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ABSTRACT
This study aimed to establish the number of expression-based molecular subclasses in cutaneous
melanoma, identify their dominant biological pathways and evaluate their clinical relevance. To this
end, consensus clustering was performed separately on two independent datasets (n = 405 and n = 473)
composed of publicly available cutaneous melanoma expression profiles from previous studies. Four
expression-based molecular subclasses were identified and labelled ‘Oxidative phosphorylation’,
‘Oestrogen response/p53-pathway’, ‘Immune’ and ‘Cell cycle’, based on their dominantly expressed
biological pathways determined by gene set enrichment analysis. Multivariate survival analysis revealed
shorter overall survival in the ‘Oxidative phosphorylation’ subclass compared to the other subclasses.
This was validated in a third independent dataset (n = 214). Finally, in a pooled cohort of 76 patients
treated with anti-PD-1 therapy a trend towards a difference in response rates between subclasses was
observed (‘Immune’ subclass: 65% responders, ‘Oxidative Phosphorylation’ subclass: 60% responders,
other subclasses: <50% responders). These findings support the stratification of cutaneous melanoma in
four expression-based molecular subclasses.
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Introduction

Despite the introduction of new systemic therapies, around
40% of patients with advanced cutaneous melanoma still die
within the first year after initiation of systemic therapy.1

Therefore, a need for novel treatment strategies remains.
A promising approach to guide the development of novel
therapeutic strategies is the stratification of tumours into
gene expression-based subclasses.2 Jönssen et al. identified
four subclasses that were associated with overall survival
(OS) in 57 stage IV melanoma patients.3,4 In 333 mRNA-
sequencing (mRNA-seq) samples from The Cancer Genome
Atlas (TCGA), three subclasses were identified. These sub-
classes were univariately associated with post accession survi-
val, defined as time from date of sample collection until
death.5 Finally, single-cell RNA-seq of 1,246 melanoma cells
obtained from 14 patients identified two subclasses.6

Generally, subclasses have been assigned a biological annota-
tion based on a limited subset of genes and their prognostic
value has been assessed in limited numbers of patients or
without adjustment for validated prognostic factors.

A previous attempt by Lauss et al. to determine the similarity
between subclasses showed only a limited overlap in genes
(n = 34) between the genes used to define the molecular

subclasses in TCGA (n = 1465) and Lund (n = 452).7 Sample
classification between the TCGA and Lund schemes applied in
four datasets showed a limited overlap. As described above,
research in melanoma has provided conflicting results concern-
ing the number and biological nature of such subclasses. Finally,
the association between subclass assignment and response to
anti-PD-1 therapy has not previously been assessed.

Our hypothesis was that with a large pooled analysis of
multiple datasets the number of subclasses in cutaneous mel-
anoma could be identified with more certainty. In addition,
we hypothesized that this refined sub classification of mela-
nomas would be related to tumour biology and that the
subclasses would have potential prognostic and predictive
value for the individual patient. Therefore, the aim of this
study was to refine expression-based molecular subclasses in
cutaneous melanoma and to identify their dominant biologi-
cal pathways. To this end, we applied the same consensus
clustering procedure from the ground up in two independent
datasets. Next, we extensively characterized the identified
subclasses at the individual gene and biological pathway
level. Furthermore, we assessed their prognostic value, which
we validated in a third independent dataset, and evaluated
their association to response to anti-PD-1 therapy.
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Results

Data acquisition

We extracted 405microarray gene expression profiles (Affymetrix
HG-U133A or HG-U133 Plus 2.0) and available clinical data of
patients with cutaneous melanoma from the Gene Expression
Omnibus (GEO) and labelled these as the GEO-dataset.
Additionally, the mRNA-seq and clinical data from the cutaneous
melanoma set fromTCGAwere collected, containing 473 samples
representing 469 patients. This dataset was labelled the TCGA-
dataset. A third independent dataset containing 214 samples
(IlluminaHumanHT-12)was obtained fromGEOaccessionnum-
ber GSE65904 and labelled the Cirenajwis-dataset. Finally, pro-
cessed expression data from pre-treatment melanomas obtained
from patients undergoing anti-PD-1, anti-CTLA-4 or anti-PD-1/
anti-CTLA-4 combination therapywas obtained fromGEOacces-
sion numbers GSE78220 (Hugo-dataset), GSE91061 (Riaz-
dataset) and GSE115821 (Auslander-dataset).

The GEO-dataset contained more stage III/IV samples (~90%)
compared to the TCGA-dataset (~41%) and fewer stage I/II sam-
ples (~5%) compared to the TCGA-dataset (~50%) (Table 1). In
the GEO-dataset 14% of samples (n = 55) were obtained from
primary tumours, 27% (n = 108) from (sub)cutaneous or in transit
metastases and 47% (n = 191) from metastases in distant or
regional lymph nodes, viscera, or an unknown location. In 13%
of samples (n = 51) it was unknown whether the biopsy was taken
from a primary tumour or metastatic lesion. In the TCGA-dataset
22% of samples (n = 102) were obtained from primary tumours,
47% (n = 222) from regional lymph nodemetastases, 21% (n = 99)
from (sub)cutaneous or in-transit metastases and 9% (n = 43)
fromdistantmetastases in soft tissue, distant lymphnodes, viscera,
bones, CNS or an unknown location. Of the biopsies taken from
primary tumours, 69% (n = 70) were staged as stage I/II disease
and of the biopsies taken from regional lymph node metastases
42% (n = 94) were staged as stage III disease. Of all samples in the
TCGA-dataset, 28% (n = 130) were obtained within 30 days and
39% (n = 182) within 90 days after the time of diagnosis. However,

it should be noted that 59% (n = 277) of the tumour biopsies in the
TCGA-dataset were taken more than 90 days later than the
moment of initial diagnosis and staging, and therefore not always
optimally reflect the tumour biology at time of initial diagnosis.
According to the available data, 3% of patients (n = 12) in the
TCGA-dataset were treated with BRAF/MEK-inhibitors, 4% were
treated with immune checkpoint inhibitors (n = 19) and 9% were
treated with chemotherapy (dacarbazine or other; n = 44). Of all
patients 15% (n = 69) were treated with other systemic therapies
such as interferon and interleukin-2 or with vaccination therapy.
In 69% of patients (n = 325) no data on systemic therapy was
available. Of these patients, 48% (n = 156) had stage I/II disease
and 36% (n = 117) had stage III disease. Therefore, it can be
assumed that these patients were treated with local excision of
the tumour, with or without lymph node dissection and/or radio-
therapy and did not receive systemic therapy. The remaining
patients were either staged as stage IV disease (n = 20) or had an
unknown tumour stage (n = 26). It was unknown if these patients
received systemic therapy.

The Cirenajwis-dataset consisted solely of samples obtained
from patients with stage III/IV disease. Treatment data in the
Cirenajwis-dataset was not available. The Hugo-dataset consisted
of 27 pre-treatment tumour samples from patients treated with
anti-PD-1 therapy. In the Riaz-dataset, 49 pre-treatment tumour
samples were available obtained from patients treated with anti-
PD-1 therapy and in the Auslander-dataset six pre-treatment
samples were available obtained from three patients treated with
anti-PD-1 therapy. Relevant sample, patient and treatment char-
acteristics for all datasets are provided in Supplementary Table 1.

Consensus clustering

We identified four consensus clusters in the GEO-dataset, with
clustering stability increasing up to four clusters (Figure 1(a)
Supplementary Fig. S1A-C). In the TCGA-dataset we observed
a more gradual levelling of clustering stability (Figure 1(b),
Supplementary Figure 1D-F). When evaluating five clusters

Table 1. Summary of the baseline characteristics of patients in the GEO-, TCGA- and Cirenajwis-dataset.

Patient & tumour characteristics GEO-dataset n (%) TCGA-dataset n (%) Cirenajwis-dataset n (%)

Total number of patients 405 469 214
Sex
Male 129 (31.9) 289 (61.6) 124 (57.9)
Female 101 (24.9) 180 (38.4) 89 (41.6)
NA 175 (43.2) 0 (0) 1 (0.5)

Age (yrs)
Median (IQR) 66 (51–78) 58 (48–71) 64 (54–74)

Tumour stage (AJCC 7th ed.)
Tumour in situ (stage 0) 0 (0) 7 (1.5) 0 (0)
Low stage (stage I or II) 22 (5.4) 235 (50.1) 0 (0)
High stage (stage III or IV) 363 (89.6) 191 (40.7) 214 (100)
NA 20 (4.9) 36 (7.7) 0 (0)

Sample obtained from
Primary tumour 56 (13.8) 102 (21.7) 16 (7.5)
Lymph node metastasis 15 (3.7) 229 (48.9) 128 (59.8)
Regional Unknown 222 (47.3) 127 (59.3)
Distant Unknown 7 (1.5) 1 (0.5)

(Sub)cutaneous or in transit metastasis 108 (26.7) 99 (21.1) 41 (19.2)
Visceral metastasis 20 (2.5) 26 (5.5) 10 (4,7)
Bone metastasis 0 (0) 6 (1.3) 0 (0)
CNS metastasis 0 (0) 2 (0.4) 0 (0)
Unknown location of distant metastasis 155 (38.3) 2 (0.4) 19 (8.9)
Unknown primary or metastatic lesion 51 (12.6) 3 (0.6) 0 (0)

Abbreviations: CNS: Central nervous system, ed.: edition, NA: Not Available, IQR: Interquartile range, yrs: years.
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Figure 1. (a) Consensus clustering for the GEO-dataset showing four clusters of substantial size in the GEO-dataset at k = 4. (b) Consensus clustering for the TCGA-
dataset showing four large and one small cluster (n = 5) at k = 5. (c) Enrichment overview of Hallmark gene sets for all paired GEO- and TCGA-dataset consensus
clusters. Green arrows indicate enrichment of a Hallmark gene set in upregulated genes, purple arrows indicate enrichment of Hallmark gene sets in downregulated
genes. Transparency and arrow width represent the significance level of enrichment.
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we observed four clusters of substantial size (range n = 35 to
n = 169) representing ~99% of samples in the TCGA-dataset.
Cluster assignments in both datasets are provided in
Supplementary Table 2.

A high concordance with a clear one-to-one mapping
between clusters identified independently in the GEO- and
TCGA-dataset was observed at the individual gene and bio-
logical pathway level across all gene set databases from the
Molecular Signature Database (Supplementary Figure 2).

Biological characterization

GEO-dataset cluster 1 showed the strongest one-to-one map-
ping (R = 0.68) with TCGA-dataset cluster 1. These clusters
were assigned the subclass label ‘Oxidative phosphorylation’
because the Hallmark gene set oxidative phosphorylation was
the most significantly enriched pathway in both clusters. In
addition, we observed high expression of the genes micro-
phthalmia-associated transcription factor (MITF) and peroxi-
some proliferator-activated receptor gamma co-activator 1
alpha (PPARGC1A, also known as PGC1α) (Figure 1(c)).

We observed high similarity (R = 0.47) between GEO-dataset
cluster 2, and TCGA-dataset cluster 4 and these were assigned
the subclass label ‘Oestrogen response/p53-pathway’ because in
both the top-3 enriched Hallmark gene sets were: oestrogen
response early, oestrogen response late and p53-pathway.

GEO-dataset cluster 3 showed the strongest one-to-one
mapping (R = 0.61) with TCGA-dataset cluster 2. In both
clusters, the most enriched Hallmark gene sets were immune
related, such as the interferon-γ response gene set. We there-
fore labelled these consensus clusters ‘Immune’.

GEO-dataset cluster 4, and TCGA-dataset cluster 3, showed
high similarity (R = 0.60) andwere assigned the label ‘Cell cycle’ as

in both the top three enriched gene sets included the Hallmark
gene sets E2F targets and G2M checkpoint.

Detailed gene set enrichment results are provided as
Supplementary Data.

Comparison with previously published molecular
subclasses

We compared our subclasses with those defined by Jönsson
et al.3 and found the strongest concordance between our
‘Oxidative phosphorylation’ and their ‘Pigmentation’ subclass
(R = 0.64), our ‘Immune’ and their ‘Immune high’ subclass
(R = 0.79), our ‘Cell cycle’ and their ‘Proliferative’ subclass
(R = 0.60), and between our ‘Oestrogen response/p53-
pathway’ and their ‘Normal-like’ subclass (R = 0.78).

Comparison of our subclasses with those defined by the
TCGA5 showed high enrichment of the gene set represent-
ing their ’Immune’-gene set in our ‘Immune’ subclass, high
enrichment of the their ‘MITF-low’-gene set in our ‘Cell
cycle’ subclass and high enrichment of the ‘Keratin’-gene
set in our ‘Oestrogen response/p53-pathway’ subclass. None
of the gene sets representing the subclasses identified by
TCGA Network showed strong enrichment within our
‘Oxidative phosphorylation’ subclass. However, the gene
set belonging to the ‘MITF-high’ subclass identified by
Tirosh et al.6 did show strong enrichment within our
‘Oxidative phosphorylation’ subclass. The gene set belong-
ing to the ‘AXL-high’ subclass as defined by Tirosh et al.
was not enriched in a specific subclass identified in our
study.

A detailed overview of the concordance between our sub-
classes and previously defined subclasses is shown in Figure 2
and Supplementary Table 3.

Figure 2. Concordance with previously described subclasses. Concordance between our subclasses and those described by TCGA Network and Tirosh et al. was
determined by performing GSEA using the representative set of genes for each of the previously described subclasses.5,6 Concordance with the subclasses defined by
Jönsson et al. was assessed by matching the gene expression-based centroid for each subclass with the Z-transformed p-values resulting from the pairwise class
comparisons.4 Subsequently, Spearman’s rank correlations were calculated between the centroids and the ranked lists with the Z-transformed two-sided p-values.
The thickness of the lines between subclasses indicates the significance level of concordance.
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Association with clinicopathological variables

No difference in Breslow thickness, presence of tumour ulceration
or frequency ofBRAF, NRAS, KIT orNF1mutations was observed
between subclasses in the TCGA-dataset. KRAS mutations were
only observedwithin the ‘Oxidative phosphorylation’ subclass, but
the prevalence was low (n = 5 out of 150). However, it should be
noted that the association between subclass assignment and base-
line tumour characteristics is preferably assessed in samples
obtained from the primary melanoma lesion, since metastatic
lesions may not share their phenotype with the primary lesion.
All associations between subclasses and clinicopathological vari-
ables in the TCGA-dataset are provided in Supplementary
Table S4.

In the GEO-dataset, estimated fractions of CD8+ T-cells,
CD4+ T-cells, M1 macrophages, plasma cells and naïve B-cells
were higher in the ‘Immune’ subclass compared to the other
subclasses (Figure 3 and Supplementary Figure 3). In the
‘Oestrogen response/p53-pathway’ subclass, a higher fraction of
resting mast cells and resting and activated dendritic cells was
observed. The highest fraction of activatedmast cells was observed
in the ‘Cell cycle’ subclass.

Survival analysis

In the TCGA-dataset subclass assignment was associated with
OS independently of age, gender and stage in a multivariate
Cox regression analysis (Table 2, number of samples and
events in each dataset are listed in table footnote). Longer
OS was observed in the ‘Immune’ subclass compared to the
‘Oxidative phosphorylation’ subclass (Hazard-ratio (HR):
2.01, p-value: 0.004) and compared to the ‘Cell cycle’ subclass

(HR: 1.51, p-value: 0.04) (Figure 4(a)). Survival analysis in the
Cirenajwis-dataset showed similar results (‘Immune’ vs.
‘Oxidative phosphorylation’ subclass HR: 2.55, p-value:
0.0003; ‘Immune’ vs. ‘Cell cycle’ subclass HR: 2.19, p-value:
0.008) (Figure 4(b)). Post accession survival, defined as time
from sample procurement to death or lost to follow-up, was
shorter in the ‘Immune’ subclass compared to both the
‘Oxidative phosphorylation’ subclass (HR: 1.68, p-value:
0.008) and the ‘Cell cycle’ subclass (HR: 1.69, p-value: 0.009)
(Figure 4(c)). It should be taken into account that these plots
do not visualize the effects of other factors besides subclass
assignment that influence OS such as age, gender and tumour
stage. Similarly, the Log Rank (Mantel-Cox) test does not take
into account these factors. Additionally, the same trend in
association of OS with subclass assignment was observed in
the GEO-dataset for both the ‘Immune’ and ‘Oxidative phos-
phorylation’ subclass, although limited data was available
(Supplementary Figure 4).

Response to anti-PD-1 therapy

In the Hugo-dataset, ten patients were assigned to the ‘Oxidative
phosphorylation’ subclass, six patients to the ‘Immune’ subclass,
four patients to the ‘Oestrogen response/p53-pathway’ subclass
and seven patients to the ‘Cell cycle’ subclass. In the Riaz-dataset,
20 patients were assigned to ‘Oxidative phosphorylation’ subclass,
11 patients to the ‘Immune’ subclass, ten patients to the ‘Oestrogen
response/p53-pathway’ subclass and eight to the ‘Cell cycle’ sub-
class. When pooling the data, we observed a difference in the
distribution of responders between the subclasses, with 18 respon-
ders (60%) in the ‘Oxidative phosphorylation’, eleven responders

Figure 3. Boxplots of estimated immune cell fractions in each GEO-dataset consensus cluster. We applied the recently developed CIBERSORT method to estimate the
fraction of 22 immune cell types. In the ‘Oestrogen response/p53-pathway’ subclass, higher estimated fractions of resting mast cells were observed as compared to
the other clusters. In the ‘Immune’ subclass, estimated fractions of M1 macrophages, activated CD4 + memory and CD8 + T-cells, naïve B-cells and plasma cells were
higher as compared to other subclasses.
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(65%) in the ‘Immune’ subclass, six (43%) responders in the
‘Oestrogen response/p53-pathway’ subclass and six responders
(40%) in the ‘Cell cycle’ subclass (Table 3). The subclass annotation
for each sample in the Hugo-, Riaz- and Auslander-datasets are
provided in Supplementary Table 5.

Discussion

In this largest pooled analysis of expression profiles of cuta-
neous melanoma samples thus far, we identified four gene
expression-based molecular subclasses that showed an asso-
ciation with survival. Additionally, we observed a trend
towards differential response rates to anti-PD-1 therapy
between these subclasses.

In contrast to the four subclasses based on complex tissue
biopsies identified in this study, single-cell RNA-seq identified
only two subclasses.6 Expression profiling of complex tissue
biopsies measures the average expression pattern of all cells
present in the sample. These may include tumour cells as well
as other cells present in the tumor-microenvironment.8 The
samples in the GEO- and TCGA-datasets are all obtained from
such complex tissue biopsies. Therefore, it may be deemed likely
that the additional subclasses we identified capture all cellular
components within a tumour lesion. Since the tumour-
microenvironment (TME) is related to melanoma development
and progression, these components are of interest from

a biological point of view.9 None of the subclasses we identified
showed high similarity to the ‘AXL-high’ subclass detected using
single-cell RNA-seq. This may be due to intra-tumour hetero-
geneity causing the ‘AXL-high’ subclass population in a tumour
to be overshadowed by more prominent subpopulations present
within a complex biopsy.8

We observed the shortest OS in the ‘Oxidative phosphor-
ylation’ subclass. In this subclass, we also observed high
expression of MITF, a known biomarker for poor prognosis
in melanoma.10 MITF is critical in reprogramming metabo-
lism through direct regulation of PGC1α expression,
a transcriptional co-activator that enhances mitochondrial
biogenesis and oxidative phosphorylation.10,11 These pro-
cesses are required for ATP and biomass production and
thus support cancer cell proliferation.12–14 Drugs targeting
oxidative phosphorylation, such as mitochondrial complex 1
inhibitors and glutamine uptake inhibitors, reduce melanoma
cell growth in vitro and in xenograft models in vivo.15,16

During oxidative phosphorylation reactive oxygen species
(ROS) are generated.17 In a mouse model it has been shown
that the deacetylase inhibitor vorinostat can lead to a lethal
ROS level in melanoma cells with increased ROS levels and
can induce responses in patients with BRAF resistant
melanoma.18 Further investigation of vorinostat is of interest
in the subclass of melanoma with enhanced oxidative phos-
phorylation. We also observed a trend towards a higher

Table 2. Results of the multivariate Cox-Regression analysis in the TCGA-dataset for endpoint overall survival (OS) and post accession survival (PAS)
and in the Cirenajwis-dataset for endpoint OS.

Dataset Endpoint Covariates Variables HR (95%-CI) Wald-test p-value

TCGAa OS Subclass Immune 1.00 3.00 x 10−06

Oxidative phosphorylation 2.01 (1.37–2.96)
Cell cycle 1.51 (1.02–2.56)
Oestrogen response/p53-pathway 1.44 (0.52–4.05)

Gender Female 1.00
Male 1.02 (0.73–1.42)

Age Continuous 1.02 (1.01–1.03)
Tumour stage Stage 0 (Melanoma in situ) 1.00

Stage I/II 0.75 (0.30–1.87)
Stage III 1.22 (0.48–3.09)
Stage IV 1.98 (0.64–6.19)
Unknown 0.57 (0.20–1.62)

TCGAa PAS Subclass Immune 1.00 0.008
Oxidative phosphorylation 1.68 (1.15–2.47)
Cell cycle 1.69 (1.14–2.51)
Oestrogen response/p53-pathway 0.62 (0.22–1.73)

Gender Female 1.00
Male 1.11 (0.80–1.55)

Age Continuous 1.01 (1.00–1.02)
Tumour stage Stage 0 (Melanoma in situ) 1.00

Stage I/II 0.31 (0.12–0.76)
Stage III 0.32 (0.13–0.80)
Stage IV 0.46 (0.15–1.40)
Unknown 0.46 (0.17–1.26)

Cirenajwisb OS Subclass Immune 1.00 3,00 x 10−05

Oxidative phosphorylation 2.55 (1.54–4.21)
Cell cycle 2.19 (1.22–3.92)
Oestrogen response/p53-pathway 3.16 (1.14–8.79)

Gender Female 1.00
Male 1.39 (0.92–2.12)

Age Continuous 1.00 (0.99–1.02)
Tumour stage General (metastasized) 1.00

In-transit 0.43 (0.18–1.00)
Local 0.19 (0.06–0.63)
Primary 0.03 (0.00–0.23)
Regional 0.29 (0.17–0.52)

a Number of patients in the TCGA-dataset available for survival analysis (both OS and PAS): 455. Number of events in the TCGA-dataset: 162.
b Number of samples in the Cirenajwis-dataset available for survival analysis: 203. Number of events in the Cirenajwis-dataset: 99. Abbreviations: 95%-
CI: 95%-confidence interval, HR: Hazard-ratio, OS: Overall survival, PAS: Post accession survival.
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Figure 4. Survival analysis. Kaplan Meier curves are shown for each subclass. The p-values right from the curves illustrate the difference between individual curves, as
calculated with the Log Rank (Mantel-Cox)-test. The hazard-ratios and 95%-confidence intervals of the multivariate cox-regression analysis for the association
between subclass assignment with survival are shown right from the number at risk table. In each analysis, the ‘Immune’ subclass was selected as the reference
group. Covariates in the multivariate cox regression analysis were: Gender, Age and Tumour stage. (a) OS in the TCGA-dataset. (b) OS in the Cirenajwis-dataset. (c)
Post accession survival in the TCGA-dataset.
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tumour response rate (60%) to anti-PD-1 therapy in patients
with melanomas within the ‘Oxidative phosphorylation’ sub-
class. In many cancer types, including melanoma, glucose
uptake is high.19 Subsequent high glycolytic rates provide
ATP and glycolytic intermediates to support biomass produc-
tion and results in excretion of metabolites such as lactate acid
and CO2.

20 These excreted metabolites are a major cause of
acidification of the tumour-microenvironment. Low pH-levels
impair NK- and T-cell effector function.21 Enhanced utiliza-
tion of oxidative phosphorylation might reduce lactate acid
production, thereby providing an immune permissive
tumour-microenvironment leading to a more potent response
to anti-PD-1 therapy. Modulating tumour metabolism, either
by targeting enhanced oxidative phosphorylation or by redu-
cing tumour lactate production in combination with check-
point inhibition may be interesting treatment strategy.

Alternatively, the high expression of genes related to oxi-
dative phosphorylation could reflect the expression pattern of
other cells in the TME, such as T-cells or macrophages. In
T-cells, metabolic rewiring towards aerobic glycolysis upon
T-cell activation is essential to support the differentiation and
function of T-effector cells.22,23 PD-1 ligation of T-cells
rewires T-cell metabolism towards an increased rate of fatty
acid oxidation and increased utilization of endogenous lipids
for β-oxidation to sustain their survival.22 This phenotype is
associated with differentiation towards memory T-cells.24 In
addition, PD-1 ligation of T-cells results in a significant
decrease in levels of the cellular antioxidant glutathione, indi-
cating a more oxidative environment. It could be hypothe-
sized that the relative high expression of genes related to
oxidative phosphorylation in the ‘Oxidative phosphorylation’
subclass could reflect a phenotype that has resulted from PD-1
ligation of T-cells in the TME. This hypothesis implies an
important role for PD-1/PD-L1 pathway activation for suc-
cessful immune evasion by the tumour in this subclass. In
theory, blocking the PD-1/PD-L1 pathway to reinvigorate the
anti-cancer immune response would be especially effective in
this subclass.

Additionally, in patients with coronary artery disease,
enhanced influx of pyruvate into the mitochondria of macro-
phages leads to enhanced expression of PD-L1 by macrophages
through activation of the p-SMAD1/5/IRF1 signalling cascade
by BMP4.25 Assuming that the same mechanism can occur in
macrophages in the TME in melanoma, it could also be
hypothesized that the high expression of genes related to oxi-
dative phosphorylation in the ‘Oxidative phosphorylation’ sub-
class reflect the expression pattern of macrophages utilizing
enhanced oxidative phosphorylation. Subsequent enhanced
expression of PD-L1 by these macrophages could then lead to
suppression of the anti-tumour immune response. Again, this
hypothesis implies a central role for the PD-1/PD-L1 pathway

to counteract the anti-tumour immune response, providing
a theoretical basis for anti-PD-1 therapy in this subclass. Our
observation of a trend towards a higher response rate to anti-
PD-1 therapy in the ‘Oxidative phosphorylation’ subclass is in
line with these hypotheses.

The ‘Immune’ subclass was associated with longer OS
compared to other subclasses. In this subclass, we observed
relatively high estimated fractions of M1 macrophages,
CD8+ T-cells and high enrichment of the interferon-γ
response pathway. Both high CD8+ T-cell density in the
tumour-microenvironment and the presence of a strong inter-
feron-γ cytolytic T-cell signature have been related to
a favourable response to immune checkpoint inhibitors.26

Recently, it was shown that in breast cancer patients
a higher fraction of M1 macrophages in the tumour is inde-
pendently associated with a higher rate of pathological com-
plete response and prolonged OS.27 The association of the M1
macrophage subpopulation with disease outcome in breast
cancer and the high M1 macrophage fraction in the
‘Immune’ subclass in melanoma is of particular interest con-
sidering the development of therapeutic interventions target-
ing macrophages.28

The ‘Cell cycle’ subclass was characterized by high expres-
sion of E2F-target genes. E2F is activated by cyclin-dependent
kinases (CDK) 4 and 6 through the CDK4-pathway.29 Pre-
clinical studies have shown effectiveness of CDK4-pathway
inhibition in melanoma cell lines, especially when combined
with BRAF- and MEK-inhibitors.30 Moreover, a phase I trial
in 26 melanoma patients treated with a selective CDK4/6
inhibitor showed a partial response in one and stable disease
in six patients.31 Notably, the patient with partial response
was shown to have an NRAS mutation and copy-number loss
at the Inhibitors of CDK4 (INK4) locus, inducing aberrant
CDK4 and CDK6 activity. In light of these publications
a possible E2F-target driven melanoma subclass is of particu-
lar interest.

Due to the low number of samples in the ‘Oestrogen
response/p53-pathway’ subclass, the association with OS
could not be ascertained. However, the expression of oestro-
gen response pathway genes may have clinical implications.
Hormone therapy, such as the selective oestrogen receptor
modifier tamoxifen, has shown to have varying effects on
OS in cutaneous melanoma in various studies.32 Enhanced
expression of oestrogen receptor signalling pathways con-
ferred resistance to MAPK-inhibiting therapies in melanoma
cell lines.33 The identification of a subclass with high oestro-
gen response pathways might justify renewed interest in
research towards hormonal therapy in cutaneous melanoma
in this subclass.

A large proportion of samples included in the TCGA-
dataset was not collected at initial diagnosis but during the
course of disease. Expression profiles obtained from these
samples might not optimally reflect the molecular state of
the disease at initial diagnosis and therefore are not pre-
ferably used to assess OS.9 However, the clear association
between subclass assignment and OS in both the TCGA-
dataset and the Cirenajwis-dataset and the clear association
between subclass assignment and post accession survival in
the TCGA-dataset underlines the clinical relevance.

Table 3. Number of responders and non-responders in the pooled data of the
Hugo- and Riaz-dataset.

Subclass
Responders,

n (%)
Non-responders,

n (%)

Cell cycle 6 (40) 9 (60)
Immune 11 (65) 6 (35)
Oestrogen response/p53-pathway 6 (43) 8 (57)
Oxidative phosphorylation 18 (60) 12 (40)
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Additionally, the relevance of the subclasses in relation to
contemporary therapies such as immune checkpoint inhi-
bitors could only be assessed in a very small set of samples.
These limitations emphasize the need to validate these
subclasses in a homogeneous set of primary, untreated
cutaneous melanoma samples. In addition, the clinical rele-
vance of the subclasses should be validated in a prospective
observational cohort of patients with untreated metasta-
sized melanoma eligible for anti-PD-1, anti-CTLA-4 or
combination therapy, with inclusion of a tumour biopsy
prior to the start of systemic therapy. However, despite
the different profiling methods that were used to generate
the GEO- and TCGA-datasets, and despite the differences
in patient and tumour characteristics, there was a high
degree of reproducibility between the four identified sub-
classes within the datasets. This reflects the solidity of the
subclasses identified in this study.

Our analysis provides, for the first-time, compelling cross-
platform evidence for the existence of four molecular subclasses
in cutaneous melanoma. Additionally, we show that these sub-
classes are characterised by distinct biological pathways and have
a significant associationwith disease outcome. Finally, we show for
the first time a trend towards differential response rates to anti-PD
-1 therapy between these subclasses. These results can guide clin-
icians and drug developers in developing new treatment strategies
in cutaneous melanoma.

Methods

Consensus clustering and biological characterization

Consensus clustering (ConsensusClusterPlus, version 1.24.0)
and biological characterization with gene set enrichment ana-
lysis (GSEA) was performed independently in the GEO and
TCGA-dataset. To identify differentially expressed genes in
a cluster, we performed a class comparison between the set of
samples assigned to the cluster and the set of samples assigned
to any of the other clusters. Subsequently, GSEA – utilizing
a large panel of gene set databases available at the Molecular
Signature Database – was performed on the ranked list of
differentially expressed genes per cluster.

To assess the concordance between the clusters identi-
fied in the GEO- and TCGA-dataset, we determined
Spearman’s rank correlations between the ranked lists of
differentially expressed genes and performed average link-
age hierarchical clustering on the gene set enrichment vec-
tors of individual consensus clusters.

Concordance with previously reported subclasses

Concordance between subclasses identified in this study
and the subclasses described by TCGA Network and
Tirosh et al. was determined by performing GSEA with
the set of representative genes for each of the previously
described subclasses.5,6 Jönsson et al. reported a gene
expression-based centroid per subclass.3 Spearman’s rank
correlations were calculated between these centroids and
our ranked lists of differentially expressed genes.

Determination of in silico immune cell type fractions

CIBERSORT was used to estimate the fractions of 22 immune cell
types for each sample in the GEO-dataset.34 Associations between
consensus clusters and immune cell type fractions were deter-
mined with the Kruskal-Wallis test.

Survival analysis

Multivariate Cox regression analysis was performed to assess the
association of subclass assignment with OS and post accession
survival in the TCGA-dataset, with covariates age, gender and
stage for OS and age, gender and biopsy location for post
accession survival. Association of subclass assignment with OS
was validated in the Cirenajwis-dataset in the same manner.

A detailed description of all methods, including the
method for subclass assignment in the Cirenajwis-dataset,
Hugo-dataset, Riaz-dataset and Auslander-dataset, is provided
in the Supplementary Methods.
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