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Abstract: The improvement in childhood cancer treatments resulted in a marked improvement in
the survival of pediatric cancer patients. However, as survival increased, it was also possible to
observe the long-term side effects of cancer therapies. Among these, metabolic syndrome is one of
the most frequent long-term side effects, and causes high mortality and morbidity. Consequently,
it is necessary to identify strategies that allow for early diagnosis. In this review, the pathogenetic
mechanisms of metabolic syndrome and the potential new biomarkers that can facilitate its diagnosis
in survivors of pediatric tumors are analyzed.
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1. Introduction

In recent years, the improvement in childhood cancer treatments and the adoption of
international cooperative treatment regimens, which permit the combination of surgery,
radiotherapy and chemotherapy, resulted in a marked increase in survival [1,2]. In paral-
lel with the increase in survival, increased toxicity was observed, and treatment-related
long-term side effects were noted [3,4]. Chemotherapy, high-dose steroid therapy and
radiotherapy cause long-term toxic effects on numerous organs, including the kidneys,
heart, endocrine system, and ear [5–7]. These treatments are also the cause of chronic in-
flammation and metabolic alterations, resulting in the onset of metabolic syndrome (MetS)
and consequent increase in cardiovascular risk [8]. Cardiovascular-related death is seven
times more frequent in childhood cancer survivors (CCS) than in the general population.
It is the cause of a quarter of all deaths within 45 years of cancer diagnosis [9]. Such a
high incidence explains the need to carry out careful monitoring of CCS to diagnose the
onset of MetS early and implement measures aimed at reducing the risk of cardiovascular-
related death. This review analyzes the pathogenetic mechanisms underlying the onset of
MetS and cardiovascular diseases in CCS and the new biomarkers that allow them to be
diagnosed early.

Research Methods

This research aimed to write an integrative review to summarize the knowledge
currently available on the pathogenesis of MetS and cardiovascular diseases in CCS and
their new diagnostic biomarkers. To reach this goal, we searched for papers dedicated to
biomarkers of MetS and cardiovascular diseases in CCS, and performed a Pubmed-based
retrieval of articles using the search terms “Metabolic syndrome”, “Cardiovascular risk”
and “biomarkers” matched with “cancer survivors” and “biomarkers”. After the original
search, we used filters to select articles available in the English language and articles with
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available full texts. This research retrieved 220 articles. Two operators set the 220 articles
according to the adherence of the title and abstract to the topic.

The literature review was later expanded to search for single biomarkers matched to
“cancer survivors” filtered to select articles available in the English language and articles
with available full texts. This research retrieved 47 articles that the same two opera-
tors analyzed.

A total of 150 papers were obtained and included in the review at the end of this search.
Figure 1 summarizes the research methods.
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2. Pathogenesis of Metabolic Syndrome and Cardiovascular Disease in CCS

MetS is a group of symptoms that includes obesity, impaired glucose tolerance and
dyslipidemia. It is also characterized by inflammatory and prothrombotic states [10,11].
Many definitions describe MetS, but the latest consensus of the International Diabetes Fed-
eration, the National Heart, Lung and Blood Institute and the American Heart Association,
in 2009, defined diagnostic criteria to diagnose MetS for adult patients [12,13]. At least
three of the following are required to diagnose MetS:

• Raised Waist Circumference (population- and country-specific definitions)
• Fasting Plasma Glucose Concentration ≥ 100 mg/dL or on diabetes treatment
• Blood Pressure ≥ 130/85 mmHg, or on antihypertensive treatment
• Triglycerides ≥ 150 mg/dL or on treatment
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• High-density lipoprotein cholesterol < 40 mg/dL in men and < 50 mg/dL in women,
or on treatment.

On the other hand, pediatric patients have no univocal guidelines for the diagno-
sis of MetS. The definitions available now share the following criteria: central obesity,
hypertension, hypertriglyceridemia, low HDL, and impaired glucose [14].

CCS have an increased risk of developing MetS compared to their siblings, and
a 10 times higher risk of developing cardiovascular disease [15]. The pathogenesis of
MetS in CCS is not well known. Still, many studies underline the role of low-grade
chronic inflammation due to cytokine activation released from abdominal fat determined
by the direct action of treatments on organs and the cardiovascular system. Radiotherapy,
chemotherapy and prolonged, high-dose steroid therapy can interfere with metabolic
processes, facilitating the onset of MetS [16].

2.1. Radiotherapy

Cranial radiotherapy causes hypothalamus/hypophysis axis dysfunction, which is
associated with an increased android/ginoide fat ratio and consequential central fat accu-
mulation, which is responsible for releasing inflammatory molecules. High dose cranial
radiation (>30 Gy to the hypothalamic-pituitary axis) determines leptin resistance on
hypothalamic receptors and its increased circulation levels [17]. Leptin is an adipokine
produced by adipocytes and its receptors are predominantly expressed in hypothalamic
nuclei and the arcuate nucleus. After radiotherapy, this structure can be damaged with the
onset of leptin resistance and leptin overproduction by fat tissue [18]. The lack of leptin
action on the hypothalamus causes an increase in adipose tissue, confirmed by the finding
that high circulating levels of leptin are strongly associated with BMI percentiles for age,
sex, and visceral adiposity. The high level of leptin leads to glucose intolerance and insulin
resistance [19]. As a consequence of leptin resistance, CCS exposed to cranial irradiation
have a higher BMI, fat mass, and central adiposity. Moreover, CCS exposed to cranial radia-
tion develop growth hormone (GH) deficiency, which is associated with elevated fasting
insulin, abdominal obesity, and dyslipidemia, independent of radiation dose [20]. There is
no significant difference in BMI and trunk fat between patients who received 0–20 Gy and
those who received >20 Gy cranial irradiation [21]. In addition, GH substitution in patients
with radiation-induced deficiency and a dysregulated hypothalamic-pituitary axis worsens
insulin resistance. GH substitution leads to elevated circadian GH levels, enhancing lipid
oxidation and free fatty acid production [22]. In CCS of leukemia, it is also demonstrated
that the risk of hyperglycemia and insulin resistance is correlated with cranial radiation,
which persists after correcting the data for BMI [23].

Radiotherapy causes an increase in the incidence of MetS in CCS even when it is
performed in other parts of the body. CCS who received abdomen or chest radiation and
steroid therapy have higher central systolic and diastolic blood pressure [24]. The pathogen-
esis is probably associated with direct vascular injury and fibrosis. In one study, patients
exposed to radiotherapy but not to cardiotoxic chemotherapy had decreased left ventri-
cle wall thickness and wall mass similar to those who received anthracyclines [25]. This
mechanism was confirmed by a report that demonstrates the strong association between
abdomen and liver radiation (>15 Gy) and portal hypertension in CCS of Wilms Tumor [26].
Patients exposed to abdomen radiation have the highest risk of developing type 2 diabetes
and insulin intolerance as a result of adipose damage after radiation, which causes cytokine
release and chronic low-grade inflammation. The exact mechanism of irradiation-induced
damage is associated with mitochondrial injury-inducing hyperlipidemia and fat storage
dysfunction [27]. Moreover, in patients with lymphoma treated with abdominal irradiation,
the pathogenesis of diabetes is related to radiation damage in survivors that received
>10 Gy to the tail of the pancreas, resulting in pancreatic insufficiency [28].
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2.2. Steroid Therapy

Steroid therapy is implicated in the pathogenesis of MetS as it causes a higher risk
of developing type 2 diabetes mellitus and glucose intolerance with significant central
fat accumulation, cytokine release and chronic inflammation. Chronic inflammation is
responsible for activating ROS and reactive nitrogen species (RNS), causing DNA damage.
This process leads to vital organ failure with specific consequences: liver steatosis; prema-
ture atherosclerosis, thrombosis and myocardial infarction; osteoporosis and osteopenia;
neurocognitive alteration and neuronal tissue damage [29].

Prolonged steroid-induced hyperglycemia associated with a sedentary lifestyle and
irregular food intake causes permanent diabetes in CCS. The pathophysiology involves
different mechanisms: increased insulin resistance, increased gluconeogenesis, and de-
creased insulin production. Insulin resistance is caused by increasing hepatic gluconeoge-
nesis by activating genes coding for phosphoenol-pyruvate carboxykinase and glucose-
6-phosphatase [30]. Corticosteroids also increase the transport of metabolites across the
mitochondrial membranes, facilitating gluconeogenesis. Moreover, it inhibits peripheral
use of glucose, leading to lipid accumulation in skeletal muscles and increasing free fatty
acid delivery. This mechanism is associated with corticosteroid inhibition of GLUT4 translo-
cation to the cell surface in response to insulin production [31]. Free fatty acids enhance
the inhibition of insulin-dependent glucose uptake by peripherical tissues. In the liver,
the presence of free fatty acids leads to the production of glucose, triglycerides and apoB,
which are atherogenic. In particular, serum apoB is a strong predictor of cardiovascular
risk [32]. Production and secretion of insulin from pancreatic beta cells is influenced by dose,
time of exposure, and administration of corticosteroid treatment. Intravenous infusion
or oral administration at high doses leads to acute inhibition of insulin secretion. More-
over, blood glucose variability during the day also depends on the type of corticosteroid
formulation [33].

2.3. Chemotherapy

Chemotherapy drugs are involved in the genesis of MetS in CCS by their direct
and indirect actions. It is not easy to understand the mechanism through which single
chemotherapeutic agents act in determining MetS, as they are frequently administered
together. However, it is known how some chemotherapeutic agents cause damage to the
cardiovascular system. For example, anthracyclines cause cardiovascular damage and
hypertension due to anthracycline-related cardiotoxicity, which causes left ventricular
pathological remodeling, fibrosis, and afterload abnormalities [34]. Pathophysiology of
doxorubicin-induced cardiomyocyte atrophy and death is related to p53 expression. Dox-
orubicin induces p53 which is necessary for the inactivation of the mammalian target of
rapamycin (mTOR), which in turn is essential for protein synthesis. This leads to myocyte
atrophy and reduction in heart weight [35].

CCS treated with platinum and steroids were strongly at risk of developing insulin
resistance and cardiovascular risk [28,36]. The pathogenesis is associated with the direct
exposure of endothelial cells to platinum, which leads to endothelial cell release of IL-1,
IL-6, IL-8 and GM-CSF. Moreover, IL-1 is able to induce superoxide dismutase (SOD) from
mitochondria which catalyze the conversion of O2 to H2O2, with consequent endothelial
damage [37,38].

Patients affected by Acute Lymphoblastic Leukemia (ALL) receive L-asparaginase dur-
ing induction therapy associated with corticosteroids. L-asparaginase can directly inhibit
insulin biosynthesis, causing impaired intracellular signaling, reducing and modifying
insulin receptors, and indirectly reducing insulin production via induction of pancreatitis
and beta cells destruction. These mechanisms lead to a systemic insulinopenic state and
hyperglucagonemia, enhanced by beta cells cytotoxicity and inflammation [39,40]. Some
additional risk factors such as age and genetic conditions (e.g., Down Syndrome) can
enhance prednisone-asparaginase induced hyperglycemia in ALL patients. For example,
studies demonstrate that ALL patients older than 10 years of age have the highest risk of
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developing MetS. The pathogenesis is probably related to sex hormone excretion during
puberty that can enhance glucose intolerance and insulin resistance [41].

Moreover, all chemotherapy drugs activate inflammatory processes with the accumu-
lation of senescent cells and the increasing of reactive oxygen species facilitates the onset
of MetS [27,42]. Chemotherapy causes mucositis that alters normal intestinal flora, dis-
turbs the microbiome, and causes febrile neutropenia with the consequent need to receive
broad-spectrum antibiotics [43]. The gut environment can interact with the host through
the presentation of various ligands that activate catalytic pathways for the metabolism
of complex carbohydrates that produce short-chain fatty acids, anti-inflammatory and
anti-proliferative lipids. These molecules modulate immune homeostasis in the gastroin-
testinal tract and mucous surfaces. Antibiotic- and chemotherapy-induced alterations in
the gut microbiome contribute to anti-inflammatory dysfunction and increased cytokine
production [44]. This mechanism influences the appearance of MetS.

3. Biomarkers Predictive of Metabolic Syndrome and Cardiovascular Disease in CCS

The definition of MetS includes biomarkers such as an increase in triglycerides, a
reduction in HDL, and impaired glucose, which is defined as a fasting blood glucose of
≥100 and <126 mg/dL, or blood glucose ≥140 and <200 mg/dL at the 2 h mark of the oral
glucose tolerance test [45]. However, the alteration of these biomarkers occurs when the
condition is already in place; for this reason, it is necessary to identify biomarkers capable
of predicting the manifestations related to MetS in advance in order to implement measures
to avoid its appearance.

Based on the pathogenetic mechanisms that lead to the onset of MetS and consequent
increase in cardiovascular risk, in recent years, biomarkers capable of predicting the onset
of Mets were identified in CCS [19]. Among these are the adipokines adiponectin and
leptin, uric acid, the inflammatory markers high sensitivity C-reactive protein (hsCRP),
Tumor Necrosis Factor-alpha (TNF-α), interleukin 1 (IL-1) and interleukin 6 (IL-6), and the
lipid markers apolipoprotein B (apoB) and lipoprotein(a) (Lp(a)) [19].

The mechanisms that lead to an increase/reduction in these biomarkers, the laboratory
systems with which to carry out the measurements, and the reference values are analyzed
below and summarized in Figure 2 and Table 1.

3.1. Adiponectin

Adiponectin is a protein of 244 amino acids produced by adipocytes and, to a small
extent, by cardiac and skeletal myocytes; it is secreted into the bloodstream in three
different forms: a trimer, a hexamer, and a high molecular weight multimer [46]. The
production and secretion of adiponectin is favored by physical exercise and healthy diet,
and is different in the two sexes with greater production in the female sex due to the action
of estrogen on adipose tissue [47]. Once released into the blood, adiponectin binds to
transmembrane receptors called AdipoR1, expressed in skeletal muscles, and AdipoR2,
expressed by hepatocytes, and acts by modulating numerous metabolic processes [46].
At the level of skeletal myocytes, adiponectin increases insulin sensitivity, while in the
liver, it up-regulates glucose transport, down-regulates gluconeogenesis and activates the
oxidation of fatty acids. Adiponectin also increases insulin sensitivity in the liver, and acts
directly on pancreatic cells by increasing insulin secretion [48]. Furthermore, adiponectin
plays a role in the modulation of inflammatory processes in macrophages, endothelial
tissue, muscles and epithelial cells by preventing the production of reactive oxidative
species and inhibiting the secretion of hs-CRP. Through these processes, adiponectin acts in
a protective way against inflammatory diseases such as atherosclerosis and MetS [49,50]. In
fact, adiponectin inversely correlates with intimal thickness [32,51] and with adiposity and
proinflammatory cytokines; low values of adiponectin, especially of the high molecular
weight form, are associated with an increased risk of developing MetS [52]. It was shown
that adiponectin correlates inversely with adiposity in survivors of brain tumors [32], with
the antero-posterior diameter of infrarenal abdominal aorta in survivors of leukemia [51],
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and with the appearance of MetS in pediatric survivors of lymphoma and allogeneic
hematopoietic stem cell transplantation [23,53].
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Figure 2. Mechanisms of action of the biomarkers of MetS. Radiotherapy, chemotherapy and high
dose steroids cause the appearance of weight gain with a consequent increase in the hepatic pro-
duction of apoB, Lp(a) and hs-CRP, a reduction in the production of adiponectin by the adipose
tissue and a simultaneous reduction in the production of leptin, reduction in the production of IL-1,
IL-6, TNF by the immune and non-immune cells, and uric acid. The production of these markers
determines insulin resistance, inflammation, dyslipidemia, production of reactive oxygen species
(ROS), and atherosclerosis.

Table 1. Biomarkers predictive of MetS. The table summarizes the structural characteristics, produc-
tion sites and mechanisms of action of the biomarkers examined.

Biomarkers Structure Production Site Mechanisms of Involvement in MetS Changes in MetS

Adiponectin Protein
Adipose tissue

Cardiac and skeletal
tissue

↑Insulin sensivity
↑Intracellular glucose transport
↑Oxidation of fatty acids
↓ROS and hs-CRP
↓Gluconeogenesis

Reduced

Leptin Protein Adipose tissue ↓Appetite Increased (Leptin
receptor resistance)

Uric Acid Product of purine
metabolism All cells

↑ROS
↑Inflammatory cytokines
↑Insulin resistance
↑Dyslipidemia

Increased
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Table 1. Cont.

Biomarkers Structure Production Site Mechanisms of Involvement in MetS Changes in MetS

hs-CRP Protein Liver cells ↑Inflammation
↑ROS Increased

TNF-α Cytokine Immune and
non-immune cells

↑Hepatic lipid synthesis
↑Adipose lipolisis

↑Cholesterol biosynthesis
↑Inflammation

↑Vascular insulin resistance

Increased

IL-1 Cytokine Immune and
non-immune cells

↑Inflammation
↑Insulin resistance Increased

IL-6 Cytokine
Immune cells
Osteoblasts
Muscle cells

↑Inflammation
↑Insulin resistance
↑Plasma glucose
↑Free fatty acids

Increased

Apo B Transporter protein Liver cells ↑Atherosclerosis Increased

Lp (a) Transporter protein Liver cells

↑Inflammation
↑Atherosclerosis

↑Vascular muscle cells proliferation
↓Fibrinolisis

Increased

↑ indicates an increase in plasma concentration; ↓ indicates a decrease in plasma concentration.

The measurement of adiponectin can be carried out using the enzyme-linked im-
munosorbent assay (ELISA) technique [51]; numerous commercial kits are also available.
Erhardt et al. established age- and sex-specific reference values for serum adiponectin
in normal-weight 3.0–8.9 year old European children [54], and Lausten-Thomsen et al.
developed reference levels for total serum adiponectin in children and adolescents aged
6–18 years [55]. It is usually expressed in µg/mL.

3.2. Leptin

Leptin is a 146 amino acid protein encoded by the ob gene and released from adi-
pose tissue into the blood in quantities directly proportional to the amount of adipose
tissue [56]. Leptin acts to bind a specific receptor present on neuronal, hepatic, pancreatic,
cardiac, and perivascular intestinal tissue. At the brain level, leptin has as its main sites
of action the solitary tract and the ventral tegmental area in the brain stem, where it re-
duces appetite by stimulating neurons secreting proopiomelanocortin and inhibiting the
orexigenic agouti-related protein/neuropeptide Y-containing (AgRP/NPY) neurons [57].
It also regulates the axes of the thyroid gland, gonads, adrenocorticotropic hormone and
cortisol growth hormone, and changes in cognition, emotions, memory, and the entire
brain structure [58,59]. High quantities of leptin are produced in the case of excess adipose
tissue, and this determines the inhibition of the sense of hunger and consequent reduction
in food intake. Leptin deficiency or resistance is associated with dysregulation of cytokine
production, increased susceptibility to infections, autoimmune disorders, malnutrition,
and inflammatory responses [57]. The absence of leptin is the cause of a pathological
condition characterized by severe obesity, hyperinsulinemia and dyslipidemia [60–62].
Leptin plasmatic value is influenced by sex and gender and is greater in females than in
males in both children and adults [63]. In adults, leptin is positively correlated with fasting
insulin concentrations [64] and is a predictor of glucose intolerance, insulin resistance and
MetS regardless of underlying obesity [65]. Furthermore, elevated leptin levels were found
to be a significant predictor of cardiovascular-related death and hypertension [66,67]. In
children, leptin correlates with the onset of MetS. Madeira et al. demonstrated that in
prepubertal children, leptin levels above 13.4 ng/dL were significantly associated with
MetS and that, for every 1 ng/dL increase in leptin levels, the odds of MetS increase by
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3% [68]. In CCS of brain tumors, plasma leptin values were higher than in healthy subjects
and correlate with central fat indicators such as waist-to-hip ratio and waist-to-height
ratio [36]. Additionally, in CCS of leukemia and lymphoma and those who survived to
hematopoietic stem cell transplantation, leptin levels were demonstrated to be associated
with each of the components of MetS [23,69]. The measurement of leptin can be carried
out with the ELISA technique, and numerous commercial kits are available. According to
Gijón-Conde et al., leptin values that identify cardiometabolic abnormality are 23.75 ng/mL
in women and 6.45 ng/mL in men [70]. There is no strong evidence of normal pediatric
leptin values [71]. Savino et al. reported that in a group of 317 infants, the median leptin
concentration was 2.81 ng/mL in infants younger than 6 months of age, 1.44 ng/mL in
infants between 6–12 months of age and 1.77 ng/mL in infants between 12–18 months of
age; in addition, they obtained leptin reference values based on age using estimates of
the lower and upper percentiles and revealed no gender difference in leptin concentration
in early infancy [72]. Instead, Erhardt et al. established age- and sex-specific reference
values for serum leptin in normal-weight 3.0–8.9 year old European children [54]. The most
frequently used unit of measurement is ng/mL.

3.3. Uric Acid

Uric acid is the product of purine metabolism, and it is eliminated from the body in
part via uric acid transporters present in the kidney and intestinal tract [73], and the remain-
der is eliminated via the substrate of hypoxanthine-guanine phosphoribosyltransferase,
which recycles purines [74]. One of the causes of an increase in uric acid serum levels
is the intake of foods and beverages rich in purines such as meat, seafood, alcohol, and
beverages and foods containing high amounts of sugar, such as fructose. Excessive intake
of fructose causes the consumption of large quantities of ATP with the production of ADP
and AMP, which are metabolized, resulting in the production of uric acid [75,76]. Another
cause of hyperuricemia is insulin resistance and high plasma insulin concentrations. In
studies carried out on mice, insulin acts at the renal level favoring the expression of the uric
acid reabsorption system and decreasing the expression of a major urate secretory trans-
porter [77]. In humans, it was widely demonstrated that insulin values correlate with uric
acid values and reduce urinary excretion of uric acid, although the mechanism underlying
this phenomenon is not fully known [78–80]. The excessive concentration of uric acid in
the cells causes an increase in the activity of xanthine oxidase and causes damage to the
mitochondria with a consequent increase in the production of reactive oxygen species [81].
Furthermore, uric acid promotes the production of inflammatory cytokines. The production
of reactive oxygen species and the activation of the inflammatory system stimulates the
well-known process of atherosclerosis, increasing the risk of cardiovascular diseases in
subjects with hyperuricemia [81]. Oxidative stress caused by uric acid, in turn, determines
an increase in insulin resistance, fatty liver, and dyslipidemia resulting in a vicious circle
that causes MetS and an increase in cardiovascular risk [82]. Pluimakers et al. observed that
in CCS of abdominal cancer subjected to radiotherapy, uric acid is a predictive indicator of
MetS and allows the early identification of subjects at risk of developing it [18]. The same ev-
idence was also obtained in the CCS of allogeneic hemato-poietic stem cell transplantation
and leukemia [53,83]. The determination of uric acid in serum can be accomplished using
numerous approaches, such as capillary electrophoresis, fluorometry, chromatography,
electrochemical methods, chemiluminescence, and colorimetry. The colorimetric method is
the most widely used due to its ease of use, high analysis speed, and high sensitivity [84]. In
healthy adults, uric acid must be less than 6.6 mg/dL or 360 µmol/L [85]. Uric acid values
are lower in pediatric patients and should be compared with age- and gender-adjusted
percentiles [86]. It is usually expressed in mg/dL or µmol/L.

3.4. Hs-RCP

Hs-CRP is a pentameric protein synthesized by the liver, whose production is induced
by IL-6 during the acute phase of the inflammatory/infectious process. Hs-CRP carries
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out proinflammatory and also anti-inflammatory activities [87]. It recognizes and pro-
motes the removal of foreign pathogens and damaged cells by binding to phosphocholine,
phospholipids, histone, chromatin and fibronectin. Hs-CRP also activates the classical
complement pathway and phagocytic cells via immunoglobulin Fc receptors, accelerating
the removal of cell debris and damaged or apoptotic cells and foreign pathogens. In some
cases, hs-CRP can amplify tissue damage caused by pathogens or autoimmune diseases by
activating the complement system, and, therefore, inflammatory cytokines [88,89]. It is also
involved in chronic infectious and non-infectious inflammatory processes, and sometimes
mild elevations in hs-CRP can be seen without any systemic or inflammatory disease,
such as in obesity, insomnia, depression, etc. [87]. Insulin resistance, atherosclerosis, and
cardiovascular disease are associated with chronic low levels of systemic inflammation
and hs-CRP levels in adults and children [90]. In CCS, exposure to oncogenic insults
(chemo- and radiotherapy) induce a persistent activation and recruitment of immune cells,
such as lymphocytes and macrophages, determining the production of pro-inflammatory
molecules and amplifying the inflammatory response leading to inflammation, the ac-
cumulation of senescent cells, and the increasing of reactive oxygen species and DNA
mutations [42,91]. This chronic low-grade inflammation facilitates the onset of MetS in
CCS and the general population [92,93]. The close relationship between inflammation and
MetS in CCS is evidenced by numerous studies that show correlations between the values
of hs-CRP with each of the components of MetS [19,94,95]. The measurement hs-CRP can
be performed using immunological tests and laser nephelometry with results reported in
mg/dL or mg/L. When used for cardiac risk stratification, hs-CRP levels below 1 mg/L are
considered low risk. Levels between 1 mg/L and 3 mg/L are considered moderate risk, and
a level above 3 mg/L is deemed to be at high risk for the development of cardiovascular
disease [96,97].

3.5. TNF-α

TNF-α is a cytokine produced by immune and non-immune cells and acts by bind-
ing to the receptors of TNFR1 (constitutively and ubiquitously expressed) and TNFR2,
which is expressed on lymphocytes and endothelial cells, but can be induced in response
to TNFR1 activation and signaling [98]. It is involved in innate and adaptive immunity
and in the normal function of immune cells. Sustained and elevated TNF-α production is
associated with pathogenic inflammatory disease states, including infection-related sepsis
and chronic autoimmune diseases [99]. However, it was seen that TNF-α is abundantly
produced in the adipose tissue in obese subjects and that it has a role in mediating insulin
resistance [100] and regulating metabolism. TNF-α stimulates hepatic lipid synthesis, and
fatty lipolysis in adipose tissue promotes cholesterol and apolipoprotein biosynthesis while
decreasing cholesterol catabolism and excretion as bile acids [101]. In addition, TNF-α pro-
motes hypertension, inducing vascular insulin resistance, reducing vasodilation, increasing
intravascular fluid and vasoconstriction, and promoting sympathetic overactivity [102].
Being involved in such a large number of processes, TNF-α is one of the fundamental
molecules in the pathogenesis of MetS.

In CCS of leukemia, TNF-α was observed to be higher than in controls [43]. Although
the crucial role of TNF in the pathogenesis of MetS is evident, there is currently little
evidence regarding the usefulness of the assay in CCS [19]. The measurement of TNF-α
can be carried out with the ELISA technique, and numerous commercial kits are available.
TNF-α values are higher in children than in adults; however, no well-defined reference
values for age are available [103]. It is usually expressed in pg/mL.

3.6. IL-1

IL-1 is a cytokine with a wide range of biological functions, including acting as
a leukocytic pyrogen, a mediator of fever and a leukocytic endogenous mediator, and
an inducer of several components of the acute-phase response lymphocyte-activating
factor [104–106]. There are two different isoforms of IL-1, IL-1α and IL-1β, which perform
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the same biological functions [107]. IL-1α and IL-1β are produced in a wide variety of
cells, especially in macrophages in lymphoid organs. In non-lymphoid organs, IL-1α and
IL-1β are expressed in tissue macrophages in the lung, digestive tract, liver, glomeruli,
and various specific cell types, including neutrophils, epithelial and endothelial cells,
lymphocytes, smooth muscle cells and fibroblasts [108,109]. In addition to intervening in
the modulation of inflammatory processes and innate immunity, IL-1 plays a role in the
pathogenesis of MetS. High concentrations of glucose and low-density lipoproteins that
are produced in the course of MetS are able to favor the production of IL-1 [110,111], and
IL-1α and IL-1β gene polymorphisms were reported to be associated with central obesity
and MetS [112]. Furthermore IL-1, in particular IL-1β, was observed to have an insulin
resistance action; as identified by Spranger et al. in a group of 27,500 subjects, increased
plasma IL-1β, as well as IL-6 levels, increased the risk of developing type 2 diabetes within
a 2.3 year period [113]. Necrotic adipocytes release “warning signals” capable of activating
the production of IL-1α, which recruits innate immune cells into adipose tissue. Since
adipocyte death is increased in adipose tissue during obesity, IL-1α plays a pivotal role
in the initiation of adipose tissue inflammation during obesity by promoting the chronic
inflammation typical of MetS [114,115]. In adults, IL-1 was shown to be highly expressed in
several types of tumors, including breast, colon, head and neck, lung, and pancreas tumors,
and melanomas [116]. In children with leukemia and a solid tumor, high concentrations
of IL-1 were identified [117,118]. However, there is little evidence of the role of IL-1 in the
pathogenesis of MetS in CCS [19]. The ELISA technique can be used for the assay of IL-1,
and several commercial kits are available. Berdat et al. identified the reference values in
relation to the age of the patients [119]. It is usually expressed in pg/mL.

3.7. IL-6

IL-6 is a 212 amino acids cytokine involved in immune responses and inflammation,
hematopoiesis, bone metabolism, embryonic development, and other fundamental pro-
cesses [120]. It acts on hepatocytes inducing the synthesis of acute-phase proteins such as
hs-CRP, serum amyloid A, fibrinogen, and hepcidin, whereas it inhibits albumin produc-
tion [121]. IL-6 plays an important role in acquired immune response by stimulating anti-
body production and effector T-cell development. IL-6 stimulates megakaryocytopoiesis in
the bone marrow and acts as an osteoclast differentiation modulator [122]. In addition to
these functions, IL-6 plays an important role in various metabolic processes as autocrine
and/or paracrine actions of adipocyte function [123] and is closely linked to MetS favor-
ing the onset of insulin resistance, elevated glucose production in the liver, inhibition
of the insulin-mediated glucose uptake in skeletal muscle, and facilitating the onset of
hypertension [124]. Furthermore, the enlargement of adipose tissue in obesity induces
mechanical stress and hypoxia in adipocytes, resulting in the release of free fatty acids
and inflammatory cytokines such as IL-6 and TNF-α, with the consequent generation of
chronic inflammation and amplification of the pathogenetic mechanisms of MetS [125]. It
is demonstrated that in adults, IL-6 plays a role in the progression and severity of many
forms of cancer [126], and it correlates with poor prognosis in children with neuroblastoma
and acute myeloid leukemia [127,128]. Higher IL-6 values were also found in leukemia
survivors [43]; however, there is not much evidence for the role of IL-6 in the pathogenesis
of MetS in CCS [19]. IL-6 can be assayed using the ELISA technique, as well as several
commercial kits. Berdat et al. identified the reference values in relation to the age of the
patients [119]. It is usually expressed in pg/mL.

3.8. ApoB

Apolipoproteins are a group of proteins involved in transport in the various tissues
of lipids, which are not soluble in plasma [129]. Among these, apoB is responsible for the
transport of chylomicrons, low-density lipoprotein (LDL), very-low-density lipoprotein
(VLDL), intermediate-density lipoprotein (IDL), and lipoprotein(a) [130]. The same gene
encodes two types of apoB: apoB100 is synthesized in the liver and is a component of VLDL
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and LDL; apoB48 is expressed in the intestine and is present in chylomicrons and their
remnants [131]. Of the two forms, apoB100 is the one mainly involved in the formation of
atherosclerotic plaques. ApoB48 transports chylomicrons from the intestine to the liver.
In the liver, free fatty acids generated from chylomicron residues are used to produce
triglycerides incorporated into nascent VLDLs. VLDL particles, each containing a single
molecule of apoB100, are secreted by the liver into the blood. VLDL particles shrink with the
loss of surface components in HDL and are catabolized into IDL by lipoprotein lipase. Then,
IDL is converted to LDL. LDL can be oxidatively modified and absorbed by macrophages,
which leads to excessive accumulation and the formation of foam cells which are the initial
components of atherosclerotic plaques [132]. At least one apoB molecule is present in all
atherosclerotic plaques and for this reason it was proposed as a predictive biomarker of
cardiovascular events. In fact, recent studies show that apoB has a higher sensitivity and
specificity than LDL in predicting cardiovascular events, such as myocardial infarction in
both men and women, independent of age [133]. Patients with high levels of apoB have a
higher BMI, waist circumference, systolic blood pressure, fasting insulin and C-reactive
protein, which are all components of MetS [134], and epidemiological studies show that
apoB predicts the development of type 2 diabetes as much as 3–10 years in advance of
clinical onset [135].

Broberg et al. demonstrated high values of apoB in CCS subjected to a high dose of
anthracycline [136], and the same observation was shown in CCS of leukemia [137].

The ELISA can measure apoB, but this technique may be expensive and time-consuming,
and its accuracy may vary [138]. As an alternative, circulating apoB can be estimated using
an algorithm, but these values are only approximations based on lipid variables such as
the total cholesterol, HDL or LDL, and triglycerides, and their clinical relevance was not
confirmed [139,140]. Yip et al. provided reference interval values for apoB in children and
adolescents [141]. It is usually expressed in mg/dL.

3.9. Lp(a)

Lp(a) is a lipoprotein similar to LDL and contains apo(a) and apoB100 in a 1:1 molar
ratio [142]. As with other lipoproteins, it acts as a lipid transporter. It is involved in
wound healing by binding to fibrin and thus inhibiting fibrinolysis, and transporting
cholesterol to injury sites for cell proliferation during tissue repair [143]. Lp(a), similarly
to apoB, is also involved in the formation of atherosclerotic plaques. In fact, it causes the
activation of inflammatory and prothrombotic processes, and is involved in the formation of
atherosclerotic plaque as it increases the proliferation of smooth muscle cells, increases the
formation of foamy cells, increases the necrotic nucleus and calcification of atherosclerotic
lesions, and upregulates adhesion molecules [144]. In a group of 56,804 participants,
Waldeyer et al. showed that elevated Lp(a) conferred an increased risk for major coronary
events and cardiovascular disease [145]. Bermudez et al. showed an association between
elevated levels of Lp(a) and the onset of MetS [146]; these data were also confirmed by
Paredes et al. [147]. Although the influence exerted by Lp(a) in the genesis of MetS was
demonstrated by numerous studies, there is very limited evidence for the role of Lp(a)
in the pathogenesis of MetS in CCS [19]. Lp(a) can be measured by immunoassay; it is
usually expressed in mg/dl, but the correct measurement is in nmol/L [148]. Langer et al.
established the upper percentile cut-offs for Lp(a) as follows: ages 3 to 6 months, 14 mg/dL;
ages 6.1 to 12 months, 15 mg/dL; ages 1.1 to 9 years, 22 mg/dL; and ages 9.1 to 18 years,
30 mg/dL [149].

4. Effectiveness of Biomarkers in Predicting Metabolic Syndrome and Cardiovascular
Disease in CCS

In a recent meta-analysis, Pluimakers et al. analyzed the diagnostic and predictive
value of MetS-related biomarkers in CCS. They analyzed 175 papers relating to the general
population and five studies relating to CCS. They observed that uric acid, adiponectin, hs-
CRP, leptin, and apoB can be used as biomarkers in MetS screening of CCS to enhance the
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early identification of those at high-risk of subsequent complications [19]. They were also
able to establish the prognostic value of uric acid and hsCRP in predicting the appearance
of MetS. The pooled OR for the association between hyperuricemia and MetS, adjusted for
age and sex, was 2.94 (95%CI 2.08–4.15) with an unadjusted pooled OR per unit increase
in uric acid of 1.086 (95% CI 1.066–1.106). For hsCRP, they defined an unadjusted pooled
AUC of 0.71 (95%CI 0.67–0.74) [19].

Instead, they found no sufficient evidence to confirm the value of candidate biomarkers
Lp(a), IL-1, IL-6, and TNF-alpha, although for them, some relevance was shown in the
general population [19].

At the moment, no other data are available on the efficacy of biomarkers in the
diagnosis of MetS in CCS and we hope future studies will deepen knowledge regarding
this subject. The discovery of an early biomarker of MetS will allow identified individuals
to undertake lifestyle modifications such as a heart-healthy diet and regular exercise [150].

5. Conclusions

MetS is a relevant problem for CCS and is a leading cause of early death. It is currently
possible to implement therapeutic strategies and treatments that block the pathogenetic
mechanisms of MetS. For this reason, the identification of early biomarkers will greatly
improve the survival of CCS. Uric acid and hsCRP are already effective in predicting the
occurrence of MetS, and should therefore be included in CCS surveillance protocols and
performed at all follow-up evaluations.

However, sufficient data are not yet available for the other biomarkers analyzed in the
article, due to the small number of studies available in the scientific literature; future studies
may permit a more thorough definition of their efficacy, guaranteeing an improvement in
the survival of CCS.
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