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The last stage is penetration, so that the stroma is 
invaded by the embryo through the epithelium to access 
the maternal vasculature. Trophoblasts and the decidua 
control and limit the extent of invasion [3, 4]. Because 
the embryo is different from the mother’s cells, it may 
be considered a pathogen by the mother’s immune sys-
tem if it does not secrete immunosuppressive agents [5, 
6]. Many factors are involved in proper embryo implan-
tation and uterine receptivity to modulate endometrial 
functions. These include cytokines, chemokines, and 
growth factors [7]. The uterus-embryo cross talk trig-
gers changes in the endometrium, which is critical to the 
receptivity of the uterus [8]. There is a negative human 
chorionic gonadotropin (hCG) test in urine or blood dur-
ing implantation [9]. Failure of the implantation process 
is one of the most common causes of female infertility. 
Recurrent Implant Failure (RIF) is a clinical condition in 
which good quality embryos fail to implant in the uterus 
after multiple in vitro fertilization (IVF) attempts [9, 10]. 
Several mechanisms are involved in implantation failure, 
including leiomyoma, endometriosis, polycystic ovarian 
syndrome (PCOS), hydrosalpinx, and exposure to toxic 
substances and infections [4, 11, 12]. Microorganisms 

Introduction
Implantation or nidation is an initial complex stage in 
which the blastocyst burrows into the endometrium of 
the female’s uterine wall and, if successful, the female 
is considered pregnant [1, 2]. Apposition, adhesion 
and penetration are the three main stages of implanta-
tion. Apposition occurs when the blastocyst is unstably 
attached to the endometrial surface. The next stage is 
adhesion as the association of the luminal epithelium 
with the trophoblast and the resistance of the blastocyst 
to displacement by lavage of the uterine lumen [3, 4]. 
Stromal vascular permeability is increased (localized) at 
the blastocyst attachment site and is considered the first 
sign of attachment [3].
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Abstract
Implantation is the key initial complex stage of pregnancy. Several factors are involved in implantation, but acute 
and controlled inflammation has been shown to play as a key role. On the other hand, the role of viral infections in 
directly infecting blastocyst and trophoblast and inducing chronic and uncontrolled inflammation and disrupting 
microRNAs expression can make this review strongly attractive and practical. We aim to provide an overview of viral 
infections as the potential etiology of unsuccessful implantation pathophysiology through alteration of the cellular 
and molecular endometrial microenvironment. Based on our search, this is the first review to discuss the role of 
inflammation associated with viral infection in implantation failure.
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(viruses and bacteria) repeatedly invade the endometrial 
cavity/tissue. Implantation failure can be due to subclini-
cal endometrial infection and/or chronic inflammation 
[13]. Although much research has evaluated and con-
firmed the involvement of bacterial infection agents in 
implantation failure [12], viral involvement is still ques-
tionable and needs more detailed studies. Viral infection 
of the trophoblast can impair its function, resulting in 
abnormal implantation. Possible causes of implantation 
failure include viruses that have little or no pathogenicity 
[14].

The current study set out to discuss the role of viral 
infection in implantation failure.

Inflammation and immune cells in implantation
There is a complex microenvironment in the placenta 
between the mother and the embryo that contains 
immune substances [15]. The mother’s immune system 
has a crucial role in the embryo implantation, as the 
embryo is semi-allogeneic and different from the moth-
er’s cells [16]. Recent research has shown that implan-
tation is a pro-inflammatory condition [17]. Besides, 
inflammation is proven to play a key role in maintaining 
and regenerating the uterus [18]. Pro-inflammatory cyto-
kines produced by endometrial stromal cells that inflame 
the endometrium prior to the blastocyst invading [19, 
20].

There are two types of the immune response, including 
T helper cell 1 (Th1) and Th2 [21, 22]. In Th1 response 
tends to produce the proinflammatory cytokines includ-
ing interferon-γ (IFN γ), interleukins (IL1, IL2, IL6, IL12, 
IL15, and IL18), and TNFα. This response is involved 
in defense against intracellular parasites, and autoim-
mune responses [23, 24]. From the other point of view, 
in Th2 response IL4, IL5, IL-6, IL-9, IL10, IL13 (regula-
tory cytokines), and granulocyte macrophage colony 
stimulating factor (GM-CSF) are involved. This response 
is known as anti-inflammatory [25]. One of the immune 
system’s primary responses is inflammation, which con-
sists of molecular mediators, cytokines, chemokines, and 
immune cells [26]. Different factors are involved in pro-
voking of the inflammatory process, including infection, 
viral and bacterial, and tissue injury [18].

This is an incredibly important point to remember, as 
a distinction must be made between acute and chronic 
inflammation, with acute inflammation being indispens-
able for implantation success, whereas chronic inflamma-
tion is destructive and causes RIF [27]. The inflammatory 
process causes local endometrial injury, which prolongs 
endometrial receptivity [18]. Furthermore, the positive 
effect of local endometrial injury on the success rate of 
IVF has been supported by a recent meta-analysis [28]. 
One study showed a decrease in the expression of pro-
grammed death 1 (PD-1) (an immune checkpoint) and 

T cell immunoglobulin and mucin domain-3 (TIM-3) in 
the peripheral lymphocytes after the successful implan-
tation of the blastocyst (on days 3 and 6). Since both of 
them are essential factors in anti-inflammatory process, 
this indicates that inflammation is involved in implan-
tation [29]. On the contrary, at the end of menstrua-
tion, the decline in progesterone leads to the activation 
of the pro-inflammatory NF-kB pathway, and indeed 
causes the up-regulation of pro-inflammatory cytokines, 
matrix metalloproteinases and prostaglandins [18, 30]. 
Cytokines involved in the implantation process were 
described in details by Sieg et al. [27]. The essential func-
tion of antigen-presenting cells (APCs) in the cytokine 
profiles between maternal and fetal tissues has been con-
firmed by several studies [31, 32]. Another important fac-
tor is reactive oxygen and nitrogen species (RONS). Level 
of RONS may be involved in the implantation process so 
that overproduction of RONS can cause cell and tissue 
damage, as well as interfere with signaling pathways [33]. 
Nitric oxide (NO) plays a critical role in both endome-
trial tissue preparation for successful implantation and 
endometrial decidualization [34].

Immune cells have a critical function in inflammation, 
leading to tissue remodeling through the secretion of 
various cytokines and chemokines [18, 24, 31, 35]. Uterus 
infiltrated cells are uterine-specific natural killer (uNK) 
cells (65–70%), regulatory T Cells, Uterine Mast Cells 
(uMCs), macrophages, dendritic cells (DCs), and APCs 
(10–20%) [36–40]. These cells secrete cytokines and 
chemokines that are pro-inflammatory [24]. “Decidual 
natural killer (dNK) cells are differentiated from periph-
eral blood NK cells”. These dNK cells have some char-
acteristics, including poor cytolytic activity, secreting 
IFN-gamma-inducible protein 10 (IP-10; CXCL10), IL-8 
and some other cytokines that are involved in tropho-
blast invasion and embryonic development [31, 41]. DCs, 
which act as initiators and coordinators of the innate 
adaptive immune response [42]. Prior to implantation, 
uterine DCs (uDCs) accumulate in the pregnant uterus. 
They remain in the decidua for the entire duration of 
pregnancy [32, 43]. One of the most important effects 
of uDC depletion is severe impairment of implantation 
[44]. Another important cell is the macrophage, which is 
involved in the decidualization and implantation [45, 46]. 
DCs and macrophages are involved in angiogenesis and 
remodeling of tissue by secreting chemokines, cytokines, 
and enzymes [46]. The first immune cells to be involved 
at the site of infection are neutrophils, which cause 
the amplification of inflammatory signals and attract 
immune cells. But the infiltration of neutrophils into the 
endometrial tissue is prevented, perhaps by suppress-
ing the cytokine signaling involved in their recruitment 
[47, 48]. Although T cells are crucial in the implantation, 
they constitute a smaller proportion of the immune cells 
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of decidual compared to dNK and macrophages [16, 49, 
50]. Th and T regulatory (Treg) cells have the key roles 
during implantation and pregnancy [16, 50]. All in all, 
immune cell infiltration is crucial in cell differentia-
tion, tissue renewal and the development of a receptive 
endometrium.

In fact, there is a reciprocal relationship between sex 
steroids (progesterone, and estrogen) and inflamma-
tion. In addition, inflammation is related to successful 
implantation [18, 24, 51–53]. A challenging question is 
whether the maternal immune system is a friend or foe 
of pregnancy.

Impact of virus-induced heat shock proteins on 
embryo implantation
Heat shock proteins (HSPs), also known as chaperones 
are highly conserved protective protein substrates that 
are produced in all cells [54]. There are several processes 
involved. These include proper protein folding, protein 
trafficking, and assembly and/or disassembly of complex 
proteins [55]. Environmental stressors such as free oxy-
gen radicals, hyperthermia, inflammation and infection 
lead to the expression of HSPs [56]. The role of HSPs in 
immunomodulation is that it causes the up-regulation of 
some factors such as some chemokines, interleukins (IL-
1, IL-6, and IL-12), nitric oxide (NO), tumor necrosis fac-
tor (TNF-α), and even the maturation of DCs [55].

HSPs play a critical role in pregnancy, especially in the 
implantation process, where they are tasked with main-
taining the proper microenvironment in the endometrial 
cells [56, 57]. HSPs can affect all stages of reproduc-
tion because they are the first proteins synthesized dur-
ing embryonic development [58]. In mouse and rabbit 
models, HSPs have been shown to be produced during 
embryo preimplantation [59]. In addition, HSC70 is con-
stitutively expressed during mouse embryo implantation 
[60].

Viral infection results in the cellular heat shock 
response and modulation of the expression of HSPs 
involved in implantation [61]. It has been demonstrated 
that some HSPs such as hsp60, hsc70, and hsp90 are 
up-regulated, while hsp28 is down-regulated [62, 63]. 
Previous researches have shown alteration of the HSPs 
during viral infection. Viruses such as Herpes simplex 
virus type 1 and 2 (HSV-1 and HSV-2), Varicella Zos-
ter virus (VZV), Cytomegalovirus (CMV), Hepatitis C 
virus  (HCV), Polioviruses (PV), and Epstein-Barr virus 
(EBV) [61, 64–68]. Viral infection of chick embryo cells 
has been shown to induce the expression of HSPs [69].

In general, it can be concluded that changes in the 
expression of HSPs by viruses can lead to disruption of 
the embryo implantation process.

Viral-induced immune responses
Viruses are necessary but not enough to cause disease, 
as are other pathogens, which are infection enigma 
[70]. Viral infection during pregnancy has several con-
sequences, including premature birth, miscarriage and 
intrauterine growth restriction [71]. Viruses involved in 
implantation failure through two ways include: (i) direct 
way: infect endometrial and blastocyst cells, which leads 
to apoptosis, alteration of gene expression and decreasing 
trophoblast invasive activity; (ii) indirect way: disrupting 
the immune response (Fig.  1). The immune system has 
one primary strategy against viral infection. It is to elimi-
nate the infected cells by type I IFNs (IFN-α and IFN-β), 
pro-inflammatory cytokines, and cytotoxic lymphocytes 
[72, 73]. The role of inflammatory cytokines in viral 
infection is mediated through several pathways includ-
ing: (a) producing antiviral effector molecules directly, 
(b) indirect provocation of recruiting immune cells and 
the phagocytosis of infected cells, and (c) activation of 
acquired immune responses includes cytotoxic T lym-
phocytes (CTLs) and neutralizing antibodies [73–75]. 
Infected macrophages and DCs produce interleukins (IL-
1β, IL-6, IL-15, IL-18), and TNF as the major inflamma-
tory cytokines [72, 73].

Human decidua contain a variety of immunocompetent 
cells including T cells, NK cells and macrophages [13]. 
Conversely, different cell types are involved in antiviral 
responses such as NK, DCs, monocyte, macrophages, 
and T cells [72, 76, 77]. NK cells have an important role 
in the elimination of virus-infected cells through the pro-
duction of IFN-γ, which induces other antiviral mecha-
nisms. Another cell is monocyte, which gives rise to DCs 
and macrophages when inside the tissue [72, 73]. Mac-
rophages play a number of critical roles, including tissue 
homeostasis, wound healing and inflammation. Some 
macrophages prevent other cells from being infected by 
producing the highest levels of type I IFNs locally [73, 
78, 79]. During viral infection, DCs have some functions 
such as antigen presentation, and cytokine production 
[72, 80]. Excessive leukocyte infiltration and activation 
of tissue-resident leukocytes are responsible for tissue 
inflammation during viral infection [81].

One of the critical factors for successful implantation is 
the local microenvironment at the cellular and molecu-
lar level at the fetal-maternal interface [13]. Many stud-
ies have shown that viral infection leads to changes in the 
cellular and molecular microenvironment of the target 
tissue. There are various imbalances such as inflamma-
tion, misplaced immune cell infiltration, production of 
RONS and alteration of normal cell signaling [82–86].
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Virus infection and implantation failure
Viruses can infect the reproductive tract and affect 
the cells of these areas by modulating metabolism, bio-
chemistry and the immune system. Therefore, there is an 
urgent need to assess the involvement of viruses in the 
embryo implantation and pregnancy outcomes. In sup-
port of this notion, some of the following evidence has 
been presented:

i. Viruses can infect trophoblast cells,
ii. Viruses have crucial roles in apoptosis of trophoblast 

cells, trophoblast gene expression alteration, 
decreases trophoblast invasive activity,

iii. The viral genome was detected in placental tissue of 
implantation failure cases,

iv. Detection of IgM antibodies against viruses [14] 
(Fig. 1).

In addition, implantation can be affected by viral infec-
tion by disrupting the normal function and secretory 
activity of endometrial cells in several ways, including:

  • Immune modulation and cytokine production: As 
previously written, viral infections can modulate 
immune response and alter cytokine secretion 
by embryonic cells, resulting in an unfavorable 
microenvironment for implantation [5, 14, 87].

  • Hormonal alterations: disruption of the hormonal 
balance occurs by some viral infections. Viruses 
cause damage to specific endocrine cells through 
replication in infected cells, cell lysis, and as a result 
of the immune response against viruses. Changing 
the production of progesterone and/or estrogen 
causes the implantation process to be impaired [88]. 
In SARS CoV-2 infection, alterations in hormonal 
levels have been seen, including increased level of 
luteinizing hormone (LH), prolactin, and follicle-
stimulating hormone (FSH) [89]. HIV infection 
leads to increased activity of the pituitary gland, 
as evidenced by increased levels of TSH, prolactin, 
and ACTH [90]. Interestingly, some viruses encode 
some peptides called viral hormones with homology 
to human hormones (structural and/or functional) 
[91]. Inhibin β A chain, TGF-β1, TGF-β2, fibroblast 
growth factor, and IGF-2 are viral hormones that 
play a role in different stages of pregnancy [91].

  • Apoptosis: some viruses cause implantation failure 
by inducing apoptosis in embryonic cells [92].

  • Alteration of cell adhesion molecules: viruses can 
interfere with the normal expression of cell adhesion 
molecules on the surface of various cells such as 
immune cells and epithelial cells like those found in 
embryos [93–95].

Fig. 1 Viruses lead to implantation failure by direct infection and disrupting the immune response
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Viral infection can change the gene expression pat-
terns of endometrial and embryonic cells. For example, 
CMV causes disruption of the development of extra-
cellular matrix (ECM), integrins and ultimately results 
in decreased cell adhesion and tissue invasion abil-
ity (implantation) [96–98]. Also, some viruses such as 
HHV-6 A interfere with trophoblast invasion by integrat-
ing their DNA into the host cell [99].

Overall, the success of implantation may be signifi-
cantly influenced by the interaction between embryonic 
cell secretions and viral infections. However, specific 
details on the range of effects on secretions may require 
further study. There is lots of research that has been done 
on the influence of bacterial infection on embryo implan-
tation [56, 100, 101], but the role of viral infection has 
not been reviewed much. We have set out to discuss the 
effects of some viruses on the implantation process as 
follows.

Human papillomavirus (HPV)
HPV is an oncogenic virus belonging to the Papilloma-
viridae family, which can infect the skin and mucous 
membranes [72]. HPV has multiple effects on reproduc-
tive function [102]. HPV infection in different tissues 
such as breast, prostate and lung results in increased 
expression of RONS, ILs (IL-1α and β IL-6, IL-8), NF-κB, 
MIP-1α, and TNF-α [84, 85, 103, 104]. This viral infection 
is correlated with inflammation in mucous membranes, 
and skin [105]. HPV can cause chronic inflammation, 
change cell signaling, physiological cell death and cell 
transcriptome [85, 103, 106–108]. On the other hand, 
the negative immune-mediated effects of HPV on the 
implantation have been demonstrated in several studies 
[109]. Changes in cellular gene expression occur during 
persistent HPV infection, resulting in the expression of 
proinflammatory cytokine genes and abnormal immune 
cell infiltration [72, 84, 85, 103]. Another critical effect of 
HPV on cells (by E5 and E7 proteins (early proteins)) is 
to lead to down-regulation of some cell surface molecules 
such as human leukocyte antigen-G (HLA-G) and major 
histocompatibility complex class I (MHC I) that cause 
these cells to be lysed by NK cells, which are normally 
insensitive to NK cell lysis [110–112].

The trophoblast expresses the HLA-G as a requisite 
agent in the implantation process [112, 113]. In addition 
to the inverse effects of HPV on implantation, it causes 
activation of the immune response against the develop-
ing embryo by down-regulating the MCH I molecule 
[114]. HPV can lead to reduced implantation of tropho-
blastic cells through increased trophoblastic apoptosis, 
which was demonstrated by Zuo et al. [115, 116]. Also, 
Gomez et al. showed a greater rate of apoptosis (3- to 6- 
fold) in trophoblastic cells with HPV infection [117]. It 
has also been found that HPV can be transmitted during 

fertilization and subsequently to the embryo [118–120]. 
The genome of HPV types 16 and 18 were detected in 
108 patients with miscarriages [121]. The higher rate of 
HPV DNA detection in early miscarriage cases com-
pared to voluntary terminations of pregnancy can dem-
onstrate that HPV is involved in the pathophysiology of 
early pregnancy loss [122]. The effects of HPV on early 
development in the embryonic stage was demonstrated 
by Henneberg and colleagues. They showed the HPV 
type-specific effects on the blastocyst, as if HPV-16 led 
to a decrease in blastocyst formation, whereas HPV-18 
was involved in inhibiting the blastocyst hatching pro-
cess [123]. In another study, embryos exposed to HPV-16 
were also shown a reduced implantation rate (less than 
37.2%) by Hong et al. [121].

There is several research confirming the HPV effect on 
alterations in the immune response and cellular physiol-
ogy that are involved in implantation. HPV as a frequent 
member of sexually transmitted infections (STI) may 
be an important hallmark in implantation failure. Most 
studies have reported the role of HPV types 16 and 18, 
but other HPV types may also be involved. Therefore, 
further studies are needed to clarify the involvement of 
all HPV types in implantation.

Herpes simplex virus (HSV) type 1 and 2
HSV types 1 and 2 (HSV-1 and HSV-2) are common 
members of the Herpesviridae family [72]. Both of them 
are in charge of cellular physiology alterations and necro-
sis, which leads to the inflammatory response [72, 124]. It 
has been shown that HSV-infected patients have concen-
trated inflammatory cytokines and high expression levels 
of apoptosis-related genes. This situation is also associ-
ated with HSV load [125]. Some pro-inflammatory cyto-
kines such as IFN-α and -β, IL-6, IL-12, and TNF-α are 
involved in HSV immune mediated pathogenesis [126]. 
In a mouse model study, Felker and colleagues demon-
strated that HSV-2 infection results in up-regulation of 
inflammatory cytokines and chemokines at the implanta-
tion site. They demonstrated the ability of HSV-2 to infect 
implantation sites such as the maternal decidua. Their 
results suggest that trophoblast cells can be infected by 
HSV-2 t within implantation sites and induce abnormal 
trophoblast invasion [127]. The involvement of HSV in 
reproductive disease and pregnancy loss has been docu-
mented previously [128, 129]. Tsibizov et al. evaluated 
the impact of HSV-infected sperm on the fertilization 
efficiency and the frequency of embryo implantation. 
Their results indicated that the frequency of implanta-
tion was five times lower and the negative influence of 
HSV on the implantation [130]. In an interesting study, 
Yueh and colleagues have shown that up-regulation of 
VP16 (α-trans-inducing factor (α-TIF)) as a multifunc-
tional protein of HSV is detrimental to preimplantation 
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development. They indicated that VP16 exerts its effects 
at the transition from the 2-cell to the 4-cell stage and 
leads to a reduction in blastocyst survival [72, 131].

Although the effect of HSV on implantation has been 
discussed, further researches is needed to determine its 
exact role in implantation failure.

Epstein - Barr virus (EBV)
Epstein-Barr virus (EBV) or Human herpesvirus type 4 
(HHV4) is one of the most common viruses in humans 
(90% of the adult humans are seropositive) and belongs 
to the Herpesviridae family [72, 132]. EBV has been 
implicated in chronic inflammation in prostate, thyroid 
and breast tissue [83, 86, 133]. One study demonstrated 
that EBV infection was associated with the high levels of 
expression of inflammatory agents, which are involved in 
various pregnancy complications such as implantation 
failure [82]. There has been evidence that inflammation 
is increased in both latent and lytic EBV infection, and 
that inflammasome is triggered during EBV reactiva-
tion [134]. In research, Moghoofei et al. demonstrated a 
positive correlation between EBV gene products (EBER, 
LMP-1, and LMP‐2 A) and inflammatory agents includ-
ing NF‐κB, IL-1, -6 and − 10, IFN- α and -β, TNF‐α, and 
ROS [86]. Implantation failure may be caused by this 
inflammatory state.

One of the most important effects of EBV on implan-
tation is its influence on HLA-G, a cell surface molecule 
on placental tissue. HLA-G expression is up-regulated by 
IL-10, which has been demonstrated to be involved in the 
tumor cells’ immune evasion [135, 136]. HLA-G, an anti-
gen presenting protein, inhibits some immune cells such 
as NK cells, CD8 T and CD4 T cells, which is the most 
important factor in the immunosuppressive state respon-
sible for immune tolerance during pregnancy [137]. The 
up-regulation of HLA-G is derived from the uterus envi-
ronment, which is a fascinating concerted biological pro-
cess and is involved in the immunological protection of 
the developing embryo [6]. Inflammation-related side 
effects may occur if immune tolerance mechanisms are 
disrupted. On the other hand, EBV can alter the expres-
sion of programmed cell deathligand 1 (PD-L1) [138]. 
This molecule is an immune checkpoint inhibitor and 
produced in placental trophoblasts and amniotic epithe-
lial cells, which causes reduced lymphocyte proliferation 
through the secretion of immunosuppressive agents [139, 
140]. Further research is needed to elucidate the involve-
ment of EBV in the implantation failure.

Cytomegalovirus (CMV)
Human CMV or human herpesvirus type 5 (HHV-5) 
is another member of the Herpesviridae family with a 
seroprevalence of 60–90% worldwide [72, 141]. During 
CMV infection, there is a high number of differentiated 

T cells (CD4 + and CD8+) producing IL-1, IFN, TNF-
α, granzyme B and perforin that may be involved in the 
implantation failure [142, 143]. Dons’koi et al. demon-
strated that CMV infection gives rise to pro-inflamma-
tory response in implantation failure cases. Also, they 
reported a dramatic up-regulation of HLA-DR on NK, T 
and NKT cells and a decrease in the number of CD8 + NK 
lymphocytes in CMV-positive cases compared to nega-
tive ones. This research team claimed that the imbalance 
of CD8, CD69 and CD158 expression in NK subsets pre-
dicts implantation failure [144]. It has been shown that 
there is a significant association between anti-CMV IgG 
(previous exposure) and Recurrent Pregnancy Loss (RPL) 
[145]. Several research have reported the high rate of 
anti-CMV IgG in recurrent miscarriage cases, including 
Augustine et al. (85.7%), Sherkat et al. (90.6%), Kafi et al. 
(97.8%), and Hammed et al. (92.9%) [145–147].

Fisher et al. could not detect the CMV genome but they 
indicated that this virus has a role in implantation fail-
ure through diminishing normal functions of the placen-
tal trophoblasts [148]. CMV gene expression is affected 
by acidic environment and estrogen in such a way that 
CMV replication is inhibited by acidic environment 
and only the immediate early (IE) and early (E) genes 
are expressed [149–151]. There are fundamental effects 
exerted by CMV gene expression patterns on host cells 
and the immune system. Some proteins are translated by 
the IE and E genes, which are involved in causing chronic 
inflammation [152]. As most of the data on the involve-
ment of CMV in embryo implantation and female repro-
duction is somewhat inconclusive, further studies with 
more detail are needed to clarify new aspects.

Human herpesvirus 6, 7 and 8
Human herpesvirus 6 (HHV-6), HHV-7 and HHV-8 
(KSHV) are other members of the Herpesviridae fam-
ily [72]. HHV-6 is divided into two variants, including 
HHV-6  A and HHV-6B, which primarily infects T cells 
[153]. However, it has broad tropism for a variety of 
cells [154]. Some researchers have indicated shedding of 
HHV-6 from the genital tract (25%) [155–157]. HHV-6 
and HHV-7 have critical roles in implantation failure by 
altering the uterine microenvironment and by disrupting 
endothelial cell function [154, 158, 159]. One study inves-
tigated the prevalence of HHV-6 in the endometrial tis-
sue of RIF cases (37% compared to 0% in controls). There 
was also no any difference in expressing the following NK 
cell-related markers such as CD16a, CD56, and CD57 
and T cell markers such as CD3e in HHV-6 positive cases 
than normal controls [160]. Marci et al. found HHV-6 A 
genome in 43% of endometrial biopsies from women with 
primary unexplained infertility and 0% in controls. Inter-
estingly, genome of HHV-6B was not detected in endo-
metrial biopsies while it was detected in PBMCs of both 
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groups (25% and 28% of infertility and control women, 
respectively). Since the role of NK cells in implantation is 
one of the most controversial issues, this research group 
demonstrated that endometrial HHV-6  A-specific NK 
cells were induced. Besides, they showed an up-regula-
tion and down-regulation of IL-10 and IFN-γ in infertile 
women with HHV6-A infection, respectively [154]. The 
high load of HHV6-A genome was reported in a previous 
study as 670.000–250.000 copies/ug [154].

According to previous studies, the endometrial tissue 
of infertile women is a suitable site for HHV-6 A infec-
tion, and unidentified microenvironmental factors are 
the determinants of HHV-6  A replication/infection. For 
example, high levels of estradiol may act as a positive co-
factor in the induction of HHV-6 infection in the endo-
metrium [154, 161]. HHV-6 A may contribute to altering 
the immune phenotype of eNK cells and cytokine levels 
such that Th2 IL-10 cytokine increases while Th1 IFN-γ 
cytokine decreases, which correlates with condition of 
female infertility [154, 162]. Moreover, HHV-6 infection 
up-regulates IL-10 by monocytes while decreasing the 
production of IFN-γ by T cells [163, 164]. Also, a positive 
correlation between HHV-6 antibody levels and implan-
tation failure was found in two studies by Ando et al. and 
Drago et al. [165, 166].

Infection of cells by HHV-7 make cellular changes and 
alterations in the gene expression, though the full impact 
on cell function is still being researched and there is no 
research on the role of this virus in implantation failure. 
More studies are needed to clarify the role of HHV-7 in 
infertility and implantation problems, as well as to deter-
mine if screening for and treating HHV-7 infections 
could improve outcomes for women undergoing fertility 
treatments.

HHV-8 can induce a change in the cellular physiology 
and disrupt the immune system. B-lymphocyte is the 
main target cells of HHV-8. This virus causes chronic 
inflammation (cytokine and ROS production) by produc-
ing vIL-6 (viral interleukin 6) [167]. This situation leads 
to implantation failure. Trophoblast and endothelial cells 
are permissive host cells for HHV-8, which negatively 
affects them by increasing apoptosis rates [168].

The ability of the Herpesviridae family to modulate 
immune responses is the most critical point about the 
ability of these viruses to cause fertility disorders such as 
implantation failure.

Hepatitis B virus (HBV)
HBV is a double-stranded DNA virus (partially) belongs 
to the Hepadnaviridae family, which causes hepatitis 
B [72, 132]. Although HBV can cause potentially seri-
ous conditions in endometrial tissue, its presence is 
rare and occurs in women with chronic HBV infection 
[169]. Immune system responses resulting in changes 

in the female genital tract microbiome, which are impli-
cated in implantation failure are some consequences of 
chronic HBV infection [170]. HBV triggers the inflam-
matory response through the NF-κB pathway via TLR2 
and MyD88 leading to the production of IL-1, -2, -4, -6, 
-12, -17, IFNs, and TNF-α [171, 172]. Mucin 1 (MUC1) 
and osteopontin (SPP1) are crucial in endometrial recep-
tivity [173]. Złotkowska and colleagues evaluated the 
expression of several chemokines including CCL2, CCL4, 
CCL5, CCL8, CXCL2, CXCL8, CXCL10, and CXCL12 in 
endometrial epithelial cells. They demonstrated that the 
provision of a suitable microenvironment for successful 
implantation is mediated by CCL8, while CXCL12 plays 
a critical role in enhancing endometrial receptivity and 
promoting embryo attachment [173]. Previous research 
indicated that the up-regulation of some chemokines, 
such as CXCL9-11, 10, 11, and 13 in endometrial tis-
sue from HBV-positive patients compared to healthy 
individuals [171]. HBV proteins such as HBx promote 
up-regulation and/or down-regulation of some of the 
chemokines listed above [174].

All these alterations can result in implantation failure 
by modulating endometrium gene expressions. Li et al. 
showed some changes including reduced toxicity and 
cell functional activities of NK cells and a decrease in the 
number of CD3 + CD4 + helper T cells in HBV infected 
women, which contribute to adverse pregnancy out-
comes such as implantation failure [175]. By inducing 
widespread chronic inflammation, HBV infection also 
causes implantation failure [176, 177]. In a study, 190 
women who were undergoing their first IVF and embryo 
transfer cycles, the implantation rate (as one of the most 
important factors) was dramatically higher in HBV-posi-
tive women in comparison to controlled ones [178].

Further studies are needed regarding HBV infection 
due to the severe effects this virus causes.

SARSCoV-2
The Severe Acute Respiratory Syndrome Coronavirus 2 
(SARS-CoV-2) belongs to the Coronaviridae family with 
a positive single-stranded RNA [179]. The main conse-
quence of SARS-CoV-2 infection is cytokine storm or 
hypercytokinemia, in which pro-inflammatory cytokines 
are released in an uncontrolled and excessive manner 
[180, 181]. An important effect of this virus is the up-reg-
ulation of angiotensin converting enzyme 2 (ACE2) and 
serine 2 (TMPRSS2), which ACE2 is highly expressed in 
many tissues and serves as a receptor for SARS-CoV-2 
[182, 183]. Endometrial tissue is affected by SARS-CoV-2 
through TMPRSS4 and, it is confirmed by microarray 
data [182, 184].

In an interesting study, a single-cell RNA-sequencing 
dataset and two microarray datasets were applied to 
determine SARS-CoV-2-related gene expression profiles. 
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Qi and colleagues demonstrated the up-regulation of 
Basigin (BSG) in the endometrial tissue of women with 
RPL. Their results indicated the endometrial tissue is 
highly susceptible to SARS-CoV-2 infection, leading to 
implantation failure [185]. In contrast, a meta-analysis 
study reported that no significant differences were found 
in implantation rates between the infected group and 
controls (OR 0.99, 95% CI 0.67–1.46; P = 0.96). The results 
of this study suggest that, infection with COVID-19 does 
not affect the rate of implantation in IVF treatment [186]. 
In addition, during COVID-19 VEGF is up-regulated, but 
cannot result in the attachment of embryo and implan-
tation failure [187, 188]. A research group evaluated 
whether COVID-19 infection is related to implantation 
failure. The results demonstrated that no significant dif-
ferences were found in the implantation rates in three 
groups, including infected patients before and after fro-
zen embryo transfer (FET) (29.14% and 30.38%), and 
patients without infection (31.03%) [189].

In the case of SARS-CoV-2 further research is crucial 
to investigate the role of the Coronavirus in implantation.

Zika virus (ZIKV)
ZIKV is a member of the Flaviviridae family, which are 
enveloped viruses with positive-strand RNA [190]. This 
virus impair neuronal development and its pathogenesis 
is by suppressing the Akt-mTOR pathway and leading to 
cellular dysregulation [191].

Previous studies have demonstrated that ZIKV can 
affect the blastocyst and endometrial tissue to cause 
secretion of IL-6, VEGF-A, and Chemoattractant Pro-
tein-1 (MCP1) by the embryo, confirming a possible role 
of ZIKV in the blastocyst implantation [192]. VEGF-A, 
and MCP1 are crucial for implantation [193, 194]. Some 
members of the Flaviviridae family cause some changes 
during pregnancy, such as inflammation in the placenta, 
and up-regulation of VEGF and MCP1 [195]. Tan et al. 
demonstrated the effect of ZIKV on implantation failure 
and miscarriage. Also, 50–70% reduction in pregnancy 
rates was reported in a mouse model following subcuta-
neous ZIKV inoculation. They showed that ZIKV infec-
tion targets trophectoderm cells and leads to apoptosis 
[196]. Another study has shown that ZIKV replication 
can occur in the trophectoderm and during implantation, 
altering trophoblast function [197].

Although there are few previous investigations on 
ZIKV involvement in implantation, further in vivo 
research is necessary for the determination of the role of 
ZIKV in embryo implantation.

Microbial-host interaction is the strongest shaping 
force in how the immune system evolves and devel-
ops. Infections of the genital tract and the pathological 
inflammation associated with them are vital to the suc-
cessful process of reproduction.

MicroRNAs
However, several previous reviews have discussed the 
role of microRNAs (miR or miRNAs) in embryo implan-
tation. In this study, we will discuss some miRNAs 
that have deregulated expression levels are involved in 
implantation failure and are also affected by viral infec-
tions. One of the main ways that viruses can affect the 
implantation failure is that viruses lead to altering the 
expression miRNAs in endometrial tissue. MiRNAs 
are a class of non-coding regulatory RNAs, which have 
about 19–25 nucleotides (nt) in length [198, 199]. Totally, 
more than 300 human miRNAs have been identified that 
affect various biological functions by the regulation of the 
expression of about 60% of human protein-coding genes 
[198, 200–202]. Because viruses as intracellular parasites 
can modify how targeted cells behave. Viruses can alter 
the expression of cellular miRNA and, in fact, they dis-
rupt cellular processes [203, 204]. Viruses can be affected 
by miRNAs in two ways as follow; direct way as target-
ing viral mRNAs in the 3′UTR (untranslated region) and 
indirectly, by modulating the expression of host factors 
that are essential for the replication of the virus [204, 
205].

The differential expression of miRNAs have been dem-
onstrated in different stages and/or pathological condi-
tions of endometrial tissue [206, 207]. Furthermore, the 
different miRNAs profiling has been seen in endome-
trium from failed and recurrent failed implantation [208]. 
There are two main types of miRNAs in implantation, 
including pro-implantation miRNAs and anti-implan-
tation miRNAs. Pro-implantation miRNAs are up-reg-
ulated prior to implantation, while anti-implantation 
miRNAs are up-regulated in the event of implantation 
failure [209]. The differential expression of 13 miRNAs 
(10 miRNAs were up-regulated and 3 were down-regu-
lated) in RIF patients was first reported by Revel et al. in 
2011 [210].

The first one was miR-145, which is expressed in a 
number of tissues such as the prostate, the ovary, the 
heart and the uterus [211]. MiR-145 has also contributed 
to the regulation of decidua cell proliferation and in the 
differentiation of endometrial tissue [211, 212]. Several 
targets were introduced for this miR such as octamer-
binding transcription factor 4 (OCT4), mucin 1 (Muc1), 
homeobox A10 and A11 (HOXA10, HOXA11), estro-
gen receptor alpha (Era), and insulin-like growth factor 
1 receptor (IGF1R) [207]. A previous study has shown an 
up-regulation of miR-145 in patients with RIF compared 
to controls (a 3-fold increase) [213]. Up-regulation of 
miR-145 has been shown to be involved in the inhibition 
of mouse embryo attachment to the endometrium [214]. 
Another critical effect of miR-145 in the genital tract is 
on implantation by down-regulating of Phenylalanine 
ammonia-lyase 1 (PAL-1) [210, 213]. Furthermore, this 
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miR leads to infertility through inhibiting the expres-
sion of HOXA10 and HOXA11 [215]. HPV causes a sig-
nificant decrease in miR-145 expression in penile cancer 
[216]. Yu et al. showed the significant down-regulation 
of miR-145 in HPV-positive cervical cancer cases com-
pared to HPV-negative ones [217]. There is a reciprocal 
relationship between miR-145 expression and HPV rep-
lication, so that HPV causes significant down-regulation 
of miR-145 and up-regulation of it can inhibit HPV rep-
lication [216, 218]. MiR-145 inhibits the expression of 
certain HPV mRNAs such as E1 and E2 (early protein), 
which are involved in viral replication [219]. A significant 
association has been indicated between EBV infection 
and lower levels of miR-145 expression in some tumor 
tissues compared to normal ones [220]. Okoye and col-
leagues have shown that an up-regulation of miR-145 
status in HSV-2 infection of cervical lesions compared 
to HSV-2 negative tissue. They also showed that miR-145 
was up-regulated in cases of viral mono-infection and 
down-regulated in cases of viral co-infection compared 
to participants without viral infections [221]. It has also 
been shown that CMV inhibits miR-145 expression. This 
leads to the up-regulation of Sox2 and subsequently to 
the proliferation of some cells [222].

Mir-22 was first identified in HeLa cells. Then was 
identified in a some tissues [223]. This miR is involved in 
various biological pathways such as apoptosis, cell pro-
liferation and cell migration and it is a tumor suppres-
sor [224, 225]. On the basis of the role played by immune 
cells and their secretions in the process of implantation, 
recent research demonstrated that the expression level 
of PD-L1 is decreased by miR-22, which causes T cell-
mediated immune responses [226]. Moreover, this miR 
leads to activate myeloid DCs to indirectly regulate the T 
helper 17 (Th17) in the mouse model [227]. Interestingly, 
miR-22 is considered as an anti-implantation miRNA 
that is up-regulated during normal implantation in RIF 
patients. This miR through targeting T-Lymphoma Inva-
sion and Metastasis-Inducing Protein 1 (Tiam1) results 
in the dysregulation of decidualization in endometrial 
stromal cells. Tiam1 and Race1 are involved in implanta-
tion [228]. One study showed that up-regulation of miR-
22 caused down-regulation of Tiam1, resulting in embryo 
implantation in mice. It has also been shown that estro-
gen (E2) and progesterone (P) interact to regulate miR-
22, Tiam1, and Rac1 [229]. In addition, the dysregulated 
expression of miR-22, Race1 and Tiam1 are associated 
with a decreased progesterone to estradiol (P/E2) ratio in 
RIF patients [207]. HPV E6 protein (early protein) leads 
to down-regulation of miR-22 through suppression of 
p53 in cervical cancer cell lines [224]. In contrast, a sig-
nificant correlation between HPV-16 infection and up-
regulation of miR-22-3p was demonstrated by Kwon et 
al. [230]. Several studies showed a significant correlation 

between HBV infection and down-regulation of miR-22 
[231, 232]. The effect of HHV-6 A on miR-22 is in such a 
way that this virus significantly increases the expression 
of miR-22 in the cells of the endometrium [99].

MiR-181 plays an important role in the cellular pro-
cesses such as angiogenesis, apoptosis, autophagy, and 
the pro-differentiation of some cell lineages including 
immune cells (NK/NKT cells, B cells, and T cells), mega-
karyocytes and myoblasts [233, 234]. In patients with 
RIF, miR-181 is down-regulated [235]. Some sex hor-
mones such as estrogen cause down-regulation of miR-
181 by regulating the expression level of empty spiracles 
homeobox 2 (EMX2) [207, 236]. Down-regulation of 
miR-181 results in up-regulation of Leukemia inhibitory 
factor (LIF) and subsequent implantation success. LIF 
belongs to the IL-6 family, which leads to the uterus for 
embryos to be implanted [207, 237]. Another important 
effect of miR-181 is the downregulation of KLF transcrip-
tion factor 12 (KLF12), which is involved in endometrial 
receptivity. The expression level of KLF12 is found to be 
high in endometriosis and RIF patients [238]. Some viral 
infections such as HPV and SARS-CoV-2 cause down-
regulation of miR-181 while other viruses like EBV, HBV, 
and HHV-6 A lead to up-regulation [239–241].

The expression of miR-661 was evaluated in a study 
that showed significant up-regulation of this miR in 
blastocysts from women with failed implantation [242]. 
MiR-661 causes down-regulation of Mdm2 and Mdm4 
that leads to p53 activation [243]. On the other hand, in 
addition to causing the proteolytic degradation of p53, 
HPV causes down-regulation of miR-661 to prevent the 
activity of p53 [85, 244, 245]. Also, HBV leads to down-
regulation of miR-661 [246].

One of the HBV proteins (HBx) down-regulates miR-
661 that suppresses Metastasis-associated protein 1 
(MTA1) with some important cellular functions in endo-
metrial tissue [247, 248].

Previous data suggests that miR-30 is involved in both 
the physiological (tissue development) and pathogenic 
disease processes [249]. This miR is up-regulated in the 
endometrium and has a negative correlation with fork-
head box P3 (FOXP3), which regulates CXCL12 expres-
sion [250]. On the other side, the immune-tolerant 
environment in the endometrium is associated with 
uNK cells attracted by CXCL12 [208]. One study profiled 
miRNA expression in uterine aspirates collected over-
night before frozen embryo transfer. Park and colleagues 
reported that three miR, miR-891a, miR-198, and miR-
522, were down-regulated in the implantation failure 
cases [251].

All in all, virus alters some cellular and molecular 
processes in the endometrial cells. Viruses by deregula-
tion of cellular miRNAs lead to disruption of the cell 
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microenvironment and many cellular functions such as 
the implantation process.

Conclusion
In this review, we reviewed studies analyzing the role of 
viral infections and miRNAs expression changes in the 
endometrium, which are crucial in the likelihood of suc-
cessful implantation. Although several studies have been 
conducted on factors involved in embryo implantation, 
based on our search the role of viruses and the role of 
interaction of viruses and cellular miRNAs has not been 
investigated in previous studies. All these results suggest 
that viruses play a crucial role in the implantation failure 
process as a confounding factor. However, further studies 
are needed to confirm the role of viral infection and viral-
induced miRNAs in implantation failure.
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