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Galanin (GAL) is a broad-spectrum peptide that was first identified 37 years ago. GAL,
which acts through three specific receptor subtypes, is one of the most important
molecules on an ever-growing list of neurotransmitters. Recent studies indicate that this
peptide is commonly present in the gastrointestinal (GI) tract and GAL distribution can be
seen in the enteric nervous system (ENS). The function of the GAL in the gastrointestinal
tract is, inter alia, to regulate motility and secretion. It should be noted that the distribution
of neuropeptides is largely dependent on the research model, as well as the part of the
gastrointestinal tract under study. During the development of digestive disorders,
fluctuations in GAL levels were observed. The occurrence of GAL largely depends on
the stage of the disease, e.g., in porcine experimental colitis GAL secretion is caused by
infection with Brachyspira hyodysenteriae. Many authors have suggested that increased
GAL presence is related to the involvement of GAL in organ renewal. Additionally, it is
tempting to speculate that GAL may be used in the treatment of gastroenteritis. This
review aims to present the function of GAL in the mammalian gastrointestinal tract under
physiological conditions. In addition, since GAL is undoubtedly involved in the regulation of
inflammatory processes, and the aim of this publication is to provide up-to-date knowledge
of the distribution of GAL in experimental models of gastrointestinal inflammation, which
may help to accurately determine the role of this peptide in inflammatory diseases and its
potential future use in the treatment of gastrointestinal disorders.
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REVIEW METHODOLOGY

The scientific papers that were reviewed in this article were researched in journal databases as well as
specialized topic websites. Terms that were used in article searches included the pathomechanism of
GAL, its role in the mammalian digestive system and its contribution to ongoing inflammation. The
criteria for inclusion of data for the review required articles to be directly related to the topic of
neuropeptide function and to be peer-reviewed. Both qualitative and quantitative articles were
org January 2021 | Volume 11 | Article 6020701
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reviewed. Quality articles provide insight into the problem and
help understand the causes. In contrast, quantitative articles use
measurable data to form facts and discover patterns in research.
INTRODUCTION

GAL is a neuropeptide with N-terminal glycine and C-terminal
alanine amide. It was first isolated from the sections of the porcine
upper small intestine in 1983 (1, 2). The presence of GAL has been
demonstrated in both the central and peripheral nervous systems
of many mammalian species (1). The action of the peptide focuses
on the modulation of physiological functions, including sleep
regulation, nociception, and cognition. It has been confirmed
that GAL also controls the functioning of the neuroendocrine
system by affecting feeding, thermoregulation, cellular energy
metabolism as well as osmotic and water balance (3–5).

In the mammalian gastrointestinal tract, GAL is described in
the enteric neurons in both the submucosal (SP) and myenteric
plexuses (MP) (6). It was noted that GAL immunoreactive nerve
fibers are present in the mucous layer as well as in the muscle
layers (7). The effect of GAL on the digestive system is multiple.
It is responsible for inhibiting the secretion of active substances
such as somatostatin, insulin, and glucose (1, 8). GAL inhibits
gastric acid secretion and is also involved in the regulation of
gastric and intestinal motility. GAL stimulates and inhibits
gastrointestinal transit and acts directly on smooth muscle cells
or indirectly through activation internal neural pathways (1).
Due to the large number of described physiological functions of
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GAL in the gastrointestinal tract, there is a growing interest in
the role of GAL in the development of gastrointestinal diseases.

The following sections provide a brief overview of GAL
activity in the mammalian digestive tract, both in the
physiological state and as a result of gastrointestinal pathology.
The data collected in this review are necessary to provide an
accurate understanding of the role of GAL in the digestive system
of many animal species. The overview includes information on
this peptide’s role during ongoing inflammation. Due to the
incoming reports on the protective effect of GAL, the collection
of the latest data indicating the involvement of the GAL in the
pathomechanism of the development of digestive disorders will
be helpful for researchers in the field of gastroenterology,
pharmacology, and neurology (9).

The galanin system is widely involved in neuromodulation
and neurotransmission. GAL is the main signaling molecule in
the galaninergic system. The GAL neuropeptide consists of 29
amino acids and contains a C-terminal amidated glycine. In
humans, GAL is composed of 30 amino acids and contains a C-
terminal non-amidated serine (3).

GAL exhibits a variety of biological effects due to three known
galanin receptor subtypes: GAL1, GAL2, and GAL3 (Figure 1).
All galanin receptor subtypes are members of the G protein-
coupled receptor (GPCR) family (10). The receptor subtypes
cause variable signaling activities, which translates into various
physiological effects of galanin. In addition, receptor function
may be slightly changed in different cell populations (10).

GAL1 was the first galanin receptor described and has been
discovered in the human melanoma cells (11). The human GAL1
FIGURE 1 | Biological action of galanin receptors—GalR1, GalR2, and GalR3. AC, adenylate cyclase; CaCC, Ca2+-dependent chloride channel; cAMP, 3′,5′-cyclic
adenosine monophosphate; CREB, cAMP response element binding protein; DAG, diacylglycerol; IP3, inositol triphosphate; MEK, mitogen-induced extracellular
kinase; PDK-1, phosphoinosotide-dependent protein-kinase 1; PIP2, phosphatidylinositol bisphosphate; PI3K, phosphatidylinositol 3-kinase; PKB, protein kinase B;
PLC, phospholipase C.
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protein, consisting of 349 amino acids, is encoded by the
GAL1 gene located on chromosome 18q23 (12). In the rat,
GAL1 contains only 346 amino acids and has 92% similarity with
human galanin receptor type 1 (10).

According to Habert-Ortoli et al., induction of rat or human
GAL1 expressed in transfected cell lines blocks forskolin-
stimulated cAMP synthesis in a pertussis toxin (PTX)-sensitive
manner (11). Receptor biological function is associated with
adenylate cyclase activity and cAMP production (1). In
addition, GAL1 activation opens the G protein-coupled
inwardly-rectifying potassium channels (GIRKs) and stimulates
MAPK (mitogen-activated protein kinase) independently of
protein kinase C, which is susceptible to PTX inhibition (1,
13). Studies also confirm GAL1 activation at the cellular level
induced prolonged activation of extracellular signal-regulated
kinase 1 and 2 (ERK 1 and 2) through Gai-subunits (10). This
action consequently leads to a modification of the cyclin-
dependent kinase inhibitor 1B and 1C (p27Kip1 and p57Kip2)
expression and inhibition of cell proliferation (1, 10).

Galanin receptor type 2 was originally isolated as expressed
cDNA from rat tissue (14). The human receptor consists of 387
amino acids (10). GAL2 activation occurs through a variety of
classes of G-proteins and is associated with the stimulation of
many intracellular pathways. The most described pathway
involves phospholipase C activation (15). Inositol phosphate
hydrolysis is intensified, mediating Ca2+ release into the
cytoplasm from intracellular storage and opening Ca2+

-dependent chloride channels (1).
There is also evidence that the interactions between GAL2

and Gi-type G-proteins are quite ambiguous. Rat GAL2
transfected into Chinese hamster ovary (CHO) cells and
human embryonic kidney 293 (HEK-293) cells did not alter
forskolin-stimulated cAMP accumulation after galanin activity
(14, 15). Galanin-dependent blocking of forskolin-stimulated
cAMP production was noted in CHO cells transfected with rat
GAL2 (14). The same relationship can be noted in HEK-293 cells
population (15).

Interestingly, activation of GAL1, as well as GAL2, inhibits
the cyclic AMP-responsive element-binding factor (16). It has
also been reported that GAL2 signaling pathways react with Go-
type G-protein, resulting in activation of MAPK protein (1).
GAL2 has been shown to be involved in neuronal survival and
apoptosis. It is also associated with the PI3K-Akt pathway
causing inhibition of caspase-3 and caspase-9 activity (17).

Galanin receptor type 3, originally isolated from rat tissue,
encodes for a protein consisting of 370 amino acids (10). It was
also noted that similarity between rat GAL3 and GAL1 molecules
was 36%, and for GAL3 and GAL2 receptors it was 55% (10). In
turn, human GAL3 contains 368 amino acids and has 90%
similarity to the amino acid sequence of rat GAL3 protein (1).

The GAL3 signaling properties are still unclear. GALR3
activity has been described as combining the effects of GAL1
and GAL2 signaling (1). Other studies have revealed that cloned
GAL3 react with Gi/o-type G-protein, which causes PTX-
sensitive stimulation of the internal K+ current during
simultaneous expression with GIRK1 and GIRK4 in Xenopus
oocytes (18).
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DISTRIBUTION AND BIOLOGICAL
FUNCTION OF GALANIN IN THE
GASTROINTESTINAL TRACT

Because GAL was first isolated from the porcine small intestine,
research is still ongoing into the possible peptide function in the
gastrointestinal tract in various species (2). It has been reported
that GAL is widely distributed in the GI and GAL occurrence is
present in enteric structures in many mammalian species, such as
pigs, dogs, rats, and guinea pigs (6, 19, 20). The physiological
levels of GAL in the porcine gastrointestinal tract are shown in
Figure 2.

GAL has many biological effects in the digestive system. GAL
is responsible for inhibiting the secretion of gastric acid and
pancreatic peptides such as insulin, glucagon, and somatostatin
(21–24). In addition, GAL regulates gastrointestinal motility
directly by acting on gastrointestinal smooth muscle cells or
indirectly by neuromodulation and stimulating the synthesis of
other factors (25, 26). The effects of GAL on the functioning of
the gastrointestinal tract are largely determined by the species as
well as the fragment of the digestive tract studied.

The role of GAL in gastrointestinal pathology is also still of
interest. This peptide has gained recognition due to its abundant
distribution in the enteric nervous structures and its activity in
the digestive tract (27). It is widely known that neuromessengers
synthesized by enteric neurons are involved in the development
of gastrointestinal disorders. Many reports have indicated that
communication between the enteric nerves via neurohormones
and GAL plays an important role in the pathogenesis of
gastrointestinal inflammation (27).
ESOPHAGUS

Immunoreactivity to GAL was observed in the esophagus in
many species such as pigs, opossums, rats, guinea pigs, mice, and
humans (6, 20, 28, 29). Studies using the immunofluorescence
staining technique revealed that only single GAL-positive cells
were visible within the muscular esophageal myenteric plexuses
of the rat and mouse (6). However, the presence of GAL-IR
neurons in the submucosal plexus was not observed. It should be
noted that the latter plexus is very rare in the esophagus (6). Very
few fibers staining for GAL in the rat and mouse were found in
esophagus. In pigs, the number of GAL-positive nerve fibers was
the highest in the abdominal esophagus, particularly in the
circular muscle layer (20). It is proven that in this part of the
gastrointestinal tract, GAL is involved in regulatory processes
associated with esophageal peristalsis (30). It inhibits motor
endplates in esophageal striated muscles. In addition, there
have been reports that GAL may reduce mechanosensitivity in
the vagal nerves supplying this part of the GI (31).

Cheng et al. studies on rat models with adriamycin-induced
esophageal atresia revealed an increase in the IR density of GAL
in the experimental group (32). The increased GAL level found
in this study suggests reduced peristalsis and relaxation failure of
the lower esophageal sphincter. This image is similar to organ
January 2021 | Volume 11 | Article 602070
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FIGURE 2 | The following graphic displays the result diagrams of the physiological distribution of galanin in the porcine gastrointestinal tract visualized using
immunofluorescence staining. Esophageal data (dashed bars) are expressed as the number of GAL-positive nerve fibers in the longitudinal muscle layer (LML),
circular muscle layer (CML), and intestinal mucosa (IM). In the stomach, duodenum, jejunum, ileum, colon, and rectum, the results are presented as the percentage
of GAL-IR neurons (grey bars) in the myenteric plexus (MP), inner (ISP), and outer submucosal plexus (OSP). The percentage of neurons was determined by counting
cells showing co-localization of two peptides—PGP 9.5 (a pan neuronal marker) and GAL—in relation to the total number of neurons in a given population.
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achalasia (32). In the esophagus of the opossum, especially in the
abdominal region, GAL is less amplified by peristaltic
contraction (28). It is thought that GAL may selectively affect
the noncholinergic component responsible for esophageal
peristalsis (28). Unfortunately, the mechanism of this blocking
has not been explained. Table 1 provides information on GAL
plasticity in the stomach and esophagus under the influence of
inflammation in various animal species.
STOMACH

In the stomach, GAL is commonly found in both the myenteric
and submucosal plexuses in all parts of the organ (34). The
presence of GAL has been confirmed in studies conducted on
many species such as pigs, mice, rats, dogs, guinea pigs, and
humans (34, 39, 40). Interestingly, significantly more GAL-
positive neurons occur in the gastric submucosal plexuses,
which are primarily responsible for regulating the gastrointestinal
secretory functions (41). However, although extensive fiber systems
staining for GAL were observed in the stomach in the rat, mouse,
and pig, only a few GAL-IR fibers were noted in guinea pigs (6).
Recent studies indicate that GAL affects gastric emptying and
inhibits gastric secretion (37). It is well known that acetylcholine,
somatostatin, histamine, gastrin and many other neurohumoral
substances are involved in gastric acid secretion (42, 43). The
inhibition of gastric acid secretion by GAL is stimulus-specific
because it only inhibits the response to gastrin as well as gastrin-
releasing substances such as neuromedin C (43). GAL infusion
does not affect gastric acid secretion by cholinergic agent or
histamine (43). Research suggests that somatostatin may not play
a significant role in the inhibitory effect of GAL on gastric acid
secretion, because GAL causes a reduction in the somatostatin level
in the stomach and pancreas (41) and is also involved in mucosal
epithelial cell absorption and ion transport (44, 45).

The localization of gastric GAL1, GAL2, and GAL3 proteins
has also been noted, although the level of GAL2 mRNA was most
abundant in the stomach (46). GALRs are closely related to the
modulation of gastric contractility as a result of GAL action. GAL
has been found to inhibit, and then, stimulate motor activity in
the rat stomach, which is the result of stimulation of the GAL1-
dependent pathway (46). In contrast, in vitro studies have shown
Frontiers in Immunology | www.frontiersin.org 5
that GAL has only a stimulant effect, which suggests a non-
neuronal, direct effect on smooth muscles. This action is
probably mediated by GAL2 (46, 47). Studies also suggest that
GALmay play a role in neuromodulation and neurotransmission
(33). It is well known that neuroactive substances secreted from
the same neurons can perform similar functions. Recent studies
show that in the porcine stomach, GAL co-localizes with
vasoactive intestinal peptide (VIP), neuronal nitric oxide
synthase (nNOS) and cocaine- and amphetamine-regulated
transcript peptide (CART), which may suggest that GAL has a
protective effect on cells as well as being involved in regulating
gastric blood flow (34).

Many available reports indicate the effect of gastric disorders
on GAL presence in ENS. Intragastric supplementation of
hydrochloric acid caused an increase in the GAL level in the
porcine prepyloric region (33). Administration of acrylamide in
pigs resulted in a percentage increase in galaninergic neurons
in the cardia, corpus, and pylorus in both enteric plexuses (34).
In porcine diabetes models, an increase in GAL-positive cells was
observed after streptozotocin supplementation in antrum and
pylorus but only in the myenteric plexus. In the submucosal
plexuses, the changes were not statistically significant (35).
However, studies conducted on the diabetic non-obese mice
model have revealed a significant decrease in GAL concentration
in the antrum (36). The authors suggest that GAL levels decrease
in the early stage of diabetes and increase in the later phase which
is associated with organ regeneration (35, 36). Overall and local
levels of GAL and GAL1 expression were down-regulated in
patients with gastric cancer (48). In induced porcine gastric
ulcerations, an increase in GAL level in enteric plexuses was seen
(37). The authors demonstrated that acetic acid administration
resulted in an increase in GAL-IR neurons as well as a statistical
significant increase in expression of mRNA encoding GAL and
GAL1 (37). In the rat, a single cysteamine administration caused
ulcers to appear in the gastric fundus area. This, consequently,
resulted in changes (not statistically significant) in GAL-like
immunoreactivity (49). In the case of intragastric administration
of Brachyspira hyodysenteriae, an increase in the number of
enteric GAL-IR nerve fibers and neurons in the examined
porcine stomach was noted (38). However, studies aimed at
comparing the density of GAL-positive nerve fibers in the
control group and in people with gastric adenocarcinoma
revealed an increase in GAL-IR nerve fibers in a circular
January 2021 | Volume 11 | Article 602070
TABLE 1 | Distribution of galanin in esophagus and stomach in inflammatory conditions.

Organ Species Galanin regulation Experimental model References

Esophagus
Abdominal region opossum Galanin-IR increased Experimentally adriamycin-induced atresia (32)
Stomach
Prepyloric region pig Number of galanin-IR neurons increased Experimentally induced hyperacidity (33)
Cardia, corpus, pylorus pig Number of galanin-IR neurons increased Acrylamide supplementation (34)
Antrum, pylorus pig Number of galanin-IR neurons increased Experimentally induced diabetes (35)
Antrum mouse Galanin concentrations decreased (RIA) Experimentally induced diabetes (36)
Antrum, pylorus pig Increased in number of galanin-IR neurons

Exacerbation of mRNA encoding galanin and GAL1
Experimentally induced ulcerations (37)

Fundus pig Number of galanin-IR nerve fibers and neurons increased Intragastric Brachyspira hyodysenteriae administration (38)
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muscle layer and lamina muscularis mucosae in the disease
group (40).
SMALL INTESTINE

GAL distribution is present in all parts of the small intestine in
many mammalian species such as dogs, pigs, rats, mice, and
humans (6, 41, 50, 51). In addition, the results of an
immunocytochemical study indicate that GAL occurs in all
layers of the porcine, human and rat small intestine, as well as
in enteric plexuses (52). It has also been found that for guinea pig
preparations, there is a visible distal increase in both GAL-IR
fiber density and fluorescence intensity in the small intestine.
Low levels of GAL were seen in the duodenum, while it was
significantly higher in the ileum (6). Studies to determine the
concentration of GAL in individual sections of the small intestine
have shown that the level of GAL increased caudally (6).
Particularly high GAL content was noted in the porcine ileum
(52). In addition, it is well known that GALRs mRNAs are
located in the small intestine (53). In studies performed on rat
preparations, it was revealed that GAL1 is most commonly found
in the ileum. Similar observations were noted for GAL2. The
highest level of GAL3 was recorded in the jejunum (46).

The latest research focuses on the role of GAL in inhibiting
intestinal peristalsis. GAL has an inhibitory effect on cholinergic
and tachykinergic transmission (53, 54). Furthermore, GAL co-
localization with nNOS as well as VIP, major neurotransmitters
of descending neurons, has also been demonstrated (19). Studies
conducted using of guinea pig ileum tissue revealed that GAL1
mediates the cholinergic transmission and intestinal peristalsis
activity (54). Moreover, GAL acts on peristalsis by decreasing its
efficiency (reduction of peak pressure as well as longitudinal
muscle contraction) and reducing the intestinal wall compliance
by activating GAL1 (54). GAL has also been shown to inhibit
depolarization-induced an increase in the Ca2+ concentrations in
Frontiers in Immunology | www.frontiersin.org 6
cultured myenteric neurons. GAL1 is responsible for this effect,
which mediates the inhibition of Ca2+ influx through voltage-
dependent Ca2+ channels (53).

It is well known thatmost of the small intestine neuroendocrine
peptides are synthesized in the duodenum (50). Many studies are
aimed at proving that pathological conditions in the duodenum
significantly affect GAL levels, and this peptide is involved in the
development of damage and/or their repair. Table 2 shows the
regulation of GAL in the small intestine during various
inflammatory conditions. Acrylamide supplementation in pigs
resulted in GAL level increases in all enteric plexuses at both
high (5 µg/kg b.w./day) and low (0.5 µg/kg b.w./day) doses per 28
days (7). The same observations were noted during long-term
treatment with naproxen in pigs (50). Additionally, Strom et al.
have proven that the estradiol treatment of ovariectomized rats
resulted in higher levels of immunoreactive galanin in the gut,
except in the jejunum (8, 67). In chronic alcoholism in humans, an
increase in the density of GAL-positive fibers has been noted,
especially in the submucosa of the distal duodenum (56). While
there was a clear increase in the density of galaninergic fibers, the
results were not statistically significant; most likely due to limited
sample size. On the other hand, the proportion of GAL-IR nerve
fibers is significantly decreased in the duodenum of type 2 diabetic
mice (68). Since GAL is responsible for inhibiting intestinal
motility, the authors suggest that it may be involved in peristalsis
changes that are observed in people who abuse alcohol (56).
Bisphenol A administration increased GAL level in porcine
myenteric neurons, but decreased GAL distribution in
submucosal plexuses (57). However, in NOD mouse, an animal
model of human diabetes type 1, a decrease in GAL concentration
in the duodenum was observed (55).

According to research by Zacharko-Siembida et al.,
supplementation with red kidney bean (Phaseolus vulgaris)
lectins resulted in a statistically significant increase in GAL
distribution in submucosal neurons (79.1 ± 5.3% in experimental
vs. 56.8 ± 6.4% in control) in porcine jejunum. Changes in the
January 2021 | Volume 11 | Article 602070
TABLE 2 | Presence of galanin in small intestine during various inflammatory conditions.

Organ Species Galanin regulation Experimental model References

Duodenum
Mouse Galanin concentration decreased (RIA) Experimentally induced diabetes (55)
Pig Number of galanin-IR neurons increased Experimentally naproxen-induced inflammation (50)
Human Density of GAL-IR nerve fibers increased in submucosa Chronic alcoholism (56)
Pig Number of galanin-IR neurons increased in MP and decreased in SP Bisphenol A supplementation (57)

Jejunum
Pig Number of galanin-IR neurons increased in SP and decreased in MP Supplementation with red kidney bean (Phaseolus vulgaris)

lectin
(58)

Pig Number of galanin-IR neurons increased Bisphenol A supplementation (59)
Rat No changes of galanin levels (IHC) Syngeneic small bowel transplantation (60)

Ileum
Pig Number of galanin-IR neurons increased Proliferative enteropathy (61)
Pig Density of GAL-IR nerve fibers and galanin concentration increased Intestinal Brachyspira hyodysenteriae infection (62)
Rat Submucosal and myenteric neurones expressing galanin mRNA

increased
Number of galanin-IR neurons increased

Experimentally induced ileal hypertrophy (63)

Pig Density of GAL-IR nerve fibers decreased in circular muscle layer ZEN supplementation (64)
Pig Number of galanin-IR neurons increased Acrylamide supplementation (65)
Rat No changes of galanin expression (IHC) Buserelin-induced enteric neuropathy (66)
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enteric cells of the myenteric plexuses were not observed (58).
Lectins have been shown to interfere with several aspects of
intestinal physiology, including absorption and secretion (69). It
is not surprising that their administration caused changes in GAL
level, which is involved in the regulation of intestinal secretion.
However, the administration of bisphenol A at both low and high
doses revealed an increase in the number of GAL-positive neurons
in all enteric ganglia in the analogous segment of the intestine (59).
The authors suggest that the increase in GAL presence in the
porcine jejunum is closely related to theneuroprotective properties
of the peptide. Syngeneic small bowel transplants in a rat, aimed at
demonstrating changes in the functioning of the jejunal enteric
nerves without the effect of the immune system, revealed that the
density and distribution of GAL-IR nerve fibers did not change
within 10 days, 100-day, or 400-day isografts (60). This may
suggest that immunological factors affect GAL level in
diseased tissues.

Enteric neurons are known to show a high degree of
plasticity in response to inflammation. In the porcine ileum,
Lawsonia intracellularis infection caused proliferative
enteropathy, which resulted in changes in GAL distribution
(61). Immunofluorescence staining also showed an increase in
the number of GAL-containing neurons in each enteric plexus
(61). The same observations were noted in the ileum of a pig after
Brachyspira hyodysenteriae infection (62). The study showed that
in the experimental group, the GAL concentration in the mucosa
was significantly higher. GAL-positive nerve fibers were mainly
found in the interfollicular regions of Peyer’s patches in the
mucosa and intestinal villi and as well as in the dome areas of
the follicles. These are regions where T lymphocyte
subpopulations (CD2+, CD4+, CD5+, CD8+, TCR-g+) can be
found (62). This suggests that GAL may be involved in T-cell
function in the ileum. It is assumed that GAL is involved in the
functioning and interaction between the neurological and
immune systems (62). This peptide probably acts through
GAL1 and GAL3, exerting antiproliferative and proapoptotic
effects (70). A significant increase in GAL level was observed in
rat hypertrophic ileum compared to the control tissue (63). GAL
immunoreactive nerve cells in myenteric plexuses increased
threefold while GAL mRNA expressing neurons showed an
almost sevenfold increase. By in situ hybridization, the
percentage of submucosal neurons expressing GAL mRNA
increased from 8% in the control to 22% after obstruction (63).
The increase in GAL level in this part of the intestine was also
caused by the oral administration of acrylamide (a potential
carcinogenic compound formed in food products subjected to
high temperature) in pigs (65). However, the administration of
low doses of zearalenone (ZEN)—an estrogenic mycotoxin—
caused a decrease in the amount of GAL immunoreactive nerve
fibers within the circular muscle layer of porcine ileum (64).
Because the expression of protective neuromessengers, including
GAL, increases during most pathological stimuli, it can be
assumed that low doses of ZEN did not trigger the protective
mechanisms in the pig ileum (64). Interestingly, the buserelin
treatment (model of enteric neuropathy) in rats did not cause
changes in the presence of GAL or other neurotransmitters (66).
In contrast, the authors noted a significant loss of enteric
Frontiers in Immunology | www.frontiersin.org 7
neurons. These observations suggest that neuronal loss is not
selective. ENS has adaptive properties and strives to preserve its
original set of neuronal subpopulations as well as its distribution
and density of nerve fibers (66).
LARGE INTESTINE

GALdistribution is noticeable in the large intestine. There aremany
studies in the literaturedescribing the roleofGAL in thecolon,while
the GAL function in the cecum and rectum is almost unknown.

The presence of GAL-positive colon nervous structures is seen
in rats, mice, pigs, guinea pigs and humans (5, 6, 71–73). Studies
show that GAL level is significantly higher in submucosal neurons
than in myenteric neurons (73). In pigs, the number of GAL-
positive neurons amounts to 11.20% in the colon myenteric
plexuses, while in the inner submucosal plexuses 4.03% of GAL-
immunoreactive neurons have been shown (73). Similar changes
were seen in the guinea pig colon (6). GAL-positive nerve fibers,
often innervating walls of blood vessels, were found in greater
quantity in the submucosal layer in the pig and guinea pig (6).
Studies have revealed that a much higher density of GAL-
immunoreactive nerve fibers was found in the colon circular
muscle layer, whereas only a few single fibers could be detected
in the longitudinal muscle layer in pigs, rats, guinea pigs and mice
(6, 73). According to the results obtained byAnselmi et al., all three
types of GAL receptors are found in the rat colon. Interestingly, a
particularly high level of GAL1s mRNA was described in this part
of large intestine (46). Since GAL1 is particularly involved in
intestinal peristalsis, it is suggested that in the colon it is also
largely responsible for GAL binding and affects intestinal
contractility (46). In the human colonic epithelial cell line T84,
GAL1 was the only expressed GALRs and its activation caused
chloride secretion (74). In addition, based on the observations that
the nuclear factor kB (NF-kB) increases GAL1 expression, it has
been shown that this receptor is involved in gastrointestinal
inflammation (74). It is also suggested that GAL and GAL1 are
important mediators of the colonic fluid secretion in diarrhea
caused by various intestinal pathogens (75).

Colitis is inflammation of the large intestine, which is
characterized by multiple etiology. Each inflammatory factor
causes a unique pattern of pathological development, which
include changes in neuromessenger expression, including GAL.
Table 3 shows the plasticity of GAL in the large intestine in
various experimental models. In a study to determine the change
in GAL distribution as a result of inflammation caused by long-
term administration of trinitrobenzene sulfonic acid, an increase
in GAL immunoreactivity was observed (77). Human
diverticulitis in the colon also revealed an increase in GAL
level as a result of the development of inflammation (79).
These observations are similar to the results of Gonkowski
et al. studies performed on the porcine model (73). Formalin
injection- and axotomy-induced colitis showed an increase in
GAL-positive enteric neurons and nerve fibers (73).
Interestingly, Matkowskyj et al. showed that infection with
Salmonella typhimurium causes an increase in the immunoreactivity
of GAL and GAL1 in the enteric nervous system (78). These changes
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are closely associated with increased NF-kB expression, which may
suggest its involvement in the GAL synthesis in the ENS (78). It is
also significant that an increased level of GAL1-immunoreactivity
was observed in the dextran sulfate sodium model of murine
colitis (80).

Recent research suggests that GAL may be considered a
biomarker of colon cancer. In studies aimed at determining
serum GAL levels in patients with colon cancer compared to
serum from non-cancerous controls revealed a significant
increase in its level in the case of colon adenocarcinoma (81).
The GAL level in healthy patients was 25.6 ± 14.5 ng/ml, while in
those with colon cancer, it was significantly higher (41.4 ± 19.0
ng/ml) (81). Additionally, GAL overexpression was noted in all
colon adenocarcinoma cells tested (LOVO, HCT116, SW480, and
SW620 cells), but not in the A549 lung cancer cell line, OVCAR3
and SKOV3 ovarian cancer cell lines, or the HS1 testicular cancer
cell line (81). Because GAL inhibits cell proliferation, an increase
in its synthesis may be associated with the activation of protective
mechanisms in patients with colon adenocarcinoma (81, 83).

However, Godlewski and Pidsudko noted a decrease in GAL
levels in colorectal carcinoma tissues compared to the control
group, as well as an increase in GAL presence within MP neurons
(71). This may suggest a possible role for GALergic innervation
in the development of the clinical symptoms reported by patients
suffering from colorectal cancer (71, 84). The most frequent
reported adverse complaints are alternating constipation and
diarrhea. The exact mechanism of these effects is not well known,
but it may result in an increase in the contractile activity of the
cancer-infiltrated section of the intestine, caused by altered (and
partially damaged) innervation of the colon wall, causing
disturbances in intestinal peristalsis (71, 84).

The presence of GAL has been demonstrated in the cecum.
Studies have revealed that a significant population of GAL-
positive cells showed significant co-localization with choline
acetyltransferase (ChAT)-IR neurons (76). Since acetylcholine
is necessary to maintain intestinal motility, a similar role of GAL
in this part of the intestine can be assumed (85). In studies
carried out on mouse and rat preparations, GAL-positive nerve
fibers were found in the caecum, particularly well visualized in
the enteric plexuses (6). A significant number of GAL-IR nerve
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fibers have been reported in the circular muscle layer of the
human caecum (86). A small population of these structures co-
expressed with CART. Research suggests that CART is a
neuromodulator in the digestive tract, and is involved in
contractility and neuroprotection (87, 88). It is widely accepted
that the co-location of two neurotransmitters is associated with
similar biological effects in the caecal enteric nervous system.

Knowledge of changes in GAL distribution due to pathological
changes in the cecum is limited. In pigs, dietary treatment with
Pediococcus acidilactici was not associated with significant
quantitative changes in GAL-positive neurons and glial cells in
the cecum (76). Double immunofluorescence, used to identify the
nature of neurons, revealed that 100% of GAL-IR positive neurons
exhibit positive staining against ChAT in submucosal plexuses.
This dependence only applies to GAL-positive cells vs ChAT-IR
neurons, but not vice versa (76). TheGAL function in this segment
of the intestine, as well as its interaction as a result of dysfunction,
still needs to be determined.

In the rectal area, GAL presence has been found in humans,
pigs, mice, rats, guinea pigs and calves both in enteric plexuses
and in nerve fibers (6, 71, 89). In bovine preparations, neurons
containing both GAL and VIP were located near the glands and
blood vessels. Most likely, these cells perform vaso- and
secretomotor functions (89). This is in line with reports
describing similar neurons in pigs and guinea pigs (90, 91).

There is very little information in the available literature
regarding changes in GAL levels during pathological
conditions in the rectum. In rectal biopsy samples of human
immunodeficiency virus (HIV)-seropositive and HIV-
seronegative patients, increased GAL immunoreactivity in the
muscularis mucosa was observed in the study group, but these
changes were not statistically significant (82).
REGENERATIVE EFFECT OF GALANIN IN
THE GASTROINTESTINAL TRACT

GAL has numerous pleiotropic biological effects, including
involvement in protective and regenerative processes in the
gastrointestinal tract. Yamaguchi et al. demonstrated that GAL
TABLE 3 | Distribution of galanin in large intestine in various animal experimental model.

Organ Species Galanin regulation Experimental model References

Cecum
Pig No changes of galanin expression (IHC) Dietary supplementation with Pediococcus acidilactici (76)

Colon
Rat Galanin-LI increased in mucosa and muscular layer (IHC) Experimentally induced colitis (administration of trinitrobenzene sulfonic

acid)
(77)

Pig Number of galanin-IR nerve fibers and neurons increased Formalin injection- and axotomy-induced colitis (73)
Mouse Galanin-LI and GAL1 level increased (IHC) Infection with Salmonella typhimurium (78)
Human GAL-LI increased (IHC) Chronic diverticulitis (79)
Mouse GAL1-immunoreactivity increased Dextran sulfate sodium-induced colitis (80)
Human Galanin level increased (PCR) Colon adenocarcinoma (81)

Rectum
Human GAL level and number of galanin-IR myenteric neurons

decreased
Colorectal carcinoma (71)

Human GAL-LI increased (IHC) Human immunodeficiency virus infection (82)
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promotes mucosal‐type mast cell (MMCs) differentiation in vivo.
The authors suggest that GAL that is released from the
submucosal plexus may contribute to the proliferation and
differentiation of MMCs during ongoing enteritis (92). In a rat
model of experimentally induced acute colitis via 2,4,6-
trinitrobenzenesulfonic acid (TNBS), GAL administration
resulted in a reduction in macroscopic damage in the colonic
mucosa (93). The authors also noted reduced myeloperoxidase
activity and a reduction in the degree of polymorphonuclear
neutrophil infiltration, as well as a decreased TNF-a levels and
expression of inducible nitric oxide synthase (93). The anti-
inflammatory effect of GAL has been demonstrated in chronic
TNBS-induced colitis. In another study on acute colitis, the
reduction in myeloperoxidase activity and TNF-a levels was
less pronounced (9). This suggests that the anti-inflammatory
effect of GAL is enhanced in the acute stage of the disease.

As a result of GAL administration, diarrhea decreased in
acute TNBS-induced colitis in the rat (9). However, the research
of Marrero et al. revealed that in dextran sulfate-induced colitis
in mice, GAL supplementation led to increased fluid secretion
(80). These differences may be due to other routes of GAL
administration as well as to the dosing schedule. However, in
both Salmonella infection and Rhesus rotavirus infection, GAL
treatment increased fluid secretion (75, 94). The same
observations were noted in cultured human colon epithelial
cells exposed to pathogenic E. coli (95). It has been proven that
diarrhea associated with fluid secretion disorder does not occur
in GAL1 knockout mice and that this disorder is of no
importance for the development of the inflammatory response
following microbial infection (75, 94). According to Matkowskyj
et al., an increase in myeloperoxidase activity in the colon of
GAL1 knockout mice after experimentally induced Salmonella
infection suggests that GAL1 mediates the anti-inflammatory
GAL response in innate immunity in the colon (75).

GAL treatment may affect the volume and mass of cancerous
tumors (96). In the rat model, GAL injection in gastric or colon
cancer resulted in a significant inhibition of carcinogenicity (96,
97). Interestingly, the number of blood vessels was clearly
reduced in mice receiving continuous intraperitoneal GAL
infusion compared to the control group (97). In vitro GAL
stimulation of tumors resulted in a reduction in viable cells
and the proliferation rate (98). Because GAL inhibits cell
proliferation, low GAL level may promote cancer growth and
lymph node metastasis. Kozłowska et al. proved that the
mechanism of gastric myenteric plexuses degradation in cancer
Frontiers in Immunology | www.frontiersin.org 9
patients was increased, which was correlated with an increased
expression of CASP3 or CASP8 (99). These changes were
accompanied by a decrease in GAL immunoreactivity (100). It
is suggested that reduced GAL levels may be a marker of gastric
carcinogenicity in the future.
CONCLUSION

The current literature indicates that GAL plays an essential role in
many physiological functions of the digestive tract. However, little
information is available on the effects of GAL and its receptors on
the esophagus and the large intestine.GAL isundoubtedly involved
in the regulation of inflammatory processes through neuronal
mechanisms or direct receptor-mediated cellular effects. Galanin
may also have a direct non-receptor-mediated action on cells to
alter the cellular expression levels of other peptides.

The importance of GAL as an inflammatory modulator in
gastrointestinal tract is confirmed by data obtained from several
experimental models for the study of inflammation. Numerous
studies and observations irrefutably point to the fact that GAL
suppresses the inflammatory response by regulating various
mechanisms of innate immunity, such as the production of
pro-inflammatory cytokines. It seems therefore attractive to
speculate that the reaction to an exacerbated inflammatory
response is an increase in GAL expression in order to restore
homeostasis. Understanding the mechanism of GAL action may
allow the development of new therapeutic agents or the
identification of drug targets to treat inflammatory diseases.
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47. Juréus A, CunninghamMJ, Li D, Johnson LL, Krasnow SM, Teklemichael DN,
et al. Distribution and regulation of galaninlike peptide (GALP) in the
hypothalamus of the mouse. Endocrinology (2001) 142:5140–4.
doi: 10.1210/endo.142.12.8542

48. Zhang L, Fang P, Chai C, Shao L, Mao H, Qiao D, et al. Galanin expression is
down-regulated in patients with gastric cancer. J Int Med Res (2019) 47
(3):1241–9. doi: 10.1177/0300060518819382

49. Evangelista S, Renzi D, Tramontana M, Surrenti C, Theodorsson E, Maggi
CA. Cysteamine induced-duodenal ulcers are associated with a selective
depletion in gastric and duodenal calcitonin gene-related peptide-like
immunoreactivity in rats. Regul Pept (1992) 39(1):19–28. doi: 10.1016/0167-
0115(92)90004-E

50. Czajkowska M, Rychlik A, Całka J. Long-term treatment with naproxen
changes the chemical coding of the porcine intramural duodenum neurons.
Ann Anat (2020) 227:151425. doi: 10.1016/j.aanat.2019.151425
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Immunolocalization of NOS, VIP, galanin and SP in the small intestine of
suckling pigs treated with red kidney bean (Phaseolus vulgaris) lectin. Acta
Histochem (2013) 115(3):219–25. doi: 10.1016/j.acthis.2012.06.010

59. Szymanska K, Gonkowski S. Neurochemical characterization of the enteric
neurons within the porcine jejunum in physiological conditions and under the
influence of bisphenol A (BPA). Neurogastroenterol Motil (2019) 31(6):
e13580. doi: 10.1111/nmo.13580

60. Hirose R, Taguchi T, Hirata Y, Yamada T, Nada O, Suita S.
Immunohistochemical demonstration of enteric nervous distribution after
syngeneic small bowel transplantation in rats. Surgery (1995) 117(5):560–9.
doi: 10.1016/S0039-6060(05)80256-9

61. Pidsudko Z, Kaleczyc J, Wasowicz K, Sienkiewicz W, Majewski M, Zajac W,
et al. Distribution and chemical coding of intramural neurons in the porcine
ileum during proliferative enteropathy. J Comp Pathol (2008) 138(1):23–31.
doi: 10.1016/j.jcpa.2007.09.003

62. Kaleczyc J, Podlasz P, Winnicka A, Wasowicz W, Sienkiewicz W, Zmudzki J,
et al. Characterization of autonomic nerve markers and lymphocyte subsets in
the ileal Peyer’s patch of pigs infected experimentally with Brachyspira
hyodysenteriae. J Comp Pathol (2010) 143(4):248–57. doi: 10.1016/j.jcpa.
2010.04.003

63. Ekblad E, Sjuve R, Arner A, Sundler F. Enteric neuronal plasticity and a
reduced number of interstitial cells of Cajal in hypertrophic rat ileum. Gut
(1998) 42(6):836–44. doi: 10.1136/gut.42.6.836

64. Gonkowski S, Obremski K, Calka J. The Influence of Low Doses of
Zearalenone on Distribution of Selected Active Substances in Nerve Fibers
Within the Circular Muscle Layer of Porcine Ileum. J Mol Neurosci (2015) 56
(4):878–86. doi: 10.1007/s12031-015-0537-2
Frontiers in Immunology | www.frontiersin.org 11
65. Palus K, Obremski K, Bulc M, Całka J. The impact of low and high doses of
acrylamide on the intramural neurons of the porcine ileum. Food Chem
Toxicol (2019) 132:110673. doi: 10.1016/j.fct.2019.110673

66. Sand E, Roth B, Weström B, Bonn P, Ekblad E, Ohlsson B. Structural and
functional consequences of buserelin-induced enteric neuropathy in rat. BMC
Gastroenterol (2014) 14:209. doi: 10.1186/s12876-014-0209-7

67. Strom JO, Nilsson T, Theodorsson E. Effects of 17b-estradiol on galanin(1-
29)- and galanin(1-16)-like immunoreactivities. Peptides (2013) 43:1–7.
doi: 10.1016/j.peptides.2013.01.016

68. Abot A, Lucas A, Bautzova T, Bessac A, Fournel A, Le-Gonidec S, et al.
Galanin enhances systemic glucose metabolism through enteric Nitric Oxide
Synthase-expressed neurons. Mol Metab (2018) 10:100–8. doi: 10.1016/
j.molmet.2018.01.020
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