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ABSTRACT Exploratory analysis of human microbiome data is often based on
dimension-reduced graphical displays derived from similarities based on non-
Euclidean distances, such as UniFrac or Bray-Curtis. However, a display of this type,
often referred to as the principal-coordinate analysis (PCoA) plot, does not reveal
which taxa are related to the observed clustering because the configuration of sam-
ples is not based on a coordinate system in which both the samples and variables
can be represented. The reason is that the PCoA plot is based on the eigen-
decomposition of a similarity matrix and not the singular value decomposition (SVD)
of the sample-by-abundance matrix. We propose a novel biplot that is based on an
extension of the SVD, called the generalized matrix decomposition biplot (GMD-
biplot), which involves an arbitrary matrix of similarities and the original matrix of
variable measures, such as taxon abundances. As in a traditional biplot, points repre-
sent the samples, and arrows represent the variables. The proposed GMD-biplot is il-
lustrated by analyzing multiple real and simulated data sets which demonstrate that
the GMD-biplot provides improved clustering capability and a more meaningful rela-
tionship between the arrows and points.

IMPORTANCE Biplots that simultaneously display the sample clustering and the im-
portant taxa have gained popularity in the exploratory analysis of human micro-
biome data. Traditional biplots, assuming Euclidean distances between samples, are
not appropriate for microbiome data, when non-Euclidean distances are used to
characterize dissimilarities among microbial communities. Thus, incorporating infor-
mation from non-Euclidean distances into a biplot becomes useful for graphical dis-
plays of microbiome data. The proposed GMD-biplot accounts for any arbitrary non-
Euclidean distances and provides a robust and computationally efficient approach
for graphical visualization of microbiome data. In addition, the proposed GMD-biplot
displays both the samples and taxa with respect to the same coordinate system,
which further allows the configuration of future samples.

KEYWORDS data visualization, clustering, dimension reduction, structured data,
non-Euclidean distances

A biplot simultaneously displays, in two dimensions, rows (samples) of a data matrix
as points and columns (variables) as arrows. Based on a matrix decomposition of

the data matrix, the biplot is a useful graphical tool for visualizing the structure of large
data matrices. It displays a dimension-reduced configuration of samples, as in a
principal-coordinate analysis plot, and the variables with respect to the same set of
coordinates. If meaningful sample groupings are observed, this allows visualizing which
variables contribute most to the separation. The traditional biplot, as first introduced in
reference 1, displays the first two left and right singular vectors of the singular value
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decomposition (SVD) of the data matrix as points and arrows, respectively. This biplot,
which we hereafter refer to as the SVD-biplot, uses the SVD to find the optimal
least-square representation of the data matrix in a low-dimensional space. The SVD-
biplot can show Euclidean distances between samples and also display approximate
variances and correlations of the variables. It also has the appealing property that the
singular values obtained from the SVD are nonincreasing, indicating that the decom-
position of the total variance of the data matrix into each dimension is nonincreasing.

In many scenarios, the Euclidean distance may not be optimal for characterizing
dissimilarities between samples. An important example arises in the analysis of micro-
biome data, in which marker gene sequences (e.g., 16S rRNA) are often grouped into
taxonomic categories using bioinformatic pipelines such as QIIME (2) or mothur (3).
These taxon counts can be summarized into a data matrix with rows and columns
representing samples and taxon abundances, respectively. A variety of non-Euclidean
distance measures, including nonlinear measures, are then used to quantify the simi-
larity between samples. One common measure of dissimilarity is the UniFrac distance
(weighted or unweighted), which is a function of the phylogenetic dissimilarity of a pair
of samples (4, 5). Other nonphylogenetic, non-Euclidean dissimilarities include Jaccard
or Bray-Curtis distances (see, e.g., reference 6 and the references therein). Plotting the
samples in the space of the first few principal components (PCs) of the similarity matrix
obtained from such non-Euclidean distance matrices— often referred to as principal-
coordinate analysis (PCoA)—may reveal an informative separation between samples.
However, the configuration of samples yielded by PCoA keeps only pairwise distances
between samples and lacks a coordinate system that relates to the taxa that constitute
each sample. Hence, it does not shed any light on which taxa may play a role in this
separation. One approach for addressing this problem is to simply plot an arrow for
each taxon based on its correlation with the first two PCs of the non-Euclidean similarity
matrix (7). However, in such a “joint plot” (8), the direction and length of an arrow does
not represent the taxon’s true contribution to the dissimilarity between samples. In
addition, due to the lack of a coordinate system, one cannot add sample points for
future observations into this “joint plot.”

Three main approaches have been recently proposed to extend the SVD-biplot to
more general distances defined on the samples. The R package “ade4” (9) provides a
biplot that can handle weighted Euclidean distances but it cannot handle non-
Euclidean distances. The second approach, proposed by Greenacre (10), aims to ap-
proximate the non-Euclidean distance by a weighted Euclidean distance. Weights are
estimated for variables, and the biplot can subsequently be constructed using
weighted least-square approximation of the matrix. This approach has a straightfor-
ward interpretation. However, the estimated weighted Euclidean distance may not
capture all the information from the original non-Euclidean distance. A recent proposal
in reference 11 appears to be the first to address the lack of mathematical duality
between the samples’ locations (points) and the variables’ contribution (arrows) to
those locations. This approach seeks an approximate SVD-like decomposition of the
data matrix, which directly takes the non-Euclidean distance into consideration. This
SVD-like decomposition has the following two advantages. First, the left singular
vectors are the eigenvectors of the similarity measure derived from the non-Euclidean
distance, which preserve the role of the non-Euclidean distance in classifying the
samples. Second, an approximate matrix duality (AMD) between the left and right
singular vectors is restored, which simply means that each set of vectors can be
immediately obtained from the other. To emphasize this connection, we hereafter refer
to this decomposition as the AMD. Unfortunately, the AMD also suffers from two
drawbacks. First, the AMD is only an approximate decomposition of the data matrix,
and hence may not capture all the variation of the original data. In particular, the
configuration of samples displayed in an AMD-biplot is independent of the data matrix,
since the left singular vectors of the AMD depend only on the non-Euclidean distances.
Ignoring the data matrix for classifying samples seems nonintuitive since the data
matrix is typically assumed to contain some information on the sample similarities.
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Second, the AMD may result in nondecreasing “singular values.” While these seem like
minor technical issues, the second drawback can have important practical implications:
which of the left and right singular vectors should be displayed in the resulting biplot?
The authors of reference 11 suggest constructing the AMD-biplot based on the two left
and right singular vectors that correspond to the two largest singular values. This
AMD-biplot assures that the arrows for variables are as meaningful as possible, but they
may fail to reveal meaningful sample clusters if the information of sample clusters is
associated only with the first several left singular vectors. An alternative approach may
be to simply display the first and second left and right singular vectors of the AMD (as
done for the SVD). Unfortunately, this strategy does not solve the problem either:
although we may observe meaningful sample clusters, the arrows may not be mean-
ingful due to the small singular values. There is thus a lack of clarity regarding which
singular vectors should be used to construct the AMD-biplot.

The drawbacks of the AMD-biplot motivate our proposal which is based on the
generalized matrix decomposition biplot (GMD-biplot) (12). The GMD-biplot is a direct
generalization of the SVD-biplot that accounts for structural dependencies among the
samples and/or variables. This approach has several advantages. First, as with the AMD,
it directly handles any non-Euclidean distance matrix. Specifically, the full information
from that distance matrix is used. Second, unlike the AMD, which provides an approx-
imate decomposition of the data matrix, the GMD provides an exact decomposition of
the original data matrix without losing any information. Third, the GMD restores the
matrix duality in a mathematically rigorous manner, unlike the approximate matrix
duality obtained with the AMD; it naturally extends the duality inherent in the SVD and
allows one to plot both the configuration of samples and the contribution of individual
variables with respect to a new coordinate system. Fourth, the GMD gives nonincreas-
ing GMD values, so the resulting GMD-biplot can be directly constructed based on the
first two left and right GMD vectors. Last, unlike the AMD-biplot whose sample clusters
depend only on distance, the GMD-biplot uses both the non-Euclidean distance and
the data matrix for classifying samples, which more directly connects the contribution
of the individual variables to the configuration of samples. Additionally, besides ac-
counting for the non-Euclidean distances between samples, the GMD can also account
for auxiliary information on (dis)similarities between the variables.

The remainder of this paper is organized as follows. We first illustrate the GMD-,
AMD-, and SVD-biplots in three numerical studies. We then discuss advantages of the
proposed GMD-biplot and further extensions. In Materials and Methods, we present
detailed description of the GMD-biplot framework.

RESULTS

In the results below, we compare the GMD-, AMD-, and SVD-biplots on three data
sets in the manner that each has been proposed recently for microbiome data. In
particular, in reference 11, the AMD-biplot is advocated specifically for relative abun-
dance data, while in reference 13, the SVD-biplot is advocated for data that have been
scaled by the centered log ratio (CLR) transformation. The GMD-biplot is constructed
using the CLR-transformed data. We first examine the performance of all biplots using
the smokeless tobacco data set explored in reference 11. In the second study, we
compare their performances using the human gut microbiome data from reference 14.
In the third analysis, we simulate a data set based on the smokeless tobacco data to
illustrate a dilemma that the AMD-biplot may face.

Analysis of the smokeless tobacco data. This data set includes 15 smokeless
tobacco products: 6 dry snuff samples, 7 moist snuff samples, and 2 toombak samples
from Sudan. Three separate (replicate) observations (starting with sample preparation)
were made of each product, so that a total of 45 observations are available. Each
observation has a 271 � 1 vector of taxon counts, and thus, the data set can be formed
into a 45 � 271 matrix, denoted by X. The squared weighted UniFrac distance, denoted
by � � �45�45, was used to measure the distance between samples. The corresponding
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similarity kernel H was calculated as H � �
1

2
���, where � � In �

1

n
1n1n

T is the

centering matrix and 1n is an n � 1 vector. Since H is not positively semidefinite, we
forced it to be positive semidefinite by removing its negative eigenvalues and corre-
sponding eigenvectors. The resulting similarity kernel, denoted H�, has rank 27.

For the GMD-biplot, we consider the CLR transformation of X. Specifically, denoting
the geometric mean of a vector z by g�z� � ��k�1

p zk�1⁄p, the CLR transformation of
xi; i � 1, . . . , 45 is given by

x̃i � �log
xi1

g�xi� , . . . , log
xip

g�xi���

We denote the resulting data matrix by X̃ � �x̃1, . . . , x̃45�T. For the AMD-biplot, we
converted each row of X into the empirical frequencies and further centered the rows
and columns to have mean 0, as done in reference 11. We denote the resulting data

matrix by X̌.

We constructed the GMD-biplot and the AMD-biplot based on H� using X̃ and X̌,
respectively. Figure 1d displays the proportion of variance captured by each GMD compo-
nent. It can be seen that the first two GMD components capture more than 80% of the total
variance of X, which assures that the resulting GMD-biplot (Fig. 1a) visualizes the data well.
As shown in Fig. 1a, the GMD-biplot is perfectly successful at separating the different
tobacco products (dry, moist, and toombak). Furthermore, the replicates corresponding to
the same product are tightly clustered. By examining the arrows for taxa in Fig. 1a, we see

FIG 1 Biplots and scree plots for the analysis of smokeless tobacco data. (a) GMD-biplot based on the first and second components; (b) AMD-biplot based on
the second and third components; (c) SVD-biplot based on the first and second components; (d) GMD scree plot; (e) AMD scree plot; (f) SVD scree plot. The
biplots in panels a, b, and c display the top top taxa with the longest arrows. The sample points are colored by sample type (dry snuff [blue], moist snuff
[orange], and toombak [purple]), and samples corresponding to replicates of the same product are plotted with the same symbol (dry snuff [D], moist snuff
[M], and toombak [T]). The scree plots in panels d, e, and f display the contributions of the top 10 components. (Panel e is adapted from reference 11.)
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that moist samples may be characterized by elevated levels of Alloiococcus and Halophilus,
while Aerococcaceae appears elevated in toomback samples.

Figure 1e, which is the same as the right bottom panel of Fig. 1 in reference 11,
shows that the AMD singular values are not necessarily decreasing. It should be noted
that Fig. 1b is slightly different from Fig. 3 in reference 11; this difference may be due
to the use of H� here as opposed to H in reference 11. This is because we wanted the
AMD-biplot to be directly comparable to the GMD-biplot, since the GMD requires both
H and R to be positive semidefinite. From Fig. 1b, it can be seen that the AMD-biplot
successfully separates toombak samples (purple points) from dry (blue) and moist
(orange) snuff samples, although the separation between dry and moist snuff samples
in the AMD-biplot is not as definitive as that in the GMD-biplot (Fig. 1a).

Additionally, we included the SVD-biplot and its corresponding scree plot in Fig. 1c
and f, respectively. As the SVD-biplot assumes Euclidean distances between samples, it

is more appropriate to construct the SVD-biplot using the CLR-transformed data X̃ than

the relative abundance data X̌ (13). It can be seen from Fig. 1c that although the
SVD-biplot successfully separates dry snuff from moist and toombak samples, it does
not give a clear separation between moist snuff and toombak samples.

It is worth noting that the three biplots identify different top taxa, i.e., the taxa with
the longest arrows. Although a biplot is not a rigorous statistical method to detect
important taxa, it may shed light on which taxa are important to the observed sample
clustering. To see this, we performed a univariate linear regression of each taxon (each

column of X̃) on the tobacco groups (dry, moist, and toombak) and obtained P values
representing the strength of association between each taxon and the tobacco groups. We
then sorted these P values in a nondecreasing order and obtained the rank of each taxon
based on the sorted P values. Hence, it is desirable that the taxa with the lowest ranks can
be identified by the biplots. Table S1 in the supplemental material summarizes the ranks of
the top 10 taxa identified by each biplot. It can be seen that the top 10 taxa identified by
the GMD-biplot have lower ranks on average than those identified by the AMD and SVD
biplots, indicating that the GMD-biplot may identify more meaningful taxa with respect to
the separation of the samples than the AMD and SVD biplots.

Analysis of human gut microbiome data. We consider the human gut microbiome
data collected in a study of healthy children and adults from the Amazonas of
Venezuela, rural Malawi, and U.S. metropolitan areas (14). The original data set X
consists of counts for 149 taxa for 100 samples. The squared unweighted UniFrac
distance matrix � � �100�100, computed using the R package phyloseq (15), was used to
measure the distance between samples. Here, the distance between two samples is based
entirely on the number of branches they share on a phylogenetic tree. The distance hence
accounts only for the presence/absence of each taxon (not its abundance). The correspond-

ing similarity kernel H was then derived as H � �
1

2
���, which is a positive semidefinite

matrix with rank 99. Let X̃ and X̌, respectively, denote the CLR-transformed data and the
relative abundance data. Similar to the first study, the GMD-biplot and the AMD-biplot

were constructed based on the similarity kernel H using X̃ and X respectively, and

the SVD-biplot was constructed based on the SVD of X̃.
As concluded in reference 14, shared features of the functional maturation of the

gut microbiome are identified during the first 3 years of life. We thus define a binary
outcome hi based on the age of the individual (in years) when each sample was
taken as:

hi � �0 agei � 3

1 agei � 3,

for i � 1, . . . , 100. Approximately 70% of the samples are assigned to group 0, and the
remaining 30% are assigned to group 1.

In all biplots, the ith sample is colored by agei and symbolized by hi. Figure 2d
indicates that more than 80% of the total variance is explained by the GMD-biplot in
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Fig. 2a, which provides a good visualization of sample clusters across age. By examining
the relationship between the arrows and the color of the sample points in Fig. 2a, we
see that Prevotella may be elevated in adults, while Parabacteroides appears to be
elevated in infants. In contrast, Fig. 2e shows that less than 15% of the total variance
is explained by the AMD-biplot in Fig. 2b and the AMD values are not decreasing. As
shown in Fig. 2b, the AMD-biplot also displays potential clusters across age, but the
sample points are not as tightly clustered as those in Fig. 2a. Odoribacter appears to be
elevated in adults in Fig. 2b, while Lactobacillus appears associated with infants. As a

reference, Fig. 2c shows the SVD-biplot of X̃, which looks very similar to Fig. 2a.
To further quantify the classification accuracy, for each biplot, we predicted the

probability that each sample belongs to group 1 based on leave-one-out cross valida-
tion using the binary logistic regression of the group index hi on the two selected
components. We then plotted a receiver operating characteristic (ROC) curve for each
biplot based on the predicted probabilities (see Fig. S1 in the supplemental material)
and calculated the area under the ROC curve (AUC): the GMD-, AMD-, and SVD-biplots
yield an AUC of 0.989, 0.976, and 0.990, respectively. The AUC results indicate that the
GMD-biplot provides a better separation of age groups than the AMD-biplot, but there
is not a clear difference between the GMD-biplot and the SVD-biplot. This may be

because, for the CLR-transformed data X̃, the unweighted UniFrac distance is not as
informative with respect to age as the weighted UniFrac distance was in the tobacco
data with respect to product groups.

We emphasize that both the GMD-biplot and the SVD-biplot identify Prevotella and
Parabacteroides as top taxa, while the AMD-biplot identifies completely different ones.
As reference 14 confirms that the trade-off between Prevotella and Bacteroides (includ-
ing Parabacteroides) considerably drives the variation of microbiome abundance in

FIG 2 Biplots and scree plots for the analysis of the human gut microbiome data. (a) GMD-biplot based on the first and second GMD components; (b)
AMD-biplot based on the first and second components; (c) SVD-biplot based on the first and second SVD components; (d) GMD scree plot; (e) AMD scree plot;
(f) SVD scree plot. The biplots in panels a, b, and c display the top three taxa with the longest arrows. Symbols of sample points are based on the ages of
individuals when the samples were collected (age � 3 years indicated by circles, and age � 3 years indicated by triangles). The scree plots in panels d, e, and
f display the contributions of the top 10 components.
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adults and children between 0.6 and 1 year of age in all studied populations, the GMD-
and SVD-biplots may thus identify more biologically meaningful taxa than the AMD-
biplot. It should, however, be noted that these bacterial are “identified” based on
circumstantial, not statistical, evidence, and more work is needed to examine statistical
associations in this context.

Incorporating a kernel for variables into the GMD-biplot. The GMD problem (see
equation 3 in Materials and Methods) allows not only the similarity kernel for samples
but also a kernel for the variables. Including both kernels may further improve the
accuracy of sample classification as well as the identification of important variables. We
illustrate this advantage by incorporating a kernel for variables in the analysis of the
human gut microbiome data. More specifically, we first calculate a matrix �R��149�149

of squared patristic distances between the tips of the phylogenetic tree for each pair

of taxa and then derive a similarity matrix R as R � �
1

2
��R�. Figure 3a shows the

GMD-biplot with the additional kernel R incorporated. The ROC analysis based on the
leave-one-out cross validation for Fig. 3a yields an AUC of 0.984, which is higher than
that of the AMD-biplot (Fig. 2b) but slightly lower than Fig. 2a and Fig. 2c. This may be
because both H and R highly depend on the phylogenetic tree. Thus, incorporating R
may be redundant and may reduce the accuracy of the sample clustering in this case.
The top three taxa identified in Fig. 3a include Prevotella but not Parabacteroides, which
may explain the lower clustering accuracy.

Including an additional kernel for variables in the GMD-biplot is related to the
method of double-principal-coordinate analysis (DPCoA) (16). DPCoA, as shown in
reference 17, is equivalent to a generalized PCoA which essentially incorporates an
additional similarity kernel for variables into the analysis, as described in Proposition 1,
but for H � In. As suggested in reference 18, DPCoA can provide a biplot representation
of both samples and meaningful taxonomic categories. Hence, the GMD-biplot can also
be viewed as an extension of DPCoA biplots because the GMD allows kernels for both
samples and variables, while DPCoA allows a kernel only for variables.

FIG 3 The biplot and scree plot for the analysis of the human gut microbiome data using both H and R. (a) GMD-biplot using both H and R based on the
first and second GMD components. The top three taxa with the longest arrows are displayed. Symbols of sample points are based on the ages of the individuals
when the samples were collected (age � 3 years indicated by circles, and age � 3 years indicated by triangles). (b) GMD scree plot using both H and R. The
contributions of top 10 components are displayed.
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Simulation. In this section, we conduct a simulation study based on the smokeless
tobacco data to illustrate a scenario in which the AMD-biplot may fail to separate the
samples, whereas the GMD-biplot performs well. Let H� and X be the similarity kernel
and data matrix from the smokeless tobacco data, respectively. We consider the
eigen-decomposition of H� as H� � B	BT: B is a 45 � 27 matrix whose columns are
eigenvectors of H� and 	 � diag�
1, . . . , 
27� is a diagonal matrix whose elements are
the eigenvalue of H�. Then, the AMD-biplot is based on the following approximated
orthogonal decomposition of X:

X � BDVT , (1)

where D � diag�d1, . . . , d27� and V is a 271 � 27 matrix with orthonormal columns. As
shown in Fig. 2d, d1, . . . , d27 may not be decreasing. For j � 1, . . . , 27, we define

dj,S � �0.6 j � 1

0.8 j � 2

1 j � 3

0 j � 3,

and construct the simulated data set XS as XS � BDSVT, where DS � diag�d1,S, . . . , d27,S�. For
i � 1, . . . , 45, we define a binary outcome wi that indicates the group index of the ith sample
as:

wi � �1 bi1 � 0

0 bi1 � 0.

The GMD-biplot and the AMD-biplot of XS with similarity measure H� are presented
in Fig. 4a and b, respectively. It can be seen that the two groups are completely mixed
up in the AMD-biplot because the first column of B is not selected for visualization. In
contrast, the GMD-biplot successfully visualizes the sample groups by displaying the
first and second GMD components.

To see why this occurs, we summarize the first three diagonal elements of 	, DS, and
DS

2	 in Table 1 and notice that d1,S � d2,S � d3,S. Consequently, the AMD-biplot displays

FIG 4 Biplots for the analysis of the simulated data. (a) GMD-biplot based on the first and second GMD
components; (b) AMD-biplot based on the second and third components. Both biplots display the top six taxa with
the longest arrows. The sample points are colored by the group index (1 [red] or 0 [black]).

TABLE 1 The first three diagonal elements of 	, DS, and DS
2	 in the simulation

Matrix

Value for the following diagonal elements:

1st 2nd 3rd

DS 0.6 0.8 1
	 3.09 1.26 0.77
DS

2	 1.11 0.81 0.77
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the second and third columns of BDS, and hence, it completely fails to classify the
samples because the group index wi depends only on the first column of B. In contrast,
Proposition 1a (see Materials and Methods) shows that the GMD-biplot is based on the
two largest eigenvalues and the corresponding eigenvectors of XSXS

TH�. It can be
further seen that

XSXS
TH� � BDSVTVDSBTB	BT � BDS

2	BT. (2)

Equation 2 implies that the diagonal elements of DS
2	 are the eigenvalues of XSXS

TH�

and columns of B are the corresponding eigenvectors. Hence, it can be seen from
Table 1 that d1,S

2 
1�d2,S
2 
2�d3,S

2 
3, even though d1,S�d2,S�d3,S. Therefore, the GMD-biplot
displays the first and second column of BDS	

1⁄2 as sample points, which successfully
captures sample classifications.

DISCUSSION

Biplots have gained popularity in the exploratory analysis of high-dimensional
microbiome data. The traditional SVD-biplot is based on Euclidean distances between
samples and cannot be directly applied when more general dissimilarities are used.
Since Euclidean distances may not lead to an optimal low-dimensional representation
of the samples, we have extended the concept of the SVD-biplot to allow for more
general similarity kernels. The phylogenetically informed UniFrac distance, used in our
examples, defines one such kernel. In settings where a general (possibly nonlinear)
distance matrix is appropriate, our approach provides a mathematically rigorous and
computationally efficient method, based on the GMD, that allows for plotting both the
samples and variables with respect to the same coordinate system.

Our first data example with the smokeless tobacco data set from reference 11
demonstrates the merits of the proposed GMD-biplot. We found that the GMD-biplot
successfully displays different types of products, while the AMD-biplot is not able to
completely separate dry and moist snuff samples, and the SVD-biplot fails to separate
moist and toombak samples. As shown in Table S1 in the supplemental material, the
GMD-biplot is also able to identify biologically more meaningful taxa that are related to
the different types of products, compared to the AMD-biplot and the SVD-biplot.

In our second example, the GMD-biplot also outperforms the AMD-biplot in terms
of both the sample clustering and the identification of important taxa. However, there
is not a clear advantage of the GMD-biplot over the SVD-biplot in this example. This
difference between the two examples may be attributed to the relation between the
Euclidean kernel and the non-Euclidean similarity measure. Denoting the Euclidean
kernel and the non-Euclidean similarity measure by XXT and H, respectively, it can be
seen that the sample configuration in the AMD-biplot and the SVD-biplot depend solely
on either H or XXT, whereas the GMD-biplot uses the top two eigenvectors of XXTH,

the matrix product of the Euclidean kernel XXT and H. Hence, if XXT contains
substantially more information about sample clustering than H, then taking HT into
consideration may not further improve the accuracy of sample clustering. Indeed, this
may be the case in our second example, where the clustering of samples using the
Euclidean distance between samples of the CLR-transformed data is highly successful
because the difference of the microbial profiles between infants and adults is obvious
even without the help of the UniFrac distance. However, a possibly more common
scenario is when both H and XXT contain some, but different, information on sample
clustering. In such cases, taking both XXT and H into consideration may improve the
sample clustering and provide better biological interpretation.

In practice, we typically do not know what the true configuration of samples looks
like, so it is impossible to determine whether H or XXT contains more information
about sample clusters. Also, it is sensible to assume that XXT and H are “coinformative”
in the sense that they exhibit a shared eigenstructure; for instance, both may be
informative for clustering samples. The coinformativeness can be quantified precisely
using the Hilbert-Schmidt information criteria (HSIC) (19). For any two kernels K1 and
K2, the empirical HSIC is proportional to tr�K1K2�. Hence, by definition, the GMD

GMD-Biplot
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problem in equation 3 (see Materials and Methods) is equivalent to minimizing the HSIC
between �X � USVT��X � USVT�T and H over U, S and V. In other words, if we consider
X � USVT as the residual matrix of X, then the GMD solutions can be interpreted as the
best approximation to X in the sense that the HSIC between H and the Euclidean kernel
of the residual matrix is minimized. Thus, the GMD-biplot considers the coinformative-
ness of XXT and H. Therefore, in many cases, it would be a more robust way to display
the sample points compared to the AMD-biplot or the SVD-biplot. Another advantage
of the GMD-biplot over the AMD-biplot is illustrated in our simulation study. Since AMD
may not give decreasing singular values, the AMD-biplot may not be able to display the
most informative eigenvectors of H, and may thus fail to cluster the samples. In
contrast, GMD assures that the resulting singular values are nonincreasing.

Our discussion in this paper has focused on the form biplot, which aims to visualize
the relationship between variables and the sample clustering. In other scenarios, where
the variation of the data matrix explained by each variable is of particular interest, the
covariance biplot may be more appropriate. This biplot considers the GMD of X with
respect to H; i.e., X � USVT, where UTHU � Iq and VTV � Iq. Note that

�X�H,I
2 � tr�XXTH� � tr�XTHX� � tr�SVTVS� � 	

m�1

q

sm
2 ,

where S � diag�s1, . . . , sq�. Furthermore, since V has orthogonal columns, it can be seen
that 	m�1

q sm
2 � 	j�1

p �	m�1
q vjm

2 sm
2 �. Thus, the value of �	m�1

q vjm
2 sm

2 � ⁄ 
X
H,I
2 gives the

proportion of the variability in 
X
H,I
2 explained by the jth variable. Note that when

q � 2, the length of the arrow of the jth variable in the covariance biplot is given by
��	m�1

q vjm
2 sm

2 �. Therefore, in a covariance biplot, the arrows shed light on how the total
variance of the data is partitioned into parts explained by each variable.

MATERIALS AND METHODS
We denote the data matrix by X��n�p, where n is the number of samples and p is the number of

variables (taxa). We assume that the columns of X are centered to have mean 0 and rank�X� � K �

min�n,p�. For any matrix M, we denote its ith row (sample) and its (i, j) entry by mi and mij, respectively.
We denote the transpose of M by MT.

Biplot, distance measure, and AMD. A biplot is a graphical method to simultaneously represent, in
two dimensions, both the rows (as points) and columns (as arrows) of the matrix X on the same
coordinate axes. Given a decomposition of X as X � ABT, a biplot displays two selected columns of A and
B. The SVD-biplot is based on the singular value decomposition (SVD) of X, i.e., X � USVT, where
UTU � IK,VTV � IK, and S � diag��1, . . . , �K� with �1, . . . , �K being a sequence of nonincreasing and
positive singular values. Here IK is a rank K identity matrix. Based on the SVD, A and B can take various
forms; examples include form and covariance biplots (7). Since our primary interest is to visualize the
clustering of samples, we focus on the form biplot in this paper and comment on the covariance biplot
in the Discussion.

The SVD-biplot displays the first two columns of US and V, which can explain ��1
2  �2

2�⁄tr�XXT� of the
total variance of X. The SVD of X is closely related to the eigen-decomposition of the similarity kernel
XXT, as we can write XXT � US2UT. Thus, the eigen-decomposition of XXT provides a way to calculate
U and S. Once U and S are calculated, one can calculate V from the duality between U and V; that is,
VS � XTU. The similarity kernel XXT characterizes the Euclidean distance between samples. To see this,
we define the Euclidean squared distance between the ith and jth sample as dij

E � 
xi � xj
�p
2 . Let � �

In �
1

n
1n1n

T be the centering matrix where 1n is an n � 1 vector of ones. It can then be seen that

XXT � �
1

2
��E�, where the (i, j) entry of �E is dij

E.

Now, if �E is replaced by a matrix D of non-Euclidean squared dissimilarities, one can still define a

similarity kernel by H � �
1

2
�D�. One such example is when D arises from distances between sample

vectors of microbial abundances (or presence/absence) which account for a phylogenetic tree, as in a
weighted (respectively, unweighted) UniFrac distance matrix. In this case, one can construct a principal-
coordinate analysis (PCoA) plot of the samples using H � UHSH

2 UH
T . However, an SVD-biplot cannot be

constructed, since there is no V that corresponds to the variables. The approximate matrix duality (AMD)
addresses this problem by fixing UH and then seeking a matrix VH with orthonormal columns and a
diagonal matrix DH with nonnegative elements that minimize the objective function

(VH, DH) � argminV,D�X � UHDVT�F
2.

Here, 
M
F
2 � tr�MTM� is the Frobenius norm of M, and for any square matrix M � �d�d, tr�M� �

	j�1
d mjj. The resulting AMD-biplot can be constructed by plotting the two columns of UHDH as sample

points and plotting VH as arrows for variables; the selected two columns/rows correspond to the two
largest elements of DH.
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GMD and the GMD-biplot. The concept of generalized matrix decomposition (GMD) was
introduced by Escoufier (20) and further developed in reference 12. It is a generalization of the SVD
with additional structural dependencies taken into consideration. We briefly review the key ideas
behind the GMD. Let H � �n�n and R � �p�p be two positive semidefinite matrices, which charac-
terize the similarities between samples and between variables, respectively. The H, R-norm of X is

defined as 
X
H,R � �tr�XRXTH�. For any q � K, the GMD solution �Ũ, Ṽ, S̃� finds the best rank-q
approximation to X with respect to the H, R-norm, that is,

(Ũ, Ṽ, S̃) � argminU,S,V
X � USVT
H,R
2 (3)

subject to UTHU � Iq, VTRV � Iq, and diag�S� � 0. Here, Ũ and Ṽ are the left and right GMD vectors,

respectively, and S̃ is a diagonal matrix containing the GMD values. Note that Ũ and Ṽ are orthogonal
with respect to H and R, respectively, but they may not be orthogonal with respect to the Euclidean
norm unless H � In and R � Ip. The following property of the GMD provides a way to calculate the GMD
components; the proof can be found in reference 20.

Proposition 1: The GMD solutions �Ũ, Ṽ, S̃� satisfy:

�a� XRXTHŨ � ŨS̃2

�b� ṼS̃ � XTHŨ

Proposition 1a suggests that the diagonal elements of S̃ and corresponding columns of Ũ are eigen-
values and corresponding eigenvectors of XRXTH, respectively. Proposition 1b establishes the duality

between Ũ and Ṽ, meaning that Ṽ can be immediately obtained, given Ũ and S̃. Alternatively, an efficient
algorithm for finding the solution to equation 3 was proposed in reference 12, which is less computa-
tionally intensive compared to finding the eigenvalues and eigenvectors of XRXTH. The algorithm also

ensures that the diagonal elements of S̃ are nonincreasing.
Note that the GMD can handle the non-Euclidean similarity kernel H just by taking R � Ip. Based on

the GMD of X with respect to H, the GMD-biplot can be constructed with respect to the coordinate
system provided by the first two columns of V. More specifically, letting vj be the jth column of V, the
ith sample point can be configured by the coordinates of xi, given by �xi

Tv1,xi
Tv2�. To plot the arrow for

the jth variable, we consider the vector ej � �p, which has a 1 in the jth element and 0’s elsewhere. Then,
the arrow for the jth variable can be configured by the coordinates of ej, given by �ej

Tv1,ej
Tv2�. This

coordinate system also allows the configuration of future samples. Letting x� � �p be a future sample,
we can add x� into the GMD-biplot as a point located at �x�

Tv1,x�
Tv2�. Similar to the SVD-biplot, the

GMD-biplot can explain ��̃1
2  �̃2

2� ⁄tr�XXTH� of the total variance of X with respect to the H,Ip norm,

where �̃k is the kth diagonal element of S̃ for k � 1, 2.
Since the GMD values are nonincreasing, for the purpose of constructing the GMD-biplot, we can

choose q � 2 in the GMD problem (equation 3), which may save considerable computational time. In
contrast, since the AMD may produce nondecreasing “singular values,” we have to find the full
decomposition of X by the AMD before deciding which singular vectors to plot in the AMD-biplot; this
may become computationally intensive for large n and p.

Data availability. All data used are publicly available in references 11 and 14. All computations are
conducted in the R programming language, and the proposed biplot is implemented in our R package
“GMDecomp,” available at https://github.com/taryue/GMDecomp.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00504-19.
FIG S1, TIF file, 1.2 MB.
TABLE S1, PDF file, 0.02 MB.
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