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Abstract

The present study investigates if the total replacement of dietary fishmeal (FM) with poultry

by-product meal (PBM), supplemented with methionine influences the muscle fatty acids

composition, normal gut morphology, histological traits of the liver, muscle, and gill, liver

enzymes, immune and antioxidant response, and stress-related gene in juvenile barra-

mundi, Lates calcarifer in relation to growth and feed utilization. Barramundi (3.58±0.01g)

were randomly distributed into six 300 L seawater recirculating tanks (25 fish/tank) and fed

two formulated isonitrogenous and isolipidic diets for 6 weeks. The control diet had FM as

the sole animal protein source, whereas other test diet had only PBM as an animal protein

source. Dietary PBM affected the fish performance and feed utilization. Regarding muscle

fatty acid profile, total saturated fatty acids and monounsaturated fatty acids elevated while

total PUFA particularly n-3 LC-PUFA and EPA decreased in PBM fed fish than control diet

fed fish. Liver, muscle, gill, and intestinal histology showed no obvious alteration in control

diet fed fish, however, more lipid droplets and hepatic vacuolization in the liver, necrotic

myotome in muscle, hyperplasia in secondary lamellae in gill and short and broken folds in

the intestine were observed in PBM fed fish. Similar to light microscopy observation of intes-

tinal morphology, the transmission electron microscopy (TEM) analysis revealed shorter

and smaller microvilli in fish fed PBM. Histopathological alterations in the liver of PBM fed

fish were further associated with the elevated levels of aspartate aminotransferase (AST)

and glutamate dehydrogenase (GLDH) and the significant upregulation of stress-related

genes, HSP70 and HSP90. Also, a negative influence on lysozyme activity, and antioxidant

enzymatic activities were recorded in fish fed PBM. Overall, it can be concluded that a total

substitution of FM protein by methionine supplemented PBM negatively influenced the

growth performance, liver health, histological traits of different organs, immune and antioxi-

dant response, and expression of stress-related genes in juvenile barramundi.
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Introduction

One of the major bottlenecks for carnivorous aquafeed production is the inconsistence supply

of global fishmeal (FM) and escalated prices. Therefore, efforts have been exerted over several

decades to investigate the feasibility of alternative dietary protein sources replacing FM in car-

nivore finfish aquaculture [1–4]. Presently, three main categories of FM replacements includ-

ing terrestrial plant meals, rendered animal by-products, and seafood processing wastes are

commercially available and used [5]. However, more than 50% of substitution of FM is now

regularly achieved commercially in most carnivorous species [5], including barramundi or

Asian sea bass, Lates calcarifer a commercial important carnivorous fish species [6]. Barra-

mundi has good meat quality, ability to tolerate a wide range of salinity, and ability to adapt to

the versatile farming environment [7]. It is popularly cultivated both in freshwater and seawa-

ter in Malaysia, Thailand, Taiwan, Indonesia, Saudi Arabia, and Australia, contributing USD

320 million globally [8, 9]. In Australia, barramundi farming is heavily dependent on imported

FM resulting in incurring around 40% diet related cost which is the main impediment to

increase the profitability [10]. Hence, nutritional studies on barramundi have commenced

since the 1980s [11] and many of the studies have dedicated to replacing the FM with rendered

animal meals [7, 10, 12–18] or plant meals [12, 13, 19–24].

Poultry by-product meal (PBM), an economical and easily available ingredient compared

to FM contains a higher level of protein and most of the indispensable amino acids except for

lysine and methionine [25–27]. Although, significant research in Australia and New Zealand

has been conducted to commercially utilize PBM in various industries, its worldwide utiliza-

tion is controlled by several regulations, for example the ban in European Union that has been

recently lifted to allow the utilization of non-ruminant processed animal protein for aquacul-

ture species [5]. Like other animal-based protein, another major limitation regarding the utili-

zation of PBM is the variable digestibility due to variability in its composition and quality [28].

There have been several studies examining the effect of PBM on barramundi but results are

mixed. For instance, Glencross, Blyth [29] reported that the inclusion of poultry meals up to

338g/kg does not influence the growth but beyond this level had a deleterious effect. Besides, a

recent study of Simon, Salini [8] found that barramundi growth was impaired despite feeding

balanced poultry protein concentrate (5–20%) while PBM along with supplementation of tuna

hydrolysate could replace 90% of FM without impairing the growth [16]. In our earlier study,

regardless of full-fat black soldier fly larvae supplementation, barramundi fed 90% PBM

impacted the growth performance [18]. Similarly, the utilization of PBM above 50% affected

the welfare of some marine fish species [25, 26, 30–32]. Imbalanced dietary essential amino

acid (EAA) particularly methionine and lysine in PBM based diets are one of the major causes

resulting growth depression in many fish [28]. The methionine requirement for barramundi

was reported to be 2.2% [11]. In this study, methionine was supplemented to PBM to investi-

gate if supplementation of deficient EAA in PBM could substitute FM totally.

In addition to assessing the growth performance related to non-FM protein ingredients,

health aspects including the changes in serum biochemical assays, immune responses, and

stress-related oxidative biomarkers are also crucial parameters of interest to aquaculturists.

Nutritional factors can influence the production of oxidative enzymes [33]. Oxidative stress is

characterized by an increase in malondialdehyde (MDA) and a decrease in glutathione peroxi-

dase (GPx) [34]. The imbalance between antioxidant defences and free radical generation may

cause cell damage, which may provoke the leaking of liver enzymes particularly ALT and

GLDH in fish [35], associated with liver cell damage. Although published data are available on

the effects of plant protein on oxidative biomarkers of barramundi [21, 22, 36, 37], there is less

information on the effects of animal protein inclusions. The dietary inclusion of PBM
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impacted the liver health of barramundi by increasing the levels of ALT and GLDH [18], and

animal protein ingredients elevated the levels of AST and ALT in hybrid grouper, Epinephelus
fuscoguttatus♀× Epinephelus lanceolatus♂ [38]. Moreover, the equilibrium between oxidants

and antioxidants is also important for immune cell function since it preserves the integrity and

functionality of the cell membrane. Hence, it is crucial to understand the correlation between

the antioxidants, liver enzymes, and immune response when entire dietary FM is replaced by

any alternate- protein ingredients.

During dietary modification, it is important to consider that replacement of FM with

potential ingredients do not exert adverse effects on the welfare of the tested species, as the wel-

fare of fish in captive condition has been a growing concern over the decades [39–41]. The his-

tological approach is one of the important frontline tools applied to assess the health status

that can be achieved by evaluating the morphological status of different organs. The liver is the

biggest organs involved in nutrient metabolism and producing biochemical compounds

required for digestion. Muscle structure is also important as it reflects the nutritional condition

and agility of the fish. The intestine is a primary immune organ in fish participated in digestion

and absorption of nutrients as well as defence mechanism against microbes [42]. The evalua-

tion of histopathological changes in these organs is important to assess the non-FM diet.

Therefore, the present study aimed to investigate whether methionine supplemented PBM

based diet has an ability to substitute FM completely without compromising growth perfor-

mance, fatty acids composition, histological traits of different organs, serum biochemical

response, stress-related genes expression, and antioxidant activities in barramundi.

Materials and methods

Animal ethical statement

The experiment was conducted at Curtin Aquatic Research Laboratory (CARL) in Curtin Uni-

versity, Australia in compliance with relevant guidelines and regulations set by the Australian

Code of Practice for the care and use of animals for scientific purposes. All methods involving

fish were reviewed and approved by the Curtin University Animal Ethics Committee

(ARE2018-37). Prior to handling fish, AQUI-S1 was used as anaesthesia and an overdose of

AQUI-S was used as euthanasia to minimise stress, pain, and discomfort to the fish following

the protocol of the Curtin Research Laboratories standard operating procedure (SOP) of

anaesthetizing and euthanizing of fish.

Experimental diets

Except PBM, all the ingredients required for formulating test diets were purchased from the

Special Feeds, 3150 Great Eastern Hwy, Glen Forrest, WA. Two isonitrogenous and isolipidic

containing approximately 48% crude protein and 13% crude lipid were prepared to meet the

nutritional requirement of barramundi [43]. FM and PBM were used as the main protein

source and canola oil and cod liver oil were used as lipid sources. A control diet was prepared

based on FM and another diet was formulated by replacing 100% of FM with PBM supple-

mented with 0.40% methionine (Table 1) to meet the established methionine requirement for

normal growth of barramundi [11, 44]. The diets were formulated in compliance with the stan-

dard protocol of CARL. Briefly, all the dry ingredients were mixed homogeneously using a

food mixture (Hobart Food equipment, Australia) before blending with fish oil and distilled

warm water to make a stiff dough. The dough was passed through a mincer to make 3 mm pel-

lets, then spread out and dried in an oven at 60˚C for 36 hours. After drying, pellets were sealed

in plastic bags before refrigerating at 4˚C until used in the feeding trial. The fatty acid and

amino acid profile of test diets and PBM is shown in Table 2 and Table 3, respectively.
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Fish husbandry and management

Three hundred and fifty barramundi were obtained from the Australian Centre for Applied Aqua-

culture Research (ACAAR), Fremantle, Australia in oxygenated plastic bags. Prior to commenc-

ing the trial, all fish were stocked into two fiberglass tanks (300 L) filled with ocean water and fed

a commercial diet (470 g protein kg−1 diet and 20.0 MJ kg−1dietary gross energy) twice daily for

two weeks to acclimate them to CARL experimental facilities and conditions. Following acclima-

tion, 150 normal and visually healthy fish averaging (3.58±0.01g) were randomly distributed into

six 300-L tanks, containing 250 L water in each tank. Therefore, stocking number of barramundi

in each tank was 25. Each tank was equipped with an aerator, electric heater, and external bio-fil-

ter (Astro1 2212, China) to maintain DO, temperature, and other water quality parameters at an

optimal level. Hence, the temperature was maintained at 27.90–29.20˚C, dissolved oxygen (DO)

at 5.92–7.42 mgL−1, salinity at 32–36 ppt, and photoperiod as 14:10 h LD. Commercial test kits

were used to test ammonia nitrogen (<0.50 mgL−1) and nitrite (<0.50 mgL−1) level regularly.

Each test diet had three replicates and fed by hand twice daily at 8.00 am and 6.00 pm to visual

satiety levels for 42 days. Uneaten feed, if any, was collected by siphoning to calculate feed intake,

and the number of dead fish were monitored daily to assess the fish survival rate. After 42 days, all

fish were starved for 24 h prior to weighing total biomass to analyse the growth performance.

Fatty acids profile

Fish muscles in the form of three samples per dietary treatment were used for fatty acids analysis.

Four fish muscle was filleted, wrapped with aluminium foil, freeze-dried, and pooled together.

Table 1. Formulation and proximate composition of test diets for barramundi.

Ingredientsa (g/100g DM) Control 100PBM

†FM 72.00 0.00

‡PBMb 0.00 69.50

Canola oil 1.00 3.00

Cod liver oil 0.50 6.00

Corn/wheat starch 7.00 7.00

wheat (10 CP) 16.90 11.50

Lecithin—Soy (70%) 1.00 1.00

Vitamin C 0.05 0.05

Dicalcium Phosphate 0.05 0.05

Methionine 0.00 0.40

Vitamin and mineral premix 0.50 0.50

Salt (NaCl) 1.00 1.00

Proximate composition (% dry weight)c

Moisture 14.96 13.98

Crude Protein 47.88 47.86

Crude Lipid 12.59 12.71

Ash 9.67 10.24

Gross energy (MJ/kg) 20.23 19.95

a Specialty Feeds, Glen Forrest Stockfeeders, 3150 Great Eastern Highway, Glen Forrest, Western Australia 6071.
bKindly provided by Derby Industries Pty Ltd T/A, Talloman Lot Lakes Rd, Hazelmere WA 6055.
cAnalysed according to Association of Official Analytical Chemists (AOAC) [45].
† FM (Fishmeal): 64.0% crude protein, 10.76% crude lipid and 19.12% ash.
‡ PBM (Poultry by-product meal): 67.13% crude protein, 13.52% crude lipid and 13.34% ash.

https://doi.org/10.1371/journal.pone.0242079.t001
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The fatty acids profile of experimental diets and fish flesh was carried out following the protocol

of O’Fallon, Busboom [47], and Siddik, Chungu [7]. Approximately 0.5g of sample was hydro-

lysed at 55˚C for 1.5 hrs with 0.1ml of internal standard (1.2g nonadecanoic acid in 100ml chloro-

form), 0.7ml of 10N KOH and 5.3ml of methanol. The sample was then methylated at 55˚C for

1.5hrs with 0.6mL of 24N of sulphuric acid. The FAMES was extracted into 1ml of hexane and

then quantified gas chromatography with flame ionization detection. The column used was a cap-

illary column HP INNOWax GC column (60m x 0.25mm ID film 0.50 micron) with hydrogen as

the carrier gas. Each sample were run in triplicate and results are expressed as an average.

Histological and Transmission Electron Micrograph (TEM) analysis

After 42 days of feeding, one fish from each tank was randomly euthanized with AQUI-S at

175 mg/L to excise liver, muscle, gill, and intestine for histological and TEM evaluation in

Table 2. Fatty acids (mg/100g of dry sample) composition of control and test diet replacing FM totally with PBM

in barramundi.

Experimental diets

Fatty acids Control 100PBM PBM

C12:0 2.73 7.11 9.39

C14:0 131.63 342.45 73.69

C16:0 1161.21 2090.88 2336.27

∑SFA1 1981.40 3216.29 3344.73

C14:1n5 1.52 11.32 16.26

C16:1n7 165.22 435.58 540.27

C18:1cis+trans 1158.94 3800.14 4410.64

C20:1 79.86 483.71 60.84

∑MUFA2 1482.21 4873.58 5057.95

C18:3n3 120.20 285.67 260.39

C20:5n3 (EPA) 178.50 278.99 16.79

C22:5n3# 63.30 64.60 36.67

C22:6n3 (DHA) 908.53 455.23 27.47

∑n-3 PUFA3 1309.12 1240.95 358.96

C18:3n6 8.84 10.58 23.07

C20:3n6 15.50 18.76 56.76

C20:4n6 112.83 43.18 180.13

C22:4n6# 91.14 16.39 4.78

∑n-6 PUFA 228.31 88.91 264.74

∑n-3/n-6 5.73 13.96 1.36

∑PUFA4 2184.01 2437.48 2386.97

∑n-3 LC-PUFA 1158.61 806.57 85.36

1Contains 10:0, 13:0, 15:0, 17:0, 18:0, 20:0, 21:0, 22:0 and 23:0.
2Contains C15:1, C17:1, C22:1n9 and C24:1.
3Contains C18:4n3, C20:3n3.
4Contains C18:2 trans, C18:2 cis, C20:2, C22:2.

Poultry by-product meal, PBM; saturated fatty acids, SFA; monounsaturated fatty acids, MUFA; polyunsaturated

fatty acids, PUFA.

Eicosapentaenoic acid, EPA; DHA, docosahexaenoic acid, sum of saturated fatty acids, ∑SFA; sum of

monounsaturated fatty acids, ∑MUFA; sum of polyunsaturated fatty acids, ∑PUFA; sum of omega-3 polyunsaturated

fatty acids, ∑n-3 PUFA; sum of omega-6 polyunsaturated fatty acids, ∑n-6 PUFA and LC-PUFA, long-chain

polyunsaturated fatty acids (sum of 20:3n-3, 20:5n-3, 22:5n-3 and 22:6n-3).

https://doi.org/10.1371/journal.pone.0242079.t002
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response to test diets. For histological analysis, samples of all organs were fixed immediately in

10% buffered formalin, subsequently dehydrated with series of ethanol, infiltrated in xylene,

and embedded in paraffin wax, as per standard histological protocols. Section of approxi-

mately 5 μm thickness was stained with Periodic Acid-Schiff (PAS) and digitally photographed

under a light microscope (BX40F4, Olympus, Tokyo, Japan).

For TEM analysis, freshly collected intestinal samples washed in 2.5% glutaraldehyde buff-

ered in 1x PBS at pH 7.4 before performing secondary fixation in 1% OsO4 (80 W 2 min on, 2

min off, 2 min on), dehydrating in ethanol (50, 70, 95 and 100% at 250 W, 40 seach) and infil-

trating finally with epoxy resin in acetone (Procure 812, Proscitech) (1:3, 1:1, 3:1ratios at 250

W, 3 min each). Samples were processed as described in the earlier study in our lab [16] and

screened a LaB6 TEM (JEOL2100, Japan) at 120 kV. The electron micrographs obtained from

TEM analysis at 30,000 magnification were analysed using ImageJ (National Institute of

Health, USA) to determine microvilli length and diameter.

Antioxidant status assessment

The enzyme activities of serum malondialdehyde (MDA) was determined using commercial

assay kits following the manufacturer’s instructions (Bockit, BIOQUOCHEM SL, 33428 Lla-

nera-Asturias, Spain) and glutathione peroxidase (GPx) was measured with the Randox Labo-

ratories test combination (Ransel, Antrim, United Kingdom) following the protocol of earlier

study in our laboratory [22].

Serum biochemistry and immunity

Fish were captured gently at 42 days post-feeding, immediately dipped in a bucket containing

8 mg l−1 of AQUI-S1, and blood was taken by puncturing caudal vessels using 1 mL non-

Table 3. Amino acids (g/100g on dry matter basis) composition of test diets and PBM.

Experimental diets

Amino acidsa Control 100PBM PBM

Hydroxyproline 1.7 3.2 3.2

Histidine 2.4 1.8 1.8

Taurine 0.5 0.5 0.4

Serine 5.3 5.0 5.0

Arginine 4.5 4.8 5.1

Glycine 13.2 16.4 16.5

Aspartic acid 8.8 7.8 7.8

Glutamic acid 11.7 12.1 11.5

Threonine 4.9 4.2 4.3

Alanine 9.4 9.1 9.1

Proline 6.1 7.3 7.0

Lysine 6.2 5.3 5.5

Tyrosine 2.0 1.8 2.0

Methionine 2.4 2.2 1.8

Valine 5.6 5.2 5.1

Isoleucine 4.3 3.8 3.8

Leucine 7.6 6.4 6.9

Phenylalanine 3.3 3.0 3.0

aDetermined including hydroxyproline and taurine analysis following our earlier study [46].

https://doi.org/10.1371/journal.pone.0242079.t003
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heparinized syringes (22G). Blood was allowed to clot for 24 h at 4˚C, centrifuged for 15 min

at 3000 rpm and 4˚C, the serum collected and stored immediately at—80˚C for the analysis of

serum biochemical parameters, oxidative biomarkers, and immune parameters. Serum clinical

chemistry and immune-related parameters were analysed according to the protocol of our ear-

lier study [18, 46].

RNA extraction and qRT-PCR analysis

Liver from control and PBM fed fish were aseptically collected after euthanizing (AQUI-S, 175

mg l−1) the fish and preserved in RNA Later (Sigma-Aldrich, Germany) at—80˚C until RNA

extraction. Five milligrams of liver tissue stored in RNA Later was used for RNA extraction

using RNeasy Mini Kit (Qiagen, Hilden, Germany) according to manufacturer protocol. The

quality of RNA was checked by gel electrophoresis and, the purity and quantity were deter-

mined gel electrophoresis before synthesizing complementary DNA (cDNA) from 1 μg of total

RNA using Omnicript RT kit (Qiagen, Hilden, Germany) following the instruction of manu-

facturer’s company. qRT-PCR on stress-related genes were performed by PowerUpTM Cyber

Green Master Mix (Thermo Scientific, USA) with 7500 Real-Time PCR System (Applied Bio-

systems, USA) and data were normalised against housekeeping genes, 18S rRNA and Ef1-a,

(Table 4) and analysed using REST© software [48].

Calculation and statistics

Specific growth rate (SGR), feed conversion ratio (FCR) and total feed intake (TFI) were calcu-

lated using the following equations-

Weight gain ðWG; gÞ ¼ ½ðMean final weight � Mean initial weightÞ=ðMean initial weightÞ�

Specif ic growth rate ðSGR;%dÞ
¼ ½ðln ðf inal body weightÞ � ln ðpooled initial weightÞÞ=Days� � 100

Feed conversion ratio ðFCRÞ ¼ ½ðdry feed fedÞ=ðwet weigth gainÞ�

Feed intake ðFI; g=f ish d� 1
Þ

¼ ½ðDry diet given � Dry remaining diet recoveredÞ=days of experimentÞ= no:of fish�

All data were represented as mean±SE. The differences between control and PBM fed fish

in all data were determined by unpaired student t-test at the significance level of 0.05<

P< 0.001. Percent survival at the termination of the feeding trial was plotted using the

Kaplan-Meier survival method with the Log-rank (Mantel-Cox) test.

Table 4. Primers of qPCR used in the experiment.

Genes Sequences (5´ - 3´) Product size Tm (˚C)

Heat shock protein kDa70, HSP70 F: AAGGCAGAGGATGATGTC 186 59 Mohd-Shaharuddin, Mohd-Adnan [48]

R: TGCAGTCTGGTTCTTGTC

Heat shock protein kDa90, HSP90 F: ACCTCCCTCACAGAATACC 197 59 Mohd-Shaharuddin, Mohd-Adnan [48]

R: CTCTTGCCATCAAACTCC

18S rRNA, 18S F: TGGTTAATTCCGATAACGAACGA 94 59/60 Mohd-Shaharuddin, Mohd-Adnan [48]

R: CGCCACTTGTCCCTCTAAGAA

Elongation factor-1α, ef1α F: AAATTGGCGGTATTGGAAC 83 59/60 Mohd-Shaharuddin, Mohd-Adnan [48]

R: GGGAGCAAAGGTGACGAC

https://doi.org/10.1371/journal.pone.0242079.t004
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Results

Growth performance, feed utilization and survival

Fish growth, feed intake, and survival rate in response to 42 days feeding trial are presented in

Table 5 and Fig 1. The mean final body weight (FBW) and specific growth rate (SGR) of fish

fed PBM were significantly lower than the FBG and SGR of fish fed the control diet. FCR in

PBM fed fish increased with lower feed intake in PBM fed fish. Survival rate (Fig 1), as drawn

by Kaplan-Meier survival analysis with 95% confidence at the end of the 42 days trial decreased

significantly in PBM fed fish (81.33%) than the control (93.33%) (χ2
100PBM = 4.514, df = 1,

P = 0.034).

Muscle fatty acids composition

The FAs profile of barramundi muscle at the termination of 42 days trial was influenced by the

PBM based diet (Table 6). The dietary inclusion of PBM significantly augmented total SFA. All

SFA including capric acid (C10:0), lauric acid (C12:0), myristic acid (C14:0), palmitic acid

(C16:0), margaric acid (C17:0), stearic acid (C18:0), arachidic acid (C20:0), heneicosylic acid

(C21:0), behenic acid (C22:0) and tricosylic acid (C23:0) except for tridecylic acid (C13:0), and

pentadecylic acid (C15:0) were significantly higher in the muscles of fish fed PBM. Similarly,

total MUFA concentration increased in the muscle of PBM fed fish. PUFA differed signifi-

cantly between the test diets, with lower concentration of n-3 LC-PUFA and C22:4n6 in PBM

fed fish than the fish fed the control diet. Similar result was recorded in ∑n-3/∑n-6 ratio.

Histopathology of liver, muscle, gill and intestine

Total replacement of FM with PBM dysregulated the histological structure of liver, muscle,

gills, and intestine (Fig 2A–2H). The liver of control (Fig 2A) fed fish showed higher pigmenta-

tion of hepatocyte cytoplasm, indicating a higher amount of glycogen, while the liver of PBM

fed fish (Fig 2B) showed less hepatocyte cytoplasm pigmentation, indicating less amount of

glycogen with more lipid vacuolization. Healthy and normal myotome were observed in the

muscle of the fish fed the control diet (Fig 2C) but necrotic myotome was found in the fish fed

PBM diet (Fig 2D). Control fed fish showed normal gill structure (Fig 2E) but hyperplasia in

secondary lamellae was recorded in PBM fed fish (Fig 2F). All the examined fish fed control

(Fig 2G) presented normal intestinal structure whilst broken and short fold were found in fish

fed PBM (Fig 2H).

Table 5. Fish performance including Final Body Weight (FBW), Weight Gain (WG), Specific Growth Rate (SGR), Feed Intake (FI), and Feed Conversion Ratio

(FCR) of barramundi when fed control and PBM based diet over a period of 42 days.

Growth performance Experimental diets Unpaired t-test

Control 100PBM t-value P-value

IW (g) 3.52±0.02 3.49±0.06 0.82 0.46

FBW (g) 54.91±0.55a 32.67±0.23b 37.38 0.00

WG (g) 51.39±0.53a 29.18±0.23b 38.93 0.00

SGR (%/d) 6.54±0.01a 5.33±0.02b 55.36 0.00

FI (g/fish d-1) 1.21±0.12a 0.86±0.01b 3.051 0.04

FCR (FCR) 0.99±0.15a 1.24±0.01b -2.97 0.04

Results are expressed as mean ± SE (standard error) (n = 3).

https://doi.org/10.1371/journal.pone.0242079.t005
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Intestinal morphology

The distal intestine of barramundi fed control (Fig 3A) and PBM (Fig 3B) were examined by

transmission electron microscope. Microvilli height (Fig 3D) (t = 6.727, df = 28, P< 0.0001)

and diameter (Fig 3E) (t = 3.494, df = 28, P = 0.0016) of barramundi fed PBM diet was signifi-

cantly lower than barramundi fed control diet.

Liver enzymes, immunity and stress related genes

Liver enzymes (AST and GLDH), immune response including serum lysozyme and bacteri-

cidal activity and stress related genes (HSP70 and HSP90) were significantly induced by the

experimental diets (Fig 4). AST and GLDH in PBM fed fish was significantly higher than the

control (t = 2.268, df = 10, P = 0.047 and t = 3.199, df = 10, P = 0.010) (Fig 4A and 4B), while

serum lysozyme decreased significantly in PBM fed fish compared to control (t = 2.842,

df = 10, P = 0.018) (Fig 4C). Meanwhile, none of the diets had significant effects on bactericidal

activity (t = 1.572, df = 10, P = 0.147) (Fig 4D). In line with liver enzymes, similar results were

observed in HSP70 and HSP90 when compared with control (t = 2.905, df = 10, P = 0.016 and

t = 5.102, df = 10, P = 0.001) (Fig 4E and 4F).

Antioxidant activity

Antioxidant activities of blood serum were significantly affected by total inclusion of PBM.

Serum GPx activity declined significantly in PBM fed fish (t = 2.833, df = 10, P = 0.017) (Fig

5A), while MDA increased significant in PBM (t = 2.251, df = 10, P = 0.048) (Fig 5B) with

respect to control.

Fig 1. Survival rate based on Kaplan-Meier survival analysis with Log-rank (Mantel-Cox) test of barramundi after

42 days feeding with either basal diet or PBM based diet. Dotted line in survival plot indicates 95% confidence

interval and P value indicate significant at 0.05.

https://doi.org/10.1371/journal.pone.0242079.g001
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Discussion

A good number of studies have been devoted over the years to incorporate different levels of

PBM, at the expense of FM in the diet of finfish and shellfish aquaculture [28] but most of the

studies were performed on the basic nutritional aspects including proximate composition,

amino acids, and fatty acid content, and its potential effect on the growth performance of the

host fish [49–51]. In depth investigations are still lacking pertaining to the effects of PBM on

the integrity of different organs, stress-related genes expression, or antioxidative responses in

barramundi.

Establishing protein derived from animal industry as an ideal feed for finfish aquaculture, a

series of studies have been conducted in Australia especially on barramundi. For instance, die-

tary inclusion of high-quality poultry protein concentrate from 5 to 20% demonstrated a

reduced growth performance despite providing balanced amino acids in the diet but the

reverse trend was observed when supplemented with phosphorous [8]. On the contrary, Sid-

dik, Howieson [16] were able to replace 90% FM with either bioprocessed or unprocessed

Table 6. Fatty acids (mg/100g on dry matter basis) of barramundi muscle when fed control and PBM based diet over a period of 42 days.

Fatty acid Experimental diets Unpaired t-test

Control 100PBM t-value P-value

C12:0 1.02±0.09a 291.96±1.27b -228.29 0.00

C14:0 67.46±0.77a 213.36±0.48b -158.64 0.00

C16:0 713.65±10.19a 1253.24±68.93b -7.75 0.00

∑SFA1 1153.45±15.15 2320.11±65.41 -17.38 0.00

C16:1n7 130.78±1.90a 286.88±2.21b -53.82 0.00

C20:1 36.62±0.38a 111.68±2.97b -25.07 0.00

C14:1n5 0.97±0.03a 6.30±0.06b -84.46 0.00

C18:1cis+trans 859.76±5.73a 2961.30±69.99b -29.93 0.00

∑MUFA2 1066.66±8.25a 3412.55±74.01b -31.50 0.00

C18:3n3 55.12±0.38a 213.57±3.10b -50.94 0.00

C20:5n3 (EPA) 109.31±1.78 113.69±1.31 -1.97 0.12

C22:5n3 71.50±0.95a 78.82±0.44b -7.14 0.00

C22:6n3 (DHA) 683.13±12.43a 370.84±1.99b 24.82 0.00

∑n-3 PUFA3 940.67±15.93a 821.03±11.05b 5.24 0.01

C20:3n6 25.68±0.57a 49.16±2.84b -8.07 0.00

C20:4n6 92.29±1.90a 114.06±3.54b -5.43 0.01

C18:3n6 17.51±1.42a 51.44±6.52b -5.08 0.01

C22:4n6 62.67±1.07a 23.06±0.26b 36.20 0.00

∑n-6 PUFA 198.15±3.86a 237.72±12.61b -9.15 0.00

∑n-3/∑n-6 4.75±0.04a 3.47±0.18b 6.78 0.00

∑PUFA4 1485.98±24.56 1311.18±9.36 2.86 0.05

∑n-3 LC-PUFA3 868.55±15.25 569.45±2.78 19.29 0.00

Results are expressed as mean ± SE (standard error) (n = 3).
1Contains 10:0, 13:0, 15:0, 17:0, 18:0, 20:0, 21:0, 22:0 and 23:0.
2Contains C15:1, C17:1, C22:1n9 and C24:1.
3Contains C18:4n3, C20:3n3.
4Contains C18:2 trans, C18:2 cis, C20:2, C22:2.

Poultry by-product meal, PBM; saturated fatty acids, SFA; monounsaturated fatty acids, MUFA; polyunsaturated fatty acids, PUFA and LC-PUFA, long-chain

polyunsaturated fatty acids (sum of 20:3n-3, 20:5n-3, 22:5n-3 and 22:6n-3).

Different superscripts letter indicate significant difference at P < 0.05, 0.01 and 0.001, followed by an unpaired student t-test.

https://doi.org/10.1371/journal.pone.0242079.t006
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PBM along with supplementation of fish protein hydrolysate with no apparent effects on the

growth performance. In the present study, barramundi fed PBM supplemented with methio-

nine affected the growth, feed utilization, FCR, and survival rate. Similarly, feeding barra-

mundi non-FM based diet containing 450 g kg-1 PBM and 285 g kg-1 soybean meal impacted

the growth, feed intake, and FCR despite supplementing taurine and the presumable reasons

were palatability [29]. Deterioration in the growth performance of gibel carp, Carassius aura-
tus gibelio was also observed when fed 100% animal protein containing PBM and meat and

bone meal despite supplementation with methionine and lysine [52]. The possible reasons

were the nutritional superiority or enhanced palatability in FM that could not be met up by

PBM and MBM. Methionine, lysine and arginine levels in the 100PBM diet were at optimum

level for barramundi growth [11] but histidine, isoleucine, and phenylalanine were lower

Fig 2. Liver (A-B), muscle (C-D), gill (E-F) (PAS stain; 40 × magnification; scale bar = 50 μm) and distal intestine

(G-H) (PAS stain; 4 × magnification; scale bar = 500 μm) sections of barramundi fed control and PBM based diet at

the end of 42 days of feeding trial. Lipid droplet, LD; healthy myotome, HM; necrotic myotome, NM; secondary

lamellae, SL; hyperplasia in secondary gill lamellae, HSL and broken fold, BF.

https://doi.org/10.1371/journal.pone.0242079.g002
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compare to FM based diet which may suppress the growth performance. Similarly, deficiency

of histidine, methionine, isoleucine, lysine, and phenylalanine were identified to reduce the

growth performance of spotted rose snapper, Lutjanus guttatus with higher inclusion of PBM

[53]. Moreover, the abundance of MUFA and n-6 PUFA coupled with a deficiency of EFA par-

ticularly n-3 LC-PUFA, EPA and DHA in PBM were highlighted as one of the reasons for the

reduced growth in Totoaba [54], catfish, Ictalurus punctatus [55], black sea turbot, Psetta
maeotica [30] and gilthead sea bream, Sparus aurata L [56]. Similarly, higher MUFA content

and lower levels of PUFA, in particular, n-3 LC-PUFA and EPA contents were found in

100PBM diets that could be responsible for the negative influence on growth, survival feed uti-

lization and FCR. In addition, n-3 PUFA have been reported as an indispensable FAs for opti-

mum growth and survival of many marine fish species [28, 56]. However, these findings

contradict with the results of Panicz, Żochowska-Kujawska [57], Gunben, Senoo [58] and Sha-

pawi, Ng [32] who reported no adverse effects of 100PBM on the growth and biometry indices

of female tenches, Tinca tinca, tiger grouper juveniles, Epinephelus fuscoguttatus and hump-

back grouper, Cromileptes altivelis. This heterogeneity might be due to use different fish spe-

cies and culture system or variability in nutritional composition palatability, and digestibility

of PBM as it varies from batch to batch or among supplier companies [18, 28].

FAs composition of diet affects the FAs composition of fish muscle or meat which have

been reported in many fish species [59–61]. In the present study, FAs of barramundi fillet were

affected by the PBM diet. Total muscle SFA concentration was significantly higher in PBM fed

fish may be due to the abundance of palmitic acid and myristic acid in fish muscle that are

reflected in the PBM diet. A higher concentration of total SFA due to a high abundance of pal-

mitic acid was observed in juvenile black sea bass fed 100PBM [62]. Muscle MUFA content in

the present study increased in PBM fed fish which could be due to higher proportion MUFA

Fig 3. Observation of TEM in the intestine of barramundi fed Control (A) and PBM (B) at the end of 42 days of

feeding trial. (C) Microvilli height and diameter measurement and comparison of microvilli height and diameter

(panel D & E), performed by an unpaired student t-test at P<0.05 and 0.01. Microvilli, MV; Microvilli height, MVH;

tight junction, TJ; microvilli diameter, MVD.

https://doi.org/10.1371/journal.pone.0242079.g003
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in the diet. This finding was similar to our earlier study [46]. Lower concentration of n-3

LC-PUFA and adrenic acid in fish muscle resulted in low total PUFA and n-3/n-6 ratio which

are similar to the findings in barramundi fed high levels of PBM [7]. Similarly, 100PBM was

lacking in essential fatty acids (EFAs) and also worsened the EFAs in the muscle of totoaba

juveniles, Totoaba macdonaldi [54]. These results demonstrated that the total substitution of

FM with PBM decreased PUFA levels in barramundi, which may consequently affect the nutri-

tional value in terms of fatty acids available for human consumption.

It is well known that AST and GLDH are two important enzymes which primarily exist in

liver at lower levels under normal condition but can leak into the blood rapidly when liver cells

are damaged due to various stressors [63, 64]. In the present study, the PBM diet significantly

increased the levels of AST and GLDH in the serum of barramundi, concomitant with the

Fig 4. AST, aspartate aminotransferase (A) and GLDH, glutamate dehydrogenase (B), lysozyme (C), bactericidal activity (D) and heat

shock related gene including HSP70 (E) and HSP90 (F) in barramundi after 42 days feeding with either control diet or PBM based diet. P
values indicate significant at P< 0.05, 0.01 and 0.001, followed by an unpaired student t-test.

https://doi.org/10.1371/journal.pone.0242079.g004
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histopathological damage of liver tissue. Likewise, plasma ALT was negatively impacted by the

inclusion of animal protein blend (APB) (20% to 80%) in the diet of hybrid grouper while AST

augmented significantly in 80% APB fed fish [38]. However, Panicz, Żochowska-Kujawska

[57] reported no effects on blood biochemical parameters of juvenile tenches, Tinca tinca fed

graded levels of PBM (25.7 to 100%).

To further clarify the effects of PBM on the liver function of barramundi, heat shock-related

genes including HSP70 and HSP90 were examined. HSP70 and HSP90 are two important

stress-related protein and their expression level elevate significantly when fish are exposed to

different stressors, including pathogenic infection, crowding, poor water quality, and nutri-

tionally deficient diet [65–67]. In the present study, both HSP70 and HSP90 upregulated sig-

nificantly in the liver of barramundi that received 100PBM, indicating that 100% inclusion of

PBM could act as a stressor.

In fish, immune functions of immune organs are strongly associated with the presence and

activity of a unique array of molecules including lysozyme, complement proteins, immuno-

globulins [68–70], and bactericidal activity that are influenced by the dietary modifications.

Serum lysozyme was negatively triggered by PBM diet that support the findings of Subhadra,

Lochmann [71, 72], who reported aggravated levels of complement and lysozyme activity in

PBM fed largemouth bass, Micropterus salmoides.
Substitution of 100% FM with PBM resulted in lipidosis with clearly visible inflammation

in the liver of juvenile tenches, Tinca tinca [57], supporting our present findings as hepatocyte

lipid vacuolization with less amount of glycogen was observed in the liver tissue of barramundi

fed PBM. The excessive amount of fat deposition in the liver negatively impacted the growth

and immune response of fish [73] that are synchronous with the immunological results in the

present study. Similarly, Siddik, Chungu [7] fed juvenile barramundi with different levels of

PBM for 42 days and reported irregular liver arrangement with lipid deposition in the 100%

PBM and bioprocessed PBM groups. Furthermore, higher administration of animal protein

blend affected the morphology of the liver of hybrid grouper, characterized by hepatic vacuoles

and a high amounts of lipid droplets which is a sign of hepatic steatosis [38]. The lipid

Fig 5. (A) GPx (Ug-1 Hb) and (B) MDA (nmol mL-1) in the serum of barramundi after 42 days feeding with either

control diet or PBM based diet. P values indicate significant at P< 0.05, 0.01 and 0.001, followed by an unpaired

student t-test.

https://doi.org/10.1371/journal.pone.0242079.g005
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accumulation in the liver may occur when dietary lipid exceeds the capacity of the hepatic cells

to oxidize which lead to synthesize and deposit larger amounts of triglyceride in vacuoles [38,

73, 74].

Muscle structure is the determinant of fish growth and can be affected by nutritionally-

deprived diet [75]. For example, nutritional deficiency altered the muscle structure of Atlantic

salmon, Salmo salar including myodegeneration [76]. Similarly, fish fed PBM diet showed

necrosis and fibre degeneration in muscle. Gill is one of the important immune organs in fish

and its structure can be affected by stress and diet [77]. In the present study, hyperplasia in sec-

ondary gill lamellae was in PBM fed fish but the possible reasons are not well understood,

deserving further study.

Evaluating intestinal morphology in response to dietary changes is important to determine

the health status and welfare of fish. Intestinal morphology, in particular, villous structure, and

microvillus height and diameter is related to absorption and assimilation of nutrient and

immunological function [16, 78, 79]. Histological analysis showed that broken and short fold

in the present study in PBM fed groups are in line with TEM results, showing significantly

smaller with a shorter diameter of microvilli, which are responsible for the lower efficiency of

nutrient uptake, thus suppressing the growth and survival. Similar results were reported by

Siddik, Howieson [16] who found significantly lower microvilli height in the distal intestine of

barramundi after 56 days post-feeding with 10% supplemented 90PBM. Hence total replace-

ment of FM with PBM impacted the welfare of barramundi, as reflected by the histological and

TEM analysis.

Antioxidant status in fish, as determined by several antioxidant enzymes including CAT,

SOD, GPx, and MDA have been considered as the first line of defensive biomarkers to protect

cells and tissues from oxidative damage, caused by some free radicals such as superoxide anion

(O2-), hydrogen peroxide (H2O2) and hydroxyl radical (OH) [80, 81]. Glutathione peroxidase,

GPx is an important antioxidant enzyme showing strong radical-scavenging capacity against

free radicals and lipid peroxides [82]. The present study detected a significantly lower activity

of GPx in the serum of barramundi fed with PBM, which may due to the lower levels of n-3

LC-PUFA and DHA in 100PBM diet. Liu, Mai [83] reported that marine fish are susceptible to

oxidative stress due to their high demand for LC-PUFA. However, elevated serum GPx activity

in barramundi fed 90% fermented PBM supplemented with tuna hydrolysate [17] might be

due to the antioxidant capacity of fish protein hydrolysate [84]. It has been reported that the

GPx activity is well correlated with the concentration of MDA [85]. MDA is a natural bio-

marker and main ending product of lipid peroxidation [86, 87] and its elevation indicates oxi-

dative injury [88] and associates with the pathological state of animals including cell structure

damage and function [86, 87]. A lower activity of GPx with the higher level of MDA indicates

that PBM based diet may provoke the oxidative damage of barramundi which was further

proven by the presence of hepatocyte lipid vacuolization.

In summary, regardless of methionine supplementation, the total replacement of FM with

PBM is not nutritionally adequate for barramundi, as indicated by depressed growth perfor-

mance and immune response. An unfavourable effect of a PBM based diet was observed on

antioxidant enzymes. Also, adding PBM induced the lipid droplet in the liver for barramundi

via affecting the expression levels of heat shock related genes and liver enzymes. Feeding PBM

not only triggered the fiber degeneration and necrosis in muscle and hyperplasia in gills but

also induced the intestinal villus morphology by decreasing intestinal microvilli morphology,

which may suggest that high levels of PBM could impair the welfare of barramundi. Further

studies need to be conducted along with supplementation of other EAA and/or EFA with

PBM to investigate the welfare of farmed barramundi.
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