergillus and Fusarium corneal infections are regulated by Th17 cells and
IL-17-producing neutrophils. J. Immunol. 2014, 192, 3319–3327. [CrossRef]

42. Du, Y.; Veenstra, A.; Palczewski, K.; Kern, T.S. Photoreceptor cells are major contributors to diabetes-induced oxidative stress and
local inflammation in the retina. Proc. Natl. Acad. Sci. USA 2013, 110, 16586–16591. [CrossRef] [PubMed]

http://doi.org/10.1038/s41598-018-29262-4
http://doi.org/10.4049/jimmunol.0802997
http://doi.org/10.1182/blood-2007-08-109645
http://doi.org/10.1164/rccm.200503-468OC
http://www.ncbi.nlm.nih.gov/pubmed/16387807
http://doi.org/10.1182/blood-2007-08-109843
http://doi.org/10.1167/iovs.14-15220
http://www.ncbi.nlm.nih.gov/pubmed/25574044
http://doi.org/10.1155/2013/274726
http://www.ncbi.nlm.nih.gov/pubmed/24347823
http://doi.org/10.1016/j.preteyeres.2011.05.002
http://www.ncbi.nlm.nih.gov/pubmed/21635964
http://doi.org/10.1002/9780470942390.mo140190
http://doi.org/10.1001/archopht.1977.04450070113010
http://www.ncbi.nlm.nih.gov/pubmed/880082
http://doi.org/10.1902/jop.2008.080246
http://doi.org/10.2337/db11-1249
http://doi.org/10.2337/diabetes.47.12.1953
http://doi.org/10.1007/s00125-017-4381-5
http://doi.org/10.1136/bjo.80.2.168
http://www.ncbi.nlm.nih.gov/pubmed/8814750
http://doi.org/10.1155/2018/8546423
http://doi.org/10.1016/j.exer.2018.09.009
http://doi.org/10.1002/jcp.25575
http://www.ncbi.nlm.nih.gov/pubmed/27580405
http://doi.org/10.2353/ajpath.2007.061018
http://www.ncbi.nlm.nih.gov/pubmed/17525280
http://doi.org/10.1074/mcp.M115.052183
http://doi.org/10.1080/21623945.2016.1162358
http://doi.org/10.1007/BF00280883
http://doi.org/10.4049/jimmunol.1302235
http://doi.org/10.1073/pnas.1314575110
http://www.ncbi.nlm.nih.gov/pubmed/24067647

	Introduction 
	Results 
	Hyperglycemia in STZ-Induced Diabetic Mice 
	Injections of AhR Agonist VAF347 Inhibit Diabetes-Mediated IL-6 and IL-17A Production, and Systemically Ablates Th17 Cells in STZ-Diabetic Mice 
	AhR Agonist VAF347 Treatment Significantly Decreases Leukostasis in STZ-Diabetic Mice 
	VAF347 Treatment Significantly Decreases Oxidative Stress and Retinal Inflammation in STZ-Diabetic Mice 
	VAF347 Treatment in STZ-Diabetic Mice Halts Retinal Capillary Degeneration 

	Discussion 
	Materials and Methods 
	Streptozotocin (STZ)-Induced Diabetic Mice 
	AhR Agonist VAF347 Treatment 
	CD4+ T Cell Isolation and IL-17A ELISA Analysis 
	ELISA Analysis of Sera and Retina Protein 
	Staining of Retinal Vasculature for Leukostasis Analysis 
	Quantification of Oxidative Stress 
	Retinal Capillary Degeneration Analysis 
	Statistical Analysis 

	References

