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Sepsis represents a life-threatening organ dysfunction due to an aberrant host response.
Of note is that majority of patients have experienced a severe immune depression during
and after sepsis, which is significantly correlated with the occurrence of nosocomial
infection and higher risk of in-hospital death. Nevertheless, the clinical sign of sepsis-
induced immune paralysis remains highly indetectable and ambiguous. Given that,
specific yet robust biomarkers for monitoring the immune functional status of septic
patients are of prominent significance in clinical practice. In turn, the stratification of a
subgroup of septic patients with an immunosuppressive state will greatly contribute to the
implementation of personalized adjuvant immunotherapy. In this review, we
comprehensively summarize the mechanism of sepsis-associated immunosuppression
at the cellular level and highlight the recent advances in immune monitoring approaches
targeting the functional status of both innate and adaptive immune responses.
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INTRODUCTION

Sepsis is characterized as a life-threatening organ dysfunction due to dysregulated host response to
infection based on the definition of the Third International Consensus Definitions for Sepsis and
Septic Shock (Sepsis 3.0) (1). Sepsis represents a global healthcare problem imposing enormous
economic and societal burdens since it is the most common cause of in-hospital and intensive care
unit (ICU) mortality (2). The complex host immune response during sepsis involves the
concomitant presence of both pro-inflammatory and anti-inflammatory responses but
manifesting a disturbed homeostasis, in association with excessive tissue damage and even organ
failure (3). Although the onset and progression of sepsis is substantially heterogeneous across
disparate populations, the occurrence of severe immunosuppression is consistently observed in
most septic patents, which appears to be significantly correlated with deteriorative clinical outcomes
(4, 5). However, the exact mechanism underlying sepsis-induced immunodeficiency has not been
established for decades.

Robust yet feasible immune monitoring methods are currently lacking in clinical practice,
rendering us unable to timely recognize the immunosuppressive status of septic patients (6, 7).
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Thus, specific and sensitive biomarkers are urgently required to
monitor the immune status of patients with sepsis and septic
shock, which is also the prerequisite for the development of novel
tailored immunotherapies. In light of the evidence provided by
translational and clinical studies, the current literature review
summarizes the characteristics of sepsis-induced immune
dysregulation at the cellular level and focuses on the recent
advances concerning the immune monitoring measures for
septic patients, which intend to help clinicians revisit sepsis-
associated immunosuppression in depth (8). Since the most
comprehensive review by Venet et al. was published almost 10
years ago, this study might represent an updated version of such
review, addressing identical topics (9).

CHARACTERISTICS OF SEPSIS-INDUCED
IMMUNOSUPPRESSION

Immune suppression in sepsis is noted with increased susceptibility
of patients to secondary and nosocomial infections, thereby leading
to elevated readmission rates and deteriorative long-term mortality
(10, 11). Diverse yet intricate mechanisms have been demonstrated
to be involved in the development of sepsis-associated immune
dysregulation, including cellular apoptosis, autophagy, endotoxin
tolerance, metabolic reprograming, and epigenetic regulation
(5, 12, 13). Meanwhile, it should be noted that the interplay
between these mechanisms has also been characterized in the
immune dysfunction after sepsis (5). One major example
represents endotoxin tolerance, manifesting as diminished
proinflammatory cytokine production of various myeloid cells in
response to a re-challenge of endotoxin (lipopolysaccharide, LPS) or
other stimuli (14). Multiple studies have confirmed that both
metabolic reprograming and epigenetic regulation are critically
involved in the establishment of endotoxin tolerance as evidenced
by substantial alterations in the transcription of genes encoding
deacetylase enzymes and hypoxia-inducible factors (15–17). A
reinforced host response to secondary stimuli in innate immune
cells, namely “trained immunity”, has been likewise demonstrated
to participate in the progression of sepsis and excessive tissue
damage (18, 19). Other than histone modifications, DNA
methylation and shift of metabolic profile were reportedly
responsible for the process of trained immunity, which could be
transmitted to daughter cells (19, 20). Since innate immune
memory exerts a potent effect against systemic infection, the
maladaptation of these mechanisms greatly contributes to post-
sepsis immunosuppression. More importantly, immunosuppression
can be largely attributed to the dysfunction of various immune cell
types since septic insults substantially affect both the innate and the
adaptive immune systems (Figure 1).
INNATE IMMUNITY

Neutrophils
As the first-line defense cells in response to pathogens, neutrophils
play a pivotal role in innate immunity. Under septic exposure,
increased granulocytes can result in excessive release of immature
forms of neutrophils in circulation, the existence of which has been
Frontiers in Immunology | www.frontiersin.org 2
demonstrated to impair T cell activation with deteriorative clinical
outcomes (21, 22). With regards the relevant mechanism,
neutrophils isolated from septic patients exert profound
functional alterations, including diminished chemotaxis,
impaired transmigration, and decreased oxidative burst, thereby
leading to impaired functional capacity of pathogenic clearance
(23, 24). Meanwhile, the formation of neutrophil extracellular
traps (NETs) and delayed neutrophil apoptosis were closely
related to prolonged endothelial and tissue damage and,
ultimately, organ dysfunction (25–28). Of note is that the
increased number of immature or immunocompromised
neutrophils reportedly accelerated the progression and
correlated with a high risk of death among patients with sepsis
and septic shock (29).

Monocytes and Macrophages
Monocytes and macrophages are key players in both innate and
adaptive immune response, with high heterogeneity and potent
immunogenicity. The reduced responsiveness of monocytes
could be identified after septic induction, as supported by the
decreased production of pro-inflammatory cytokines as well as
the enhanced capacity in releasing anti-inflammatory mediators
upon endotoxin challenge, which closely resembles endotoxin
tolerance (15, 30). The tolerant monocytes from septic patients
showed a compromised ability to eliminate internalized
pathogens, which could be largely attributed to substantial
impairment in the phagocytic capacity of monocytes (17, 31).
Additionally, the patrolling, chemotaxis, and antigen-presenting
capacities were significantly altered for endotoxin-tolerant
monocytes derived from septic patients (32, 33). Notably,
macrophages carry out a reprogramming toward an
immunosuppressive phenotype in the development of sepsis,
which potentiate sepsis-induced immune depression (4, 34).
Nevertheless, excessive activation of macrophages can lead to a
hyperinflammatory state in sepsis, namely, macrophage
activation syndrome (MAS), in association with organ
dysfunctions and early death (35, 36). Given that, the selection
of molecules targeting macrophage polarization and functions is
of great clinical significance in seeking novel measures for
diagnosis and the treatment of septic complications.

Myeloid-Derived Suppressor Cells
Myeloid-derived suppressor cells (MDSCs) are heterogeneous
subsets of immature myeloid cells exerting immunosuppressive
functions on both innate and adaptive immunity, and two major
subpopulations have been identified in terms of granulocytic
MDSCs (G-MDSCs) and monocytic MDSCs (M-MDSCs) (34,
37, 38). MDSCs are extensively studied in various malignancies,
whereas their potential roles remain poorly understood in the
pathogenesis of sepsis. Notably, massive expansion of circulating
MDSCs could be frequently observed among septic patients, and
they were found to be correlated with chronic immune
depression, thereby leading to the development of nosocomial
infections after the onset of sepsis (39, 40). Nevertheless, specific
markers in defining human MDSCs currently remain lacking,
which might restrict us from exploring the role and significance
of such cell type in depth (41).
May 2022 | Volume 13 | Article 891024
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Dendritic Cells
Dendritic cells (DCs) are known to be the most potent antigen-
presenting cells (APCs), and they serve as the bridge linking
innate immunity with adaptive immune response via its unique
capacity in priming naïve T lymphocytes (42). Evidently reduced
counts of DCs owing to sepsis-induced apoptosis could be seen
in both peripheral blood and spleen from septic patients and
those subjected to severe trauma or burns, which were reportedly
associated with an increased risk of nosocomial infections and
death (43, 44). Moreover, the plasmacytoid and myeloid DC
numbers were simultaneously diminished in the setting of sepsis
(44, 45). Additionally, functional loss and inability of DCs were
frequently reported in sepsis, as evidenced by reduced cytokine
secretion and blunted antigen-dependent response, together with
their decreased capacity in activating T cell response and
Frontiers in Immunology | www.frontiersin.org 3
propensity to induce T cell exhaustion (46–49). Therefore,
altered DC function is responsible for the incapacity of the
host against infection, thereby resulting in increased mortality
rate among septic patients (50). Given its pivotal role in
orchestrating host immune response, the cellular loss and
impaired function of DCs significantly contribute to the
development of sepsis-induced immunosuppression.

Natural Killer Cells
As one of innate-type lymphocytes, natural killer (NK) cells are
critically involved in host immune response via the production
of various cytokines and chemokines, which reportedly play an
essential role in disparate phases of sepsis progression (51, 52).
Upon the onset of sepsis, cytokine production of NK cells was
greatly diminished due to endotoxin tolerance, especially for
FIGURE 1 | Mechanisms and hallmarks of sepsis-induced immunosuppression. The innate and adaptive immune responses are significantly altered upon septic
insults. With regard to innate immunity, sepsis induction results in a substantially increased apoptotic rate across various innate immune cell subsets, including
neutrophils, monocytes, dendritic cells, and natural killer cells. Nevertheless, monocytic and granulocytic myeloid-derived suppressor cells have consistently
undergone a profound augmentation, as evidenced by elevated circulating numbers in septic patients. As for adaptive immune response, both T and B lymphocytes
are presented with significant apoptosis and functional anergy. Meanwhile, a phenotypical shift from effector subtypes to regulatory subtypes can be commonly
observed in patients with sepsis. In turn, tremendous lymphopenia largely contributes to the development of sepsis-induced immunosuppression, thereby leading to
increased risk of nosocomial infection, chronic critical illness, and even long-term mortality. Graph was created with BioRender.com. NETs, neutrophil extracellular
traps; MDSCs, myeloid-derived suppressor cells; NK cells, natural killer cells; TCR, T cell receptor.
May 2022 | Volume 13 | Article 891024
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interferon (IFN)-g (53). Besides this, NK cell cytotoxic activity is
substantially impaired in septic insults, implying that
immunosuppressive NK cell response might precede the
development of sepsis (54–56). Consistent with these findings,
alterations of NK cell counts have been demonstrated to correlate
with increased early mortality in septic patients (57).
ADAPTIVE IMMUNITY

T Lymphocytes
A substantial decline in lymphocyte (specifically CD4+ T
lymphocytes) counts is well characterized in sepsis (58, 59).
Strikingly, sepsis-associated lymphopenia is much more
prominent in patients who die from sepsis compared to
septic survivors (60). CD4+ T lymphocytes that survive from
sepsis-induced apoptosis reveal anergic profiles, including
diminished proliferative capacity, reduced ability to produce
effector cytokines, and upregulated expression of various co-
inhibitory receptors that inhibit T cell response (61–63).
Moreover, unresponsiveness of T cell receptor (TCR) clonal
repertoire and decreased TCR Vb diversity have been observed
in septic patients, and they are positively correlated with an
increased risk of nosocomial infections and mortality (64).
Following the occurrence of sepsis, CD4+ T lymphocytes
reportedly have undergone a phenotypical shift from helper T
cell (Th) 1 to Th2 subset that possesses a decreased secretion of
IL-2 and IFN-g and impaired proliferative capacity (5, 34, 65).
Several studies have confirmed that both Th1 and Th2
differentiations are significantly inhibited during and after
sepsis subsides, as supported by the decreased production of
Th1- and Th2-related cytokines and the reduced activity of
transcriptional factors modulating Th1 as well as Th2 responses
(34, 66). Similarly, naïve and memory CD8+ T cells are
manifested to display profound exhaustion during and after
sepsis, with ineffectiveness in mounting a response to emerging
antigens (67, 68). In addition to numerical loss, major defects in
T cell phenotype as well as functional status give rise to the
post-sepsis immunosuppression and deterioration of host
immune response. The impact of sepsis on non-conventional
T cell subsets has also been well established, especially for the
Th17 subset. Th17-associated cytokine secretion is markedly
reduced upon sepsis, which reportedly has an adverse effect on
long-term mortality (69). As a potent regulator of adaptive
immunity, regulatory T cells (Tregs) participate in suppressing
the proliferation of other effector T cell (Teff) subsets and
mediating the phenotypical shift of Th in the development of
sepsis via the production of various types of inhibitory
cytokines (52, 70). The expansion of the Treg population can
be observed after the occurrence of sepsis, which is more
prominent in septic patients who died during hospitalization
(71, 72). Meanwhile, counts of Tregs are noted to negatively
correlate with Th counts, suggesting that Tregs remain resistant
to sepsis-induced apoptosis (70). The interrelationship between
Tregs and Th17 cells has long been proposed, in which they
Frontiers in Immunology | www.frontiersin.org 4
function antagonistically during the course of sepsis but share
similarities regarding different directions. Besides this, sepsis
has a substantial impact on various types of innate-like T
lymphocytes, including gamma delta T cells (gd T cells),
natural killer T (NKT) cells, and mucosal-associated invariant
T (MAIT) cells (73). Similar to other subsets of T lymphocytes,
circulating counts of gd T, NKT, and MAIT cells showed a
significant decline following the occurrence of sepsis, the extent
of which was associated with an increased risk of
infections (74).
B Lymphocytes
B lymphocytes exert varied functions in the development of
septic complications, which are capable of modulating innate
immunity and cytokine induction, and function as APCs (75,
76). An evident decline in B cell counts has likewise been
reported in human sepsis, secondary to increased apoptosis
and T lymphocyte deficit (77). Of note is that the numerical
loss of B cells is inconsistent across subpopulations, with a
greater apoptotic rate in activated memory B cells than in
other subsets of B cells, in association with a long-term risk of
recurrent infection among septic survivors (78). Meanwhile,
sepsis is associated with a marked decrease in naive B cell
number and elevated B cell exhaustion in peripheral blood
derived from septic patients, implying a major inability of B
lymphocyte to mount an effective adaptive immune response
(79, 80). The profound alterations of T cell have been
indicated to impair the T lymphocyte-dependent peripheral
maturation of B cells, in association with incompetent B cell
functions (3, 78). As the major effectors of B cells,
immunoglobulins have shown beneficial effects in alleviating
endothelial injury as well as facilitating platelet count
restoration among septic patients, thereby improving their
hemorrhagic tendency (81). Since the impact of intravenous
immunoglobulins on the host immune system is of
discrepancy, its clinical efficacy in treating sepsis and septic
shock remains controversial.
MONITORING THE ALTERATIONS OF THE
INNATE IMMUNE SYSTEM

Innate immune cells play an indispensable role in the first-line
defense following an infection via mediating the pathogenic
clearance and regulating the adaptive immune response. Since
sepsis induction inevitably leads to the dysregulation of innate
immune system, alterations in functional status and imbalance
across subpopulations represent pivotal indicators for the
monitoring of innate immune response in septic patients (30).
Correspondingly, numerous clinical studies have documented
encouraging results, and potential indicators are found to be
useful for the early diagnosis of sepsis and prediction of
deteriorative outcomes (Table 1). One major hallmark of an
innate immune cell after sepsis represents endotoxin tolerance,
May 2022 | Volume 13 | Article 891024
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which can be commonly observed in monocytes and
macrophages. To be specific, monocytes isolated from septic
patients manifest a significantly diminished capacity in
generating inflammatory cytokines in response to LPS
Frontiers in Immunology | www.frontiersin.org 5
stimulation, including IL-1, IL-6, IL-12, and tumor necrosis
factor-a (TNF-a), in association with the development of
hospital-acquired infections and deleterious clinical
outcomes (15).
TABLE 1 | Immune monitoring indicators in human sepsis.

Immune cell types Category Monitoring indicators References

Innate immunity Neutrophils Functional defects Decreased bactericidal capacity (82, 83)
Impaired chemotactic function (84, 85)
Decreased spontaneous motility (86, 87)
Excessive NET formation (88)
Upregulated expressions of CD64, PD-L1, sTREM-1, and HBP (82, 89–93)

Alterations in
subsets

Increased representation of immature circulating neutrophils (22–24, 94)
Increased representation of OLFM4+ neutrophils (95, 96)

Monocytes/
macrophages

Functional defects Diminished expression of mHLA-DR (57, 97, 98)
Upregulation of PD-L1 (99)
Elevated MDW level (100–103)
Decreased production of TNF-a and IL-12 (104)
Increased secretory level of IL-10 (105)
Elevated circulating level of presepsin (106, 107)
Elevated plasma level of ferritin, IL-6, IL-18, and sCD163 (35)
Impaired phagocytic capacity (108)

Alterations in
subsets

Increased proportion of circulating CD14+HLA-DRlow monocytes (109, 110)
Increased percentage of CD14-CD16+ patrolling monocytes (33, 111)

MDSCs Functional defects Increased levels of S100A12, S100A8/A9, ARG1, and LOX-1 (112, 113)
Alterations in
subsets

Expansion of G-MDSCs and M-MDSCs (39, 114)

Dendritic cells Functional defects Down-regulated expression of HLA-DR (115)
Enhanced production of IL-10 (49)
Elevated level of Blimp1 in circulating DCs (116)

Alterations in
subsets

Reduction of pDCs and mDCs counts (44, 45)
Increased representation of BTLA+ mDCs (117)

NK cells Functional defects Inhibitory secretion of IFN-g and TNF-a (56, 118, 119)
Impaired killing capacity (118)
Dampened expression of NCRs and NKG2 receptors (118, 120)

Alterations in
subsets

Reductions in both CD56hi and CD56low NK cells (121, 122)
Increased percentage of PD-L1+ NK cells (123)

Adaptive
immunity

Total lymphocytes Persistently low counts of lymphocytes (60, 124)
T lymphocytes Functional defects Decreased TCR diversity (29, 64, 125)

Impaired proliferative capacity (126)
Upregulation of exhaustion markers, including PD-1, 2B4, and BTLA (62, 63, 127–

129)
Inhibitory capacity in releasing cytokines, including IL-2, IL-6, IFN-g, and TNF-a (34, 130)

Alterations in
subsets

Reduced ratio of CD4+/CD8+ T cells (131–134)
Imbalanced ratio of Th1/Th2 (135)
Decreased representation of Th1, Th2, and Th17 subtypes (105, 136)
Increased percentage of Tregs (71, 72, 136,

137)
Reversed ratio of Th17/Treg (138, 139)
Numerical loss of MAIT and gd T cells (74)

B lymphocytes Functional defects Increased B cell exhaustion (140, 141)
Abnormal level of IgG (142, 143)
Decreased level of IgM (80)

Alterations in
subsets

Upregulated expression of CD80 and CD95 with downregulation of CD23 on B
cells

(144)

Decreases in percentages of circulating plasmablasts and memory B cells (78, 145)
Increased percentage of Bregs (146)
May 2022 | Volume 1
NETs, neutrophil extracellular traps; PD-L1, programmed cell death 1 ligand-1; TREM-1, triggering receptor expressed on myeloid cell-1; HBP, heparin-binding protein; OLFM4,
olfactomedin-4; HLA-DR, human leukocyte antigen DR; MDW, monocyte distribution width; TNF-a, tumor necrosis factor-a; IL-12, interleukin 12; MDSCs, myeloid-derived suppressor
cells; ARG1, arginase 1; LOX-1, lectin-type oxidized LDL receptor 1; G-MDSCs, granulocytic myeloid-derived suppressor cells; M-MDSCs, monocytic myeloid-derived suppressor cells;
pDCs, plasmacytoid dendritic cells; mDCs, myeloid dendritic cells; BTLA, B and T lymphocyte attenuator; NK cells, natural killer cells; IFN-g, interferon-g; NCR, natural cytotoxicity
receptors; NKG, NK group 2 member; TCR, T cell receptor; PD-1, programmed death-1; Th cells, helper T cells; Tregs, regulatory T cells; MAIT cells, mucosal-associated invariant T cells;
gd T cells, gamma delta T cells; Bregs, regulatory B cells.
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Monitoring the Function and Proportion
of Neutrophils
The chemotaxis, phagocytosis, motility, and bactericidal
functions are major indicators of the immune responses of
neutrophils. The chemiluminescence intensity reflecting the
bactericidal capacity of neutrophils showed a significant
decrease in septic patients, which was correlated with the
severity and poor prognosis of sepsis (24, 82, 83). Neutrophil
chemotaxis activity, measured by transmigration assay, was
found to independently correlate with 28-day mortality in
critical illness with sepsis (84). A recently published study
proposed an analyzing platform for the dynamic assessment of
neutrophil chemotaxis, in which they revealed an obviously
altered chemotactic function of neutrophils in patients
complicated with severe infection by applying quantitative
indicators (85). Daniel ’s team likewise reported that
spontaneous motility assessment of neutrophils showed great
prospects in accurately yet feasibly identifying populations at a
higher risk of developing sepsis (86, 87). Considering the pivotal
role of NETs in host defense against infection, Abrams et al.
established a novel assay in measuring NET formation based on a
prospective cohort study in 341 ICU patients. By incubating
plasma with isolated neutrophils in vitro, they found a
significantly potent NET formation in septic patients, the
degree of which could predict the development of disseminated
intravascular coagulation and 28-day mortality (88).

CD64 and human triggering receptor expressed on myeloid
cells-1 (TREM-1) reflecting the function of neutrophils can serve
as potential biomarkers for sepsis. Septic patients were noted
with a higher CD64 expression on neutrophils than did non-
septic patients at ICU admission. A cutoff of 230 median
fluorescence intensity in CD64 expression showed good
performance in identifying sepsis (89). It was also reported
that the levels of secretory TREM-1 (sTREM-1) in both serum
and urine showed higher sensitivity than white blood cell count,
C-reactive protein, and procalcitonin in the early recognition of
sepsis (82). Heparin-binding protein (HBP) represents another
inflammatory mediator released upon neutrophil activation, in
association with increased vascular permeability. High plasma
levels of HBP could be applied as a marker for the early diagnosis
and prognosis of sepsis and septic shock (90–92). In addition, the
upregulation of programmed cell death 1 ligand 1 (PD-L1) on
neutrophils was identified as a predictor for the prognosis of
severe sepsis with persistent immunosuppression. Neutrophils
expressed by PD-L1 might comprise a subset that exerted potent
inhibitory effects on lymphocytes (93). The number of immature
circulating neutrophils, as characterized by CD10lowCD16low cells,
significantly expanded within the first week after the onset septic
shock, which was confirmed to correlate with a high risk of
immunosuppression of T lymphocytes and worsening among
patients with septic shock (22–24). By using cytometry with time-
of-flight high-dimensional technology, a recent study identified two
novel immature neutrophils subsets—CD10-CD64+PD-L1+ and
CD10-CD64+CD16low/-CD123+—for the early recognition of a
septic complication (94). Moreover, consecutive studies revealed
that the increased representation of olfactomedin-4 (OLFM4)+
Frontiers in Immunology | www.frontiersin.org 6
neutrophils was significantly associated with a high risk of short-
term mortality in sepsis and septic shock patients (95, 96).

Monitoring the Function and Proportion of
Monocytes as Well as Macrophages
The expression of human leukocyte antigen DR (HLA-DR) is
commonly used for monitoring the function of monocytes in
clinical practice since it not only represents a costimulatory
molecule but also a surrogate marker of monocyte anergy. A
decreased expression of major histocompatibility complex
(MHC) class II molecule has been well characterized for the
monocytes isolated from septic patients. The levels of HLA-DR
in non-survivors of septic shock were found to remain
persistently low, and significant differences could be observed
on days 3 to 4 after the onset of septic shock between the two
groups, indicating its excellent capacity in the recognition and
stratification of the septic patients (97). It was reported that the
restoration of the mHLA-DR level could be observed at the
follow-up for 6 months among discharged patients with sepsis.
Moreover, a decreased mHLA-DR level was manifested to
correlate with an increased risk of nosocomial infections after
sepsis. Thus, dynamic monitoring of the level of mHLA-DR is
capable of better assessing the immune status and predicting the
prognosis of sepsis, further strengthened by its identical tendency
with the CD4+ T cell counts (57, 97, 98). Correspondingly, it
serves as a key marker of innate immune response in many
interventional clinical trials as well as an essential indicator for
monitoring the immune status during immunomodulation in
septic patients (50, 51, 57, 79, 81).

Monocyte distribution width (MDW) represents a significant
indicator reflecting monocyte response to bloodstream
pathogenic invasions. The elevation of MDW has been
documented for the early identification of sepsis (100–102). A
high MDW level can potentially predict corticosteroid resistance
among patients with sepsis and septic shock (103). A prospective
cohort study indicated that upregulated monocyte PD-L1
expression was an independent risk factor of short-term
mortality in septic shock (99). Since the proportion of
CD14+HLA-DRlow monocytes was reportedly correlated with
malignancy-related immunodeficiency, it largely contributed to
the deteriorative survival rate, with unresponsiveness to
immunotherapies (147). Although rare studies focused on the
significance of CD14+ HLA-DRlow monocytes in human sepsis,
latest advances using multi-omics methodologies implied that
circulating CD14+HLA-DRlowS100Ahi abundance was positively
correlated with the severity of illness in patients with sepsis and
severe acute respiratory syndrome coronavirus 2 infection (109,
110). Other than classical monocytes, a recently published study
suggested that the proportion of CD14-CD16+ patrolling
monocytes was negatively corelated with Sequential Organ
Failure Assessment score in patients who developed post-
traumatic sepsis, implicating a protective role of this subtype
(111). Correspondingly, another study revealed that the absolute
count of patrolling monocytes on day 3 higher than 27 cells/mm3

was negatively correlated with 28-day mortality among septic
patients (33). Moreover, impairment in the phagocytic capacity
May 2022 | Volume 13 | Article 891024
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of monocytes was expected to be a potential indicator in
predicting persistent immunosuppression for septic
patients (108).

The production of various pro-inflammatory cytokines is
significantly reduced in monocytes isolated from septic
patients with immunoparesis, including TNF-a, interleukin
(IL)-1b, IL-6, and IL-12. Upon in vitro stimulation of LPS,
circulating monocytes from septic patients showed a markedly
diminished induction of TNF-a and IL-12 compared to that of
the healthy individuals (104, 105). A threshold of 200 ng/L for ex
vivo LPS-mediated TNF-a secretion was evident in recognizing
the immunosuppressive state for septic patients (104).
Meanwhile, a restored TNF-a level was deemed as a parameter
regarding the responsiveness of immune-stimulatory treatment
for septic patients. On the contrary, IL-10 and IL-1 receptor
antagonists (IL-1Ra) are well established anti-inflammatory
mediators associated with immunosuppression. The circulating
monocytes were presented with an increased production of IL-10
in response to LPS stimulation, and they were closely associated
with poor clinical outcomes of septic complications (105). A
soluble peptide, namely, CD14 subtype (sCD14-ST) or presepsin,
was demonstrated to have a close relationship with monocyte
dysfunction, and its circulating level was applied as a candidate
for early diagnosis and risk stratification in patients with sepsis
and septic shock (106, 107). An observational study also
highlighted the combined use of presepsin and mHLA-DR to
show better performance in predicting a clinical prognosis of
sepsis compared to that of single use (107). Strikingly, a group of
septic shock patients were complicated with MAS, a clinical
phenotype characterized by fever, hepatosplenomegaly,
hepatobiliary dysfunction, and disseminated intravascular
coagulation (148, 149). Those patients often have a rapidly
progressing organ failure, with a significantly higher risk of
early death (35). The pathogenesis involves overactivation of
macrophages, for which a positive feedback loop of various
proinflammatory mediators eventually leads to fulminant
cytokine storm (36). Among them, elevated ferritin
concentration has been well accepted as a diagnostic hallmark
of MAS, which is also associated with unfavorable clinical
outcomes in septic patients (150). Other than ferritin, the
plasma levels of IL-1b, IL-6, IL-18, and sCD163 might serve as
potential biomarkers in recognizing sepsis complicated with
MAS (35, 149).

Monitoring the Function and Proportion of
Myeloid-Derived Suppressor Cells
It has been indicated that sepsis per se can result in the
substantial augmentation of MDSCs in peripheral blood,
representing one of the hallmarks of immunosuppressive
response. Both circulating G-MDSCs and M-MDSCs were
noted with significant increases at the early stage of sepsis,
which were defined as CD14-CD15+ and CD14+CD15- HLA-
DR–/low, respectively (114). Nevertheless, G-MDSCs were
reported to be more sensitive in discriminating septic and non-
septic patients than M-MDSCs did (39). Moreover, G-MDSC
frequencies were significantly correlated with long-term
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mortality in septic survivors and a high risk of septic shock
(112, 114). Of note is that MDSCs acquired function after 2
weeks, while their proportions remained sustainably high for at
least 6 weeks in patients with sepsis, in association with a long-
term immunocompromised state and the onset of chronic
critical illness (151, 152). Recently, the serum level of multiple
mediators and the expression of various surface markers have
been broadly applied to identify the emergence and
immunosuppressive function of circulating MDSCs among
septic patients, including S100A12, S100A8/A9, arginase 1
(ARG1), and lectin-type oxidized LDL receptor 1 (LOX-1)
(112, 113).

Monitoring the Function and Proportion of
Dendritic Cells
A profound reduction of splenic DCs could be seen in patients
who died of sepsis, and a depletion of circulating DC numbers
was frequently reported in septic cases, which was critically
involved in the development of septic shock and sepsis-
induced immunosuppression (43, 45, 153). Importantly,
reduction of DC counts could sustain for several weeks and
was more evidently observed in non-survivors (45)—for
example, Grimaldi et al. reported that both circulating
plasmacytoid DC (CD123+HLA-DR+Lin- cells) and myeloid
DC (CD11c-HLA-DR+Lin- cells) revealed a significant
reduction in patients who developed septic shock (44). The
expression of HLA-DR showed an obvious decrease on the
surface of DCs from septic patients in comparison to that of
the healthy controls, implicating a significantly impaired
antigen-presenting function (115). This view was further
strengthened by the subsequent study, in which enhanced IL-
10 production was noticed in circulating DCs from patients with
sepsis (49). Furthermore, the expression of B and T lymphocyte
attenuator (BTLA), an immunoregulatory receptor on myeloid
DCs, was found to positively correlate with the severity of illness
among septic neonates, and BTLA+DCs constituted a tolerogenic
and dysfunctional phenotype associated with an impaired
capacity in potentiating T cell proliferation (117). Besides this,
a high level of Blimp1, a transcription factor in driving the
tolerogenic function of DCs, could be observed in circulating
DCs isolated from septic patients, which was reportedly related
to severity and clinical outcome (116). Therefore, assessing the
number and function of DCs is essential for clinical practice by
deeply understanding immunopathogenesis and exploration of
an effective treatment (48).

Monitoring the Function of Natural
Killer Cells
The absolute counts and proportions of NK cells in lymphocytes
were significantly decreased in septic patients, for which both
CD56hi and CD56low NK cell subsets were consistently affected,
in association with an increased risk of death (118, 121, 122).
Conversely, higher proportions of NK cells indicated a better
prognosis for septic patients (119). Similar to monocytes and
neutrophils, an increased percentage of PD-L1+ NK cells was
demonstrated to predict an increased risk of 28-day mortality in
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septic patients (123). NK cells exhibited a reduction in
cytotoxicity in sepsis and septic shock patients, as evidenced by
impaired killing capacity and the dampened expression of
natural cytotoxicity receptors (NCRs) and NK group 2
member (NKG2) receptors, including NKG2C, NKG2D,
NKp30, and NKp46 (118, 120). The measurement of these
biomarkers on NK cells or NK cell subpopulations showed a
good performance in the early diagnosis of sepsis, whereas their
prognostic values remained largely divergent across studies (118,
120, 154). The immune-killing impact of NK cells is also
achieved by releasing multiple cytokines, in which IFN-g is the
most representative one reflecting the function of NK cells.
Identical to tolerant monocytes, the ex vivo release of IFN-g by
NK cells was greatly diminished upon LPS challenge, possibly in
association with the reactivation of latent viruses in critically ill
patients (56). Forel et al. found that the isolated NK cells from
septic patients showed a significantly downregulated secretion of
IFN-g (119). A reduced production of TNF-a by NK cells was
likely observed in patients with sepsis and septic shock (118).
However, a contradictory conclusion was made by other
investigators who reported a more powerful secretory capacity
of NK cells in septic patients in comparison to that in healthy
controls (155). The divergency might be attributed to the
substantial patients’ heterogeneity as well as the inconsistent
sampling intervals.
MONITORING THE ALTERATIONS OF THE
ADAPTIVE IMMUNE SYSTEM

Approximately 50% of septic patients are complicated with
lymphopenia at diagnosis, and these patients show a higher
risk than those with a normal count of lymphocytes in
both mortality and developing chronic disorders (124, 156). Of
note is that septic patients with a prolonged low count of
lymphocytes (less than 1.1 × 109/L) are more likely to develop
immunosuppression, thereby leading to the higher risk of death
(60, 124, 157).

Monitoring the Function of T Lymphocytes
Sepsis-induced lymphopenia appears to contribute to the
numerical loss of multiple subtypes of T cells, albeit at different
degrees, given that the alteration in the T cell subtypes reveals
great predictive value under a septic condition. By the use of flow
cytometry, the decline in the ratio of CD4+/CD8+ T cells might
serve as an indicator of abnormal adaptive immune response
(131), which is significantly correlated with elevated Acute
Physiology and Chronic health score II (APACHE II) scores
and incidence of multiple organ dysfunction syndrome among
patients with sepsis (132–134). Gupta reported that Th
cells showed polarization toward Th2 subtypes under septic
exposure, resulting in the imbalanced ratio of Th1/Th2, the
extent of which could predict the prognosis of septic patients
(135). However, another study came to a divergent result, and it
showed a consistently attenuated differentiational capacity
toward Th1, Th2, and Th17, as evidenced by diminished
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transcript levels of T-bet, GATA3, and ROR-g T in patients with
septic shock (105). It has been documented that Tregs
(CD4+CD25+FOXP3+CD127low/-) play an indispensable role in
potentiating long-term immunosuppression via promoting the
apoptosis and suppressing the function of other Teff subsets, the
expansion of which is commonly observed in the peripheral blood
of septic patients (58, 72, 158, 159). The potential role of increased
Tregs in the progression of sepsis remained controversial across
studies: a report showed a close correlation of Treg proportion with
poor prognosis (71), whereas others suggested the beneficial impact
of enhanced Tregs on sepsis (137). Notably, the ratio of Th17/Treg
usually presents with dynamic changes of early ascending and later
descending during the course of sepsis. The abnormal elevation of
Tregs is simultaneously followed with a reversed ratio of Th17/Treg,
indicating the occurrence of an immunosuppressive state (138, 139).
According to an early study, immunoparalysis was commonly seen
in patients with septic shock, as shown by the increased
representation of Tregs, which was especially noteworthy in non-
survivors (136). Therefore, the relative count and balance between
Th1, Th2, Th17, and Tregs are of prominent significance in the
early identification of an immunocompromised state among
patients with sepsis and septic shock. Grimaldi et al. conducted a
study that evaluated the numerical alterations of circulating innate-
like T lymphocytes and its correlation with clinical outcomes among
critically ill patients with sepsis. They found that the depletion of
CD3+TCRgd-CD4-CD161hiVa7.2+ MAIT cells rather than gd T
cells (CD3+TCRgd- cells) was associated with the increased
incidence of ICU-acquired infections (74).

Emerging evidence implicates the pronounced functional
defects of T cells among septic patients, and circulating T
lymphocytes that survived from sepsis-induced apoptosis are
presented with clonal anergy (29, 125). It has been reported that
the proliferative activity of T cells shows a significant reduction
in patients with severe trauma or burn injury and is critically
involved in severity and high mortality, suggesting the hypoergia
of T cells during the course of host immune dysregulation (126).
Meanwhile, T cell exhaustion is characterized by upregulated
expressions of various immune checkpoint molecules that
dampen the immunopotency. Correspondingly, several studies
revealed that circulating CD4+ T cells isolated from septic
patients expressed a high level of inhibitory receptors,
including programmed death-1 (PD-1), 2B4, and BTLA, which
were associated with increased susceptibility to secondary
infections and worsening clinical outcomes (62, 63, 127–129).
Monitoring the secretory levels of cytokines represented one of
the significant indicators for reflecting the function and
differentiation of T cells, as the induction of multiple cytokines
was greatly diminished in septic patients upon ex vivo
stimulation, including IL-2, IL-6, IFN-g, and TNF-a (34, 130).

Monitoring the Proportion and Function of
B Lymphocytes
In addition to the numerical loss, septic patients are presented
with evident B cell dysfunction, as evidenced by the increased
CD21-/lowCD95hi exhausted B cells in patients with sepsis and
septic shock (80, 140, 141). This point was further strengthened
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by the decreased MHC-II expression and elevated IL-10
production of B cells that survived from sepsis-induced
apoptosis, indicating an anergic profile (141). As for the
alterations in subsets, reduced percentages of circulating
plasmablasts and memory B cells could be observed in septic
patients compared to that of the healthy controls, while the
proportion of transitional B cells remained comparable (78).
Reduc t i on in CD19+CD27+ memory B ce l l s and
CD19+CD27+CD38+ plasmablasts, but not CD19+CD27- naïve
B cell population, was reported to predict 28-day mortality in
septic settings (145). Moreover, the enhanced expressions of
CD80 and CD95 on the surface of B lymphocytes were associated
with a increased risk of death among septic patients, whereas
CD23 expression was negatively correlated with an unfavorable
outcome (144).

Regulatory B cells (Bregs) characterized by CD19+

CD24hiCD38hi cells exert a pronounced expansion in neonatal
sepsis, and they appear to be critically involved in the
development of host immune depression (146). It has been
accepted that concentrations of serum IgG, IgA, and IgM
usually serve as specific parameters to reflect the functional
status of B cell directly. It was reported that the incidence of
hypogammaglobulinemia due to IgG depletion reached 70% in
septic patients but showed no specific connection to the clinical
outcomes, which was further supported by the results of clinical
trials (142, 143). Intriguingly, septic patients with a high serum
level of IgG were more likely to die, implying that a high IgG level
was a potential risk factor (143). Additionally, a decreased serum
level of IgM in elderly septic patients was found to be related to
the severity of illness (APACHE II score) and the occurrence of
secondary infections after sepsis (80). Taken together, these
results suggest that the value of a single Ig is far less than
combining multiple kinds of Ig in predicting the prognosis of
sepsis, and the combined use of serum IgG1, IgM, and IgA shows
a good performance in predicting the clinical outcomes of septic
patients (160).
CONCLUSIONS AND PROSPECTS

Immune monitoring in sepsis is of prominent significance in
identifying and stratifying septic patients with evident
immunocompromised status and who are at a higher risk of
recurrent infection and even long-term mortality (9). By
interrogating the alterations in proportion and function of
various immune cell subsets, clinicians can rapidly recognize
patients with sepsis-induced immunosuppression, which
subsequently guides and facilitates the implementation of
adjunctive immunotherapies. The consecutive failure of
multiple randomized controlled trials using immune
stimulatory agents might be attributed to the substantial
heterogeneity of septic patients and the lack of stratification
based on their immune status (161–164). Correspondingly,
potential biomarkers reflecting innate and adaptive immune
functional states can, at least in part, eliminate heterogeneity
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and benefit septic patients from more personalized immune-
adjuvant therapies.

Although unprecedented progress has been made in the
discovery of novel immune monitoring methods for septic
patients, there are still major gaps hindering the application
of these approaches (7). Firstly, one significant issue is that
majority of immune-related biomarkers remain relatively
unspecific, which are unable to convey the entire magnitude
of immune dysregulation and to distinguish critically ill
patients with or without infections. Leukocyte markers
reflecting the changes in immune cell subpopulations can be
potentially helpful (165). Meanwhile, the combined use of
indicators like neutrophil-to-lymphocyte ratio and monocyte/
high-density lipoprotein cholesterol ratio reportedly has a
better performance in predicting mortality for septic patients
than a single parameter did (166–168). Although numerous
studies have documented that immune monitoring indicators
can predict multiple clinical endpoints for septic patients,
including short- or long-term mortality, hospital-acquired
infections, and organ dysfunction, basically no specific
biomarkers are found to achieve a consistently good
performance in predicting all these outcomes (5). This
divergency further highlights the necessity for the
establishment of prediction models containing multiple
immune-re lated parameters . Secondly , the lack of
standardization of immunological measurement should be
taken into consideration as well. Given the emerging
appl i ca t ions of flow cytometry-based makers and
transcriptome profiling methods, accurate detection of
immune-relevant markers at the mRNA and protein levels is
becoming a reality. Nevertheless, no authorized guideline or
expert consensus is available in utilizing the thresholds of gene
expression-based tests, hindering the generalization of these
methods. Thirdly, the insufficient translation of many
biomarkers and cutting-edge techniques represents an
additional obstacle. Although several biomarkers are routinely
used in clinical practice, including mHLA-DR, circulating IL-
10, and CD4+/CD8+ ratio, the validity of many others is solely
manifested in the pre-clinical studies using an experimental
model of sepsis. In recent years, the development of multi-
omics-based techniques enables researchers to decipher
immune cell heterogeneity at single-cell resolutions, including
mass cytometry and single-cell RNA sequencing (scRNA-seq),
which have been broadly applied in various malignancies and
autoimmune diseases (169–171). However, other than
traditional techniques including flow cytometry and enzyme-
linked immunosorbent assay (ELISA), merely a few studies
adopt these methods in human sepsis, and they exert promising
results in establishing novel gene sets associated with monocyte
and neutrophil anergy (94, 109, 172) (Figure 2). Finally, the
interplay between the microbiome and the immune system has
been largely underscored since perturbations of intestinal
microbiome can be constantly observed in septic patients,
which plays an indispensable role in mediating post-sepsis
immune dysregulation (173, 174). A study proposed a novel
model in predicting lower respiratory tract infections among
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critically ill patients by integrating pathogen, airway
microbiome, and host transcriptional profile, achieving a
promising result (175). This study implicated that the
combined use of parameters regarding microbiological
components and host immune response might come out with
an optimized performance in stratifying septic patients with
distinct immune status. Meanwhile, the potential of
microbiome-manipulating therapies in treating sepsis-
induced immunosuppression requires further exploration.
Given that, strengthening the translational medicine research
and application of multi-omics methodologies can provide new
insights into the molecular and cellular basis of sepsis-induced
immune paralysis and facilitate the identification of novel yet
feasible immune-relevant cell-type-specific disease signatures.
Thus, it is our belief that the advancement of immune
monitoring strategies can greatly prompt the prevention and
treatment of sepsis.
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FIGURE 2 | Approaches for immune monitoring of sepsis-associated immune dysfunction. Peripheral blood mononuclear cells or plasma isolated from septic
patients are subjected to multiple immune monitoring assays in detecting the transcript and protein levels of various biomarkers that reflect functional status and
subset alterations of certain immune cell types, including flow cytometry, ELISA, and qPCR. Moreover, transcriptomic- and proteomic-based sequencing
technologies enable us to identify unique immune cell cluster and cell state, in association with sepsis-induced immunosuppression, including scRNA-seq and
CytoF. The Graph was created with BioRender.com. ELISA, enzyme-linked immunosorbent assay; qPCR, quantitative real-time polymerase chain reaction;
scRNA-seq, single-cell RNA sequencing; CytoF, cytometry with time-of-flight.
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