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A B S T R A C T   

Fusarium dry rot (FDR), which is caused by several Fusarium species, is a major disease affecting potatoes during 
storage. The study aimed to identify the gleyic stage and monitor rot progression in stored potatoes using a 
hyperspectral imaging (HSI) system. We evaluated the susceptibility parameters and quality attributes during the 
infection process and monitored starch, soluble protein, malondialdehyde, and aerobic bacterial contents in all 
samples. To further characterize the infection process, we collected spectral data on different storage days and 
then mapped these data using two-dimensional correlation spectroscopy. The results revealed 20 peaks related to 
these component contents. Then, the quantitative analysis models of these indicators were established based on 
the 2D correlation synchronization spectrum. The optimal correlation coefficients of the validation set were 
0.9273, 0.9634, 0.9470, and 0.9487 for these indicators. Visual analysis was implemented to these indicators, 
and the content distribution can be effectively observed on hyperspectral images.   

1. Introduction 

Potatoes rank as the fourth largest crop worldwide after rice, wheat, 
and maize. They are highly adaptable, produce high yields, and are 
widely cultivated, making them a good source of dietary carbohydrates, 
vitamins, and minerals (Singh & Saldaña, 2011; Wood & Carragher, 
2017). However, potatoes are susceptible to various diseases before and 
during postharvest storage, leading to enormous economic losses and 
posing a substantial threat to global food safety (Macauley, 1982; 
Veltman et al., 2023). Dry rot disease is one of the most common fungal 
diseases caused by infestation with different Fusarium species during 
storage. After Fusarium infection, potatoes enter the gleyic stage, during 
which they show no surface symptoms despite infection. Following the 
gleyic stage, fungal spores infiltrate the potato surface and continuously 
reproduce, and the disease shifts from a recessive to a dominant state, 
eventually leading to the development of both external and internal 
potato lesions. Consequently, these biotic stresses severely affect the 
nutritional and quality properties of tubers (Ren et al., 2021). Therefore, 
effective identification of the gleyic stage was crucial. 

Traditional methods for detecting potato dry rot disease mainly 
involve manual detection, which relies on the subjective judgment of an 

inspector. Visual diagnosis is usually based on the appearance of brown 
or black spots on the potato surface and associated pile shrinkage. 
However, manual detection methods are time-consuming, labor-inten-
sive, time-lagged, and do not meet the current demand for disease 
detection. Additionally, although polymerase chain reaction analysis 
has shown greater accuracy in detecting the disease, it requires expertise 
and equipment for accurate results detection and interpretation. 
Recently, computer vision technology has been employed in the non- 
destructive detection of disease; however, it cannot identify the gleyic 
stage. Therefore, to ensure the safety of potatoes, developing an accu-
rate, rapid, non-destructive, real-time, and stable method is necessary to 
achieve the earliest possible diagnosis of dry rot disease. 

Besides, the obtained hyperspectral images usually have high- 
dimensional data and contain a lot of redundant information, which 
reduces computational efficiency and model performance. To solve the 
problem, characteristic wavelength selection is usually used to select 
information variables, excluding information variables and noise vari-
ables, while ensuring a short computational modeling time. Some 
methods for selecting characteristic wavelengths include the competi-
tive adaptive reweighted sampling algorithm (CARS), genetic algorithm 
(GA), and successive algorithm (SPA), which are widely used in existing 
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research. These algorithms select feature wavelengths based on the ac-
curacy of predictions from a statistical perspective and achieve good 
prediction accuracy. They can select a combination of key features with 
great competence. However, from the standpoint of interpretability, the 
variables chosen to represent the functional group or property of interest 
of the analyte are poorly interpreted (Yun et al., 2019; Zhao et al., 2020). 
Based on this, the 2D-COS algorithm was employed in this study to 
screen the feature wavelengths for potato dry-rot-related quality attri-
butes. 2D-COS can directly reflect the correlation between the spectra 
and external disturbance variables. In contrast to traditional one- 
dimensional (1D) spectroscopy, 2DCOS can improve spectral resolu-
tion by extending the original data into two dimensions and empha-
sizing features that are not easily observed in one-dimensional spectra 
(Ding et al., 2021). From the 2D correlation spectra, we can distinguish 
the overlap and weak absorption peak changes in the original spectra, 
including the absorption peak displacement and the absorption peak 
intensity changes under the action of disturbance. Previous studies have 
applied 2D-COS to detect rice adulteration (An et al., 2024; Wu et al., 
2020) and pear disease (Zhang et al., 2022), providing evidence that 2D- 
COS can directly reflect the correlation between spectra and external 
disturbance variables. Thus, we believe that this approach holds po-
tential for applications in the analysis of the typical physicochemical 
indexes in potatoes during the process of fungal infection and may 
facilitate the identification of the gleyic stage of potato dry rot. 

In general, the purpose of this study was to monitoring changes in 
some quality parameters during fungal infection, and determine a 
quantitative model to detect asymptomatic potatoes with dry rot dis-
ease. The specific purpose is as follows: (1) Monitoring the variations of 
starch, soluble proteins, MDA and aerobic bacterial counts in the course 
of infection. (2) Combining hyperspectral imaging with 2D-COS and 
CARS algorithms to identify characteristic wavelengths related to fungal 
infections. (3) Establishing least squares vector machine (LS-SVM) and 
partial least squares regression (PLSR) models for quantitative analysis 
of quality attributes about potato dry rot disease. (4) Visually present 
starch, MDA, and soluble protein distributions, as well as aerobic bac-
terial counts in potato samples. In this study, an efficient method was 
expected to be developed to interpret HSI spectra of diseased potatoes 
and identify the most effective variables in a rapid and accurate manner. 

2. Materials and methods 

2.1. Sample preparation 

Fresh potato samples at commercial maturity were purchased from a 
local market in Baoding and immediately transported to Hebei Agri-
cultural University, where they were stored at 4 ◦C. A total of 149 fresh 
potatoes with similar maturity, size, and quality (without apparent de-
fects, physical injuries, or disease infection) were selected and washed in 
a 3% (v/v) sodium hypochlorite solution for 8 min, rinsed with distilled 
water, and then air-dried. The function of 3% (v/v) sodium hypochlorite 
solution was to disinfect and sterilize the samples. Before the sample was 
inoculated with fungal suspension, it is necessary to ensure that the 
surface of the sample is sterile to avoid other fungal infections at a later 
stage. Six naturally infected potatoes were collected to isolate the 
pathogens involved and cultured on potato dextrose agar (PDA) medium 
at 25 ◦C for 8 d to induce sporulation. Fungal spores were washed in 50 
mL Falcon tubes using approximately 20 mL of distilled water contain-
ing 0.05% (v/v) Tween-80. After intense mixing, each solution was 
gravity-filtered through double-layered 20 μm nylon mesh into a 50 mL 
Falcon tube to separate the spores from mycelial debris and PDA me-
dium, and the spore concentrations in the filtrates were adjusted to 
approximately 106 spores⋅mL-1 using a hemocytometer. Potatoes were 
injected in three areas on their surfaces with 10 μL of a Fusarium 
elderberry spore suspension. The inoculated samples were stored in an 
artificial climate chamber to maintain them at a relative humidity of 
90% and a temperature of 25 ◦C. To obtain potato samples with different 

degrees of corruption, six samples were inoculated every day, and the 
whole experiment lasted for 21 d. Then, 126 potato samples with 
different degrees of corruption and 23 samples from healthy (untreated) 
potatoes were acquired for subsequent experiments. 

As shown in Table 1, all samples were divided into four categories 
according to the classification standard of potato dry rot. The samples 
were classified in terms of their degrees of corruption, namely 23 
healthy samples, 18 asymptomatic samples (D1), 91 mild corruption 
samples (D2), and 17 severe corruption samples (D3). 

2.2. HSI system 

The specially designed HSI system consists of a 12-bit charge- 
coupled device camera (Sensicam QE, The Cooke Incorporation, Ger-
many), an imaging spectrometer (Imspector V10E, Spectral Imaging, 
Ltd., Finland), a lens with a focal length of 12.7 mm, a 10–250 W 
adjustable halogen tungsten lamp, a customized linear optical fiber 
beam, a two-dimensional translation platform, and a computer. 
Hyperspectral images of potato samples were collected at a wave 
bandwidth of 920–2086 nm. The size of a hyperspectral image of one 
potato ranged from 1900 to 1024 to 2200–1024 pixels for 209 bands. To 
minimize the influence of interference light, the components were fixed 
in a cabinet without light. To remove the noise caused by equipment and 
environmental interference, we performed black-and-white correction 
for the original hyperspectral image (Rorignal). The correction process 
required a black image (Rdark) with a reflectance close to 0% (obtained 
using a black lens cover over the lens) and a white image (Rwhite) with a 
reflectance close to 100% (obtained using a uniform whiteboard made of 
tetrafluoroethylene). The following equation was used to correct images 
by a white and dark references, where R is the corrected image. 

R =
Rorignal–Rdark

Rwhite–Rdark  

2.3. Physiological and biochemical indicators determination 

Samples were collected from 0 to 21 days, and three tissues were 
collected from each potato sample, and the sampling location was the 
junction of disease and health of potato tuber. The samples were frozen 
in liquid nitrogen and stored in the refrigerator at − 80 ◦C. All indicators 
were determined by 5 g potato samples. 

2.3.1. Starch content measurement 
Starch content was measured using Starch Assay Kit (Cat#BC0700) 

from Solarbio Life Sciences (Beijing, China) following the manufac-
turer's protocols. The content of starch is obtained by the following 
formula: 

S (mg/g FW) = x×C×(V/W)

where S is the starch content, x is the starch concentration obtained 
using the standard curve, C is the dilution multiple, V is the extracted 
volume (1.7 mL), and W is the fresh weight of the sample in g. 

2.3.2. MDA content measurement 
MDA content was measured using MDA Content Assay Kits 

(Cat#BC0020) from Solarbio Life Sciences (Beijing, China) following the 
manufacturer's protocols. The MDA contents were obtained with the 

Table 1 
Criteria used to classify potatoes as having dry rot disease.  

Degree Standard 

Healthy Uninoculated samples 
D 1 Potato samples without disease spots 
D 2 Potatoes with spot areas totaling <5% of the surface area 
D 3 Potatoes with spot areas totaling <15% of the surface area  
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following formula: 

MDA (mmol/kg FW) =
(
ΔA×V1

/
[ε× d] ×103 )/( W× [V2/V3]

= 25.8×ΔA
/
W  

where ΔA is the absorbance at 532 nm minus the absorbance at 600 nm, 
V1 is the total volume of the reaction system, ε is the molar extinction 
coefficient of MDA (155 × 103), d is the optical diameter of the color-
imetric dish (1 cm), W is the sample weight (kg), V2 is the volume of 
sample added (0.2 mL), and V3 is the volume of extraction liquid added 
(1 mL). 

2.3.3. Soluble protein content measurement 
Soluble protein contents were determined by Coomassie bright blue 

G-250 staining (Zheng et al., 2018). For each sample, 0.05 g potato was 
ground in a mortar, and 3 mL of phosphate-buffered solution was added. 
The extract was centrifuged at 13,000 ×g for 15 min at 4 ◦C, and 0.1 mL 
of the resulting supernatant was combined with 4.9 mL Coomassie 
brilliant blue G-250 solution. After 2 min, the soluble protein content of 
each sample was determined at 595 nm using an ultraviolet 
spectrophotometer. 

2.3.4. Aerobic bacterial counts measurement 
The aerobic bacterial count was determined using a Chinese national 

food safety standard (GB/T 4789.2–2016; Food microbiological 

examination - Aerobic plate count), Each sample was tested three times, 
and the average values were calculated as the final value. 

2.4. Hyperspectral data processing 

We used MATLAB R2014b and ENVI 15.1 software to implement all 
models and data processing. As shown in Fig. 1, our HSI analysis 
included the following main steps: (a) collecting raw images of potatoes, 
(b) hyperspectral image acquisition and calibration, (c) extracting the 
region of interest (ROI) and spectral data, (d) and spectral analysis 
involving data pretreatment and feature band selection based on the 2D- 
COS and CARS algorithm. Subsequently, models were established to 
predict the components of the potato samples (starch, MDA, soluble 
protein, and aerobic bacterial counts). 

2.5. ROI extractions 

We used ENVI software to extract spectral data from the hyper-
spectral images. In addition to characteristic spectra, the original 
hyperspectral image contained background, noise and other spectra that 
do not represent the key potato sample information required. Therefore, 
these unusable spectra were filtered out to extract the ROI. 

Considering an entire potato area as the ROI using the threshold 
method, as shown in Fig. 1. The ROI was identified based on differences 
in gray shading between the specific target and the image background. 

Fig. 1. Test and data processing flow chart.  
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The pixel levels were divided into several categories by setting the 
threshold value to effectively separate the target from the background. 
We determined whether the image pixels belonged to the target or the 
background area by adjudicating whether the characteristic attributes of 
each pixel in the image meet the requirements of the threshold value. 
Subsequently, each gray image was converted to a binary image. 
Determining an optimal threshold was crucial, and this was achieved 
based on the relationship between the peaks and troughs of the sample 
image histograms. 

2.6. Spectral pretreatments 

It is typically necessary to preprocess raw hyperspectral data before 
conducting multivariate calibration because the measured spectra of 
complex samples are frequently affected by the image background, light 
scattering, varying degrees of noise, and other unexpected disturbances 
(Bian et al., 2020; Zhang et al., 2019). We processed the original spectral 
data by performing (i) smoothing treatments, (ii) First derivative (FD) 
treatments, (iii) second derivative (SD) treatments, (iv) standard normal 
variate transformation (SNV) treatments, and (v) combinations thereof 
analyzed in different orders. The spectral pretreatments were conducted 
using PLS Toolbox software (version 7.5). 

2.7. Feature bands selection 

2.7.1. 2D-COS analysis 
2D-COS can be used to effectively improve the spectral resolution 

and resolve overlapping spectral bands by designing perturbations 
(Dong, Zhang, et al., 2021; Dong, Zuo, et al., 2021; Sui et al., 2014) and 
offers two key advantages, namely, high resolution and flexible timing 
rules. When obtaining spectral measurements, some external distur-
bances (such as the temperature and concentration) can cause changes 
in the compositional structure of the system and background environ-
ment. These changes, in turn, can cause change in the measured spectra. 
For example, the spectral changes triggered by external disturbances 
result in a dynamic spectrum, and two-dimensional correlation calcu-
lations of dynamic spectra can be used for 2D-COS analysis. Among 
these two-dimensional correlations, the synchronous correlation spec-
trum is calculated as follows: 

∅ =
1

S–1
MMT  

and the asynchronous correlation is calculated as follows: 

ψ =
1

S–1
MHMT  

where M is the spectral matrix composed of some wavelengths and S 
samples, and H represents the Hilbert transformation matrix. 2D-COS 
was conducted using 2D-COS software, which is freely available on a 
website created by Tao Zhou (httop://muchong.com/t-9696009-1). 

In addition, 2D-COS analysis was performed in the present study to 
identify changes occurring in the chemical composition of dry rot po-
tatoes during infection. The infection days were used as the external 
disturbance; the minimum storage time was 0 d and the maximum 
storage time was 21 d. Between the minimum and maximum storage 
time, the step length was 1 d, a total of 21 steps; as a result, the di-
mensions of matrix X were 21 × 209. We selected the 920–2086 nm 
spectral region of each sample to calculate its 2D correlation spectrum. 
First, OMNIC software was used for automatic baseline correction of all 
spectra, which accurately reflects the band changes in 1D spectra and 
renders the automatic peaks more pronounced. Second, 1D spectra were 
divided into different regions to improve the definition of spectral peaks, 
and synchronous and asynchronous 2D-COS correlation spectra were 
calculated based on the discrete Hilbert transform algorithm. 

The 2D correlation spectra include synchronous and asynchronous 

spectra. Each synchronous spectral peak located on the diagonal was 
designated as an “automatic peak” whose intensity reflects the sensi-
tivity of the absorption peak to external interference. The denser the 
automatic peak profile, the stronger the peak and the more sensitive it is 
to external interference. 

2.7.2. Spectra preprocessing 
The center position and intensity of the 2D profile of the automatic 

peak in the synchronous spectrum were combined with the center po-
sition and intensity of the related 1D spectrum, and the characteristic 
spectral peaks sensitive to external interference were screened. Peaks 
located in non-diagonal positions were designated as “cross peaks,” 
which reflect the relative strength of the change in vibration of pairs of 
groups at a given frequency. Positive cross peaks indicate that different 
components simultaneously increase or decrease under external inter-
ference. The more coordinated the intensity variation, the stronger the 
cross peak. In contrast, a negative cross peak represents a coordinated 
change in band intensity in the opposite direction. The 2D-COS analysis 
was performed using professional software (State Key Laboratory of 
Polymer Materials Engineering, Institute of Polymer Materials, Sichuan 
University). 

2.7.3. CARS analysis 
The results obtained using the CARS algorithm was compared to 

those obtained using 2D-COS. The CARS algorithm first eliminated 
variables (wavelengths) without any dominant features of “survival-of- 
the-fittest” and later discarded too many variables; therefore, insuffi-
cient information was retained for subsequent models (Yuan et al., 
2020). 

2.8. Model establishment and evaluation 

Two typical methods (PLSR and LS-SVM) were applied to establish 
models between the spectral data and chemical compositions, respec-
tively. PLSR is considered an advanced form of multiple and linear 
regression models (such as general stepwise regression) that combines 
the advantages of principal component analysis, canonical correlations, 
and multiple linear-regression analysis (Saeed et al., 2021) and is used to 
identify fundamental relationships between two matrices (X and Y). 

LS-SVM is considered a modified version of SVM with strong 
generalization capability, low computing complexity, and a high solving 
speed (Yousefi et al., 2021). The distribution of the training data in the 
feature space depends on the choice of kernel function used to map the 
nonlinear input space. The radial basis function (RBF) kernel is 
frequently used in regression models owing to its influence and speed 
during training. The RBF kernel was calculated as follows: 

K (x, xi) = e(− ‖x− xi‖/2σ2 )

where σ is the kernel width (used to adjust the degree of generalization), 
xi is the input vector, and yi is the corresponding output vector. In 
addition, the σ2 must be optimized to create an LS-SVM model with an 
RBF kernel. 

All datasets were partitioned into calibration and prediction sets 
using the Kennard–Stone algorithm, at a 3:1 ratio. Thus, 112 samples 
were used for modeling, and the remaining 37 samples were used for 
model validation. The model goodness was evaluated using the corre-
lation coefficients of calibration (Rc) and verification (Rv), the root mean 
square error of calibration (RMSEC) and verification (RMSEV), and the 
residual predictive deviation (RPD). In general, a good model should 
have a high R value and a low RMSE value. An RPD value of <1.5 in-
dicates a poor model. When the RPD is between 1.5 and 2.5 and R is 
between 0.8 and 0.9, the model should be suitable for rough predictions 
(Malley et al., 2005). When the RPD is between 2.5 and 3.0 and R is 
between 0.9 and 1.0, the model should perform well and be suitable for 
quantitative sample analysis. 
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2.9. Visualization of the indicators in potato tubers 

In this study, the optimum regression model was used to transform 
the hyperspectral data from the samples into chemical images and 
represent the content distributions of the potato tubers by inputting each 
pixel's spectrum into an established calibration model. Finally, the visual 
distribution maps were illustrated using a linear color scale, signifying 
the corresponding values of the predicted contents of interest in the 
potato tubers. All procedures implemented for the HSI data analyses and 
the algorithm implement were performed using MATLAB software. 

3. Results 

3.1. Analysis of dry rot potato 

Fig. 2 shows healthy potatoes and potatoes with different degrees of 
disease. The surfaces of the diseased tubers did not differ from those of 
the healthy tubers, and no obvious symptoms were discernable in the 
early stage. Subsequently, the pathogen enters host cells, releases spe-
cific toxins that destroy the defense system, and disrupts the normal 
physiological activities of the host, which causes changes in the contents 
of carbohydrates such as tuber starch, amylose, amylopectin, reducing 
sugar, sucrose, and total soluble sugar and affects the quality attributes 
of potatoes. Brown dots can be observed on the surfaces and insides of 
tubers; these dots are either soaked or wrinkled. Over time, pathological 
changes in potato tubers cause them to expand gradually and became 
dry and hollow. The potato skin folds into concentric circles, and the 
mycelium diffuses from the rotting part to produce white spore clusters. 
The diseased potato flesh is necrotic and brown, and its spreads in all 
directions. Fungal spores grow in necrotic tissue, and hyphae fill cav-
ities. Table 2 shows basic statistics for potatoes with different degrees of 
disease. The spotted areas ranged from 0.22 to 15.40 cm2 in size, ac-
counting for 0.14 to 10.20% of the total potato surface area. 

3.2. Statistical analysis of the reference values 

As shown in Table 3, the range of reference values for the starch, 
soluble protein, and MDA contents and the total colonies were 11.40%- 
19.70%, 13.32–28.79 mg/g FW, 6.20–20.13 nmol/g FW, and 3.51–6.48 
log10 CFUs/g, respectively. The mean values were 16.35%, 20.04 mg/g 
FW, 11.98 nmol/g FW, and 4.86 log10 CFUs/g, and the associated 
standard deviations were 0.019%, 3.74 mg/g FW, 2.89 nmol/g FW, and 
0.73 log10 CFUs/g, respectively. 

Fig. 3 (A) shows the variations in starch and soluble proteins 
observed with increasing degrees of corruption. In our study, the starch 
content was estimated to be 19.10%. The starch content decreased 
sharply on day 3 after pathogen inoculation, which led to rapid 

pathogen infection, cell wall damage, and a subsequent gentle decrease 
in starch content as the degree of corruption increased. The reduction in 
starch content reached 12.25% by day 21. The decrease in starch content 
might be due to the phytopathogen infestation, which leads to an in-
crease in hydrolytic enzymes such as amylases (Wei et al., 2022). 
Another reason may be that the reduction in starch content reflects 
nutrient decomposition and consumption by Fusarium during active 
infection, which enables fungal growth and reproduction. The results of 
this study are consistent with those reported in the literature (Tiwari 
et al., 2021). 

As the main components of the plant body, proteins in the plant body 
have a corresponding influence after being infected with pathogenic 
bacteria. The soluble protein content of potato tubers increased after 
Fusarium infection over the entire period (Fig. 3A). The results of the 
present study show that the protein content of plants often increases 
after infection by pathogens, which may be mainly because the infection 
of pathogens promotes the initiation of the plant's defense response. 
Simultaneously, the corresponding changes in the cell led to the accel-
eration of cell division, increased synthesis of resistant substances, and 
increased resistance to further infection by pathogenic bacteria (Wang 
et al., 2023). Soluble proteins are an important aspect of the nutritional 
quality of edible potatoes and play a protective role in cell viability and 

Fig. 2. The schematic diagram of potatoes with different degrees of disease.  

Table 2 
Statistics for spot areas of potatoes with different degrees of dry rot disease.  

Degree Area size range of 
disease spot (cm2) 

Average 
value (cm2) 

Standard 
deviation 

Percentage of 
diseased spot area 
(%) 

0 – – – – 
1 – – – – 
2 0.22–7.36 2.36 1.81 0.14–4.88 
3 8.16–15.40 10.66 2.16 5.40–10.20  

Table 3 
Contents of components in potatoes with different degrees of dry rot disease.  

Components Contents 

Healthy D 1 D 2 D 3 

Starch (%) 18.50–19.70 18.00–19.40 12.60–18.20 11.40–13.50 
Soluble protein 

(mg/g FW) 
13.35–15.19 15.01–17.54 13.32–26.26 25.61–28.79 

MDA (nmol/g 
FW) 

6.20–8.19 8.07–10.79 10.30–16.68 16.37–20.13 

Aerobic bacterial 
count (log10 

CFUs/g) 
3.51–3.83 3.95–4.63 4.67–5.90 5.92–6.48  
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biofilm formation. An increase in the soluble protein content in potato 
tubers is an important mechanism for resisting F. sambucinum infection 
(Jain et al., 2022). Additionally, soluble protein content decreased 
sharply on the third day after infection. At this time, the pathogenic 
bacteria reproduce by synthesizing their own proteins using the host's 
nitrogen-containing compounds, the plant proteins degrade to a certain 
extent, and the total nitrogen and protein contents decrease. 

Potato tubers were infected with F. sambucinum, and changes in MDA 
content are shown in Fig. 3 (B). The MDA content gradually increased 
with an increasing degree of corruption. On the third day after pathogen 
inoculation, the MDA levels sharply increased, indicating that the rapid 
invasion of Fusarium caused the destruction of cell membranes (resulting 
in membrane oxidation) and eventually produced more MDA. The sus-
tained increase showed that infection with pathogenic bacteria sus-
tained damage to the structure of the cell membrane, causing continuous 
peroxidation of lipids on the surface of the membrane and resulting in 
considerable oxidative stress. Increased levels of oxidative stress have 
also been observed in bitter gourd fruit (Dolatmand-Shahri et al., 2024). 
Moreover, the change in MDA content showed the same trend when 
Korla fragrant pears were infected with smut (Yang et al., 2024). 

Fig. 3B shows the changes in the aerobic bacterial counts as the 
degree of corruption increased. The aerobic bacterial counts increased 
during the entire infection period. This phenomenon is mainly due to 
infection with the Fusarium fungus, which increases the susceptibility of 
potato cells to secondary bacterial infections. The dotted line in Fig. 3 
divides the content of the four components into three ranges: D 1, D 2, 
and D 3. Table 2 shows the range of potato content with different de-
grees of corruption. 

3.3. Spectral characteristics 

The presence of background noise tends to reduce differences be-
tween target and background spectra, resulting in a low signal-to-noise 
(SNR) ratio for a given band. Therefore, we removed information with a 
low SNR at the end of the original spectra, and only data within the 
range of 920 to 2086 nm (209 bands) were retained for subsequent 
analysis. The original spectra curves in the ROIs of all samples are shown 
in Fig. 4A. The spectra of healthy potatoes and potatoes with different 
degrees of corruption showed consistent trends; however, some differ-
ences occurred in the spectral-reflectance intensities at different wave-
lengths, indicating that different samples contained similar substances 
but at different concentrations (Li et al., 2021). The spectral region 
contained several valleys and peaks, attributed to chemical group mo-
lecular vibration (Xie et al., 2024). The strongest local absorption peaks 
were identified at 1005, 1223, and 1582 nm, which were ascribed to the 
presence of the second octaves of C–H and the first octave of stretching 
vibration absorption of N–H bonds in proteins (Zhang et al., 2024). A 
spectral-reflectance valley occurred 1360 nm, which was ascribed to the 
presence of O–H bonds in water in the second octaves (Li et al., 2022). 

To further explore the infection trend of dry rot disease, a hyper-
spectral dataset after classification was arranged to reflect the changing 
trend of the infection degree of the potato samples. The average absor-
bance spectra of 23 grade-0 samples, 18 grade-1 samples, 91 grade-2 
samples, and 17 grade-3 samples were plotted (Fig. 4B). Potatoes with 
dry rot and healthy potatoes showed clear differences in terms of their 
average spectra. Overall, potatoes with dry rot showed significantly 
higher average absorbance spectra than healthy potatoes. However, the 

Fig. 3. The variations of starch, soluble proteins, MDA, and aerobic bacterial counts with increasing degrees of corruption.  

Fig. 4. Trend chart of index content change.  
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mean spectra of healthy and gleyic potato samples were similar, which 
may be due to the fact that the main physiological and biochemical 
indexes of most potato samples at the early stage of infection with 
pathogenic bacteria were not significantly changed. In contrast to 
healthy potatoes, potatoes with dry rot turn black and their tissues lose 
water. Potatoes with moderate or severe dry rot disease may consist of 
floury cortical tissues. During reflection, potato discoloration increases 
the light absorbed by the tissue, and tissue water loss may lead to 
enhanced light scattering by the tissue, which increases the absorbance 
(Zhang et al., 2024). 

3.4. Modeling based on the full bands 

In this study, SNV, FD, SD, SNV-FD, SNV-SD, FD-SNV, and SD-SNV 
were used to preprocess the original data, and the LS-SVM and PLSR 
models were subsequently established. Table 4 shows the predictive 
performance of the various LS-SVM models built using the full spectra 
with different pretreatment steps, where bold represents the best pre-
treatment model. After pretreatment, starch, soluble proteins, MDA, and 
aerobic bacterial counts improved. This shows improved accuracy and 
robustness compared with the original spectral results. Moreover, the 
SNV-FD, SD, FD-SNV, and SD-SNV methods were the best pretreatment 
methods for the starch, soluble protein, MDA, and aerobic bacterial 
count models, with Rv and RPD values of 0.8984 and 2.0368, 0.9056 and 
1.8392, 0.9100 and 3.0229, and 0.9299 and 2.3328, respectively. 
Generally, scatter correction using SNV and their derivatives has suc-
cessfully minimized overlapping peaks and corrected the baseline shift 
(Dharma et al., 2018). 

The results of the PLSR models built with full spectra for the four 
indicators are shown in Table 5, and the PLSR model was established 
based on different pretreatments. The bold represents the best pre-
treatment model. The best pretreatments were SNV-FD, FD-SNV, FD, 
and FD for starch, MDA, soluble protein, and aerobic bacterial counts, 
respectively. The Rv values of the models built using data for starch, 

soluble protein, MDA, and aerobic bacterial counts were 0.9068, 0.8836, 
0.8812, and 0.9042, respectively, and the RPD values were 2.2095, 
2.0591, 2.7590, and 2.2165, respectively. The LSSVM model out-
performed the PLS model for all quality indicators, possibly because the 
PLS model only accounts for the linear relationship between spectral 
data and metrics, whereas the LSSVM model considers all useful linear 
and potentially nonlinear information (Walsh et al., 2020). These results 
are consistent with those of previous studies (Bao et al., 2014; Li et al., 
2023). 

3.5. Modeling based on feature bands 

Redundant spectral curve information is not conducive for con-
structing models. Therefore, characteristic wavelengths should be 
extracted before inputting the data into a model to reduce the model 
input vectors and avoid introducing incorrect information into the 
established model. 

3.5.1. Selection of characteristic wavelengths by 2D-COS 
As shown in Fig. 5A, the days of culture were taken as external 

interference, and the mean spectra of samples from 0 to 21 d post- 
inoculation were selected for one strip each. All spectra were pre-
treated with S-G smoothing and FD analysis. Then, bands showing large 
spectral differences with samples at different days post-inoculation were 
selected to obtain two-dimensional correlation synchronization spectra 
and autocorrelation spectra for those bands. 

As shown in Fig. 5B, the spectra could be divided into eight sub- 
bands, which were analyzed by 2D-COS. Fig. 5C2-J2 show the syn-
chronous two-dimensional correlation spectra of the indicated bands 
and their corresponding autocorrelation spectra, respectively. The 
overlapping peaks in the conventional spectra became clearer when the 
characteristic bands were studied. According to Noda's theory of two- 
dimensional spectra, synchronous two-dimensional correlation spectra 
are symmetric along the main diagonal, and the correlation peak may 

Table 4 
Comparison of the results of the LS-SVM models built by full spectra with different pretreatments.  

Indicator Pretreatment method Rc Rv RMSEC RMSEP RPD 

Starch 

SNV 0.9536 0.7827 0.0060 0.0125 1.3365 
FD 0.8894 0.8009 0.0091 0.0110 1.1236 
SD 0.9889 0.8424 0.0030 0.0097 1.7568 
SNV-FD 0.9750 0.8984 0.0043 0.0088 2.0368 
SNV-SD 0.9780 0.8512 0.0041 0.0103 1.6392 
FD-SNV 0.9582 0.8797 0.0055 0.0097 1.7061 
SD-SNV 0.9853 0.9028 0.0032 0.0094 1.9105  

MDA 

SNV 0.9042 0.8718 1.1720 1.3197 1.6181 
FD 0.8906 0.8307 1.2106 1.6698 2.1786 
SD 0.9946 0.8218 0.2929 1.5237 1.6796 
SNV-FD 0.9648 0.8560 1.1570 1.7270 1.7184 
SNV-SD 0.9887 0.8157 0.4194 1.3955 1.3955 
FD-SNV 0.9502 0.9299 0.7961 1.3023 2.3328 
SD-SNV 0.9936 0.8489 0.3279 1.4476 2.0038  

Soluble protein 

SNV 0.9026 0.7826 1.6876 2.1138 1.3919 
FD 0.9197 0.8326 1.4168 2.5699 1.2638 
SD 0.9623 0.9056 1.1248 1.5590 1.8392 
SNV-FD 0.9703 0.8565 0.9308 2.9141 1.7423 
SNV-SD 0.9743 0.8428 0.7922 1.9854 1.4650 
FD-SNV 0.9611 0.8395 1.0571 2.2086 1.7110 
SD-SNV 0.9532 0.8406 1.2288 1.7339 1.3414  

Aerobic bacterial count 

SNV 0.9201 0.8666 0.2854 0.3452 1.8114 
FD 0.9390 0.8540 0.2526 0.3548 1.7640 
SD 0.9713 0.8352 0.1680 1.55 1.84 
SNV-FD 0.9594 0.8513 0.1988 0.4132 1.4698 
SNV-SD 0.8995 0.8060 0.3318 0.3860 1.6045 
FD-SNV 0.9813 0.8081 0.1680 0.4222 1.3769 
SD-SNV 0.9744 0.9100 0.2048 0.3017 3.0229  
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appear on or off the diagonal (An et al., 2024). The peak on the diagonal 
is called the automatic peak, which is always positive, and its strength 
reflects the change in intensity of the system when tested with an 
external disturbance. The number of circles reflects the strength of the 
automatic peak. By studying the two-dimensional correlation spectral 
characteristics of potatoes, we were able to select 20 autocorrelation 
peaks as characteristic wavelengths, which were 960, 1005, 1083, 1089, 
1134, 1139, 1274, 1307, 1347, 1498, 1531, 1587, 1632, 1677, 1716, 
1789, 1845, 1946, 2019, and 2064 nm. 

All the selected wavelengths belonged to the VNIR/SWIR region of 
the spectra and were related to the vibration and combination overtones 
of the C–H, O–H, and N–H bonds, which are the primary structural 
components of organic molecules. Like all fresh fruits, potatoes are 
mainly composed of water, with the second major component being 
carbohydrates. Due to this, strong carbohydrate absorbance bands exist 
at 1134 and 1139 nm. The water absorption peaks are observed at 960 
nm (third overtone of O–H stretching vibration), 1498 nm (O–H 
stretch first overtone), and 1946 nm (O–H stretch and O–H deforma-
tion) (Williams & Norris, 1987). The peak at 1845 nm was associated 
with the O–H stretching vibration of sugar (Baiano et al., 2012). Strong 
autocorrelation peaks appeared at 1083 and 1089 nm that were related 
to the second-frequency stretching vibrations of the C–H bonds. The 
peak at approximately 1274 nm is due to the absorption band of the 
C–H stretching second overtone, which is related to anthocyanin 
compounds (Chen et al., 2015). The peaks at 2019 and 2064 nm are 
related to combinations of aromatic C–H and C––C stretching vibra-
tions, respectively. The results show that the 2D-COS algorithm can 
effectively extract the characteristic wavelengths related to the internal 
properties of dry-rot potatoes. 

3.5.2. Selection of characteristic wavelengths using the CARS algorithm 
The CARS algorithm was used to screen for characteristic wave-

lengths after spectral preprocessing. The number of Monte Carlo sam-
ples was set to 1000, and the number of selected wavelengths was 

determined using the 10-fold cross validation method. Fig. S1 shows the 
CARS wavelength-selection procedure and characteristic wavelengths. 
Fig. S1A-F presents the starch, soluble protein, MDA and aerobic bac-
terial counts models of LS-SVM and PLSR. 

Differences in the sample variables were divided into two stages. The 
first stage (rapid selection) decreased rapidly, and the second (refined 
selection) decreased extremely slowly. When the sampling times were 
1–600, 1–21, 1–620, 1–23, 1–603, and 1–605, the cross-validation root 
mean square error (RMSECV) value continued to decrease, indicating 
that variables unrelated to fungal contamination were eliminated during 
the selection process. In contrast, when the number of sampling points 
reached 600, 21, 620, 23, 603, and 605, the RMSECV showed an upward 
trend, indicating that key variables may have been eliminated. 
Fig. S1A3-F3 present changes in the regression coefficients of all vari-
ables during each sampling process. We found that when sampling was 
conducted 530, 21, 440, 10, 389, and 480 times, the RMSECV value was 
the smallest, meaning that the subset of selected spectral variables was 
optimal. After running the CARS algorithm, the subset contained 16, 18, 
22, 31, 36, and 24 spectral variables (Fig. S1A4-F4). Compared with the 
original variables, these values were 92.34%, 91.39%, 89.47%, 85.17%, 
82.78%, and 88.52% lower, respectively. This shows that the CARS al-
gorithm can effectively reduce the number of wavelengths. 

3.6. Analysis of the modeling results 

Spectra pretreated using the SNV-FD, FD-SNV, SD, and SD-SNV 
methods at characteristic wavelengths were treated as independent 
variables, and the measured starch, soluble protein, MDA, and aerobic 
bacterial counts were treated as dependent variables to further simplify 
the LS-SVM and PLSR models. Fig. 6 shows the results of the LS-SVM and 
PLSR models with full and characteristic wavelengths generated by the 
2D-COS and CARS analyses for the four indicators. The model with the 
screened characteristic wavelengths generated better predictions than 
the full-wavelength models because of the selection of valid variables, 

Table 5 
Comparison of the results of the PLSR models built by full spectra with different pretreatments.  

Indicator Pretreatment method Rc Rv RMSEC RMSEP RPD 

Starch 

SNV 0.8839 0.8770 0.0155 0.0098 1.9675 
FD 0.8551 0.8456 0.0098 0.0108 1.7183 
SD 0.8983 0.8552 0.0085 0.0104 1.7799 
SNV-FD 0.9207 0.9068 0.0073 0.0088 2.2095 
SNV-SD 0.8963 0.8053 0.0083 0.0095 1.9775 
FD-SNV 0.9207 0.9056 0.0075 0.0090 2.1984 
SD-SNV 0.9080 0.8814 0.0078 0.0097 1.9995  

MDA 

SNV 0.8947 0.8746 1.2178 1.3335 1.8825 
FD 0.8998 0.8673 1.1906 1.9212 1.9212 
SD 0.8931 0.8687 1.2283 1.3608 1.8049 
SNV-FD 0.9082 0.8667 1.1409 1.3681 1.7958 
SNV-SD 0.8988 0.8917 1.2167 1.1801 2.0921 
FD-SNV 0.9079 0.8812 1.1084 1.4424 2.7590 
SD-SNV 0.9078 0.8696 1.1638 1.3796 2.0057  

Soluble protein 

SNV 0.8763 0.8310 1.8119 2.1251 1.6375 
FD 0.9081 0.8836 1.5753 1.8065 2.0591 
SD 0.8860 0.8521 1.7550 1.9388 1.6214 
SNV-FD 0.8858 0.8289 1.7452 2.1447 1.6394 
SNV-SD 0.8870 0.8717 1.7041 1.9797 1.8984 
FD-SNV 0.8940 0.8396 1.6849 2.0740 1.6871 
SD-SNV 0.8903 0.8861 1.6805 1.8602 1.9966  

Total colonies 

SNV 0.9291 0.9046 0.2605 0.3336 2.1547 
FD 0.9284 0.9042 0.2619 0.3553 2.2165 
SD 0.9060 0.8780 0.3004 0.3473 1.9833 
SNV-FD 0.9377 0.9001 0.2448 0.3515 2.1488 
SNV-SD 0.8674 0.7861 0.3816 0.4549 1.4585 
FD-SNV 0.9412 0.9006 0.2380 0.3495 2.1232 
SD-SNV 0.8519 0.8188 0.3989 0.4176 1.5198  
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which improved model accuracy. The Rv values of the best models were 
0.9273, 0.9634, 0.9470, and 0.9487, and the RPD values were 2.5506, 
3.7201, 2.7517, and 2.8896 for starch, soluble protein, MDA, and aer-
obic bacterial count, respectively. Compared with the CARS algorithm, 
the models based on 2D-COS exhibited better performance. This may be 
because 2D-COS is implemented by selecting an intrinsic relationship 
between the variables associated with external perturbations and target 
class classification. The improved modeling performance indicates that 
the model can be effectively simplified, and its prediction ability can be 
improved by eliminating irrelevant variables. 

3.7. Visualization 

The above results indicate that HSI combined with LS-SVM could be 
used as an effective tool for rapidly and non-destructively evaluating the 

indicators of interest in potato samples. For hyperspectral images, a 
combination of smoothing, derivative, and SNV methods was used to 
preprocess the pixel-wise spectra in the ROI and input the data into the 
2D-COS-LSSVM model to visually demonstrate the content distribution 
of the four indicators. Pixel-wise prediction maps were beneficial for 
understanding compositional distributions in potato tubers. Fig. 7 il-
lustrates some distribution maps related to changes in the starch, soluble 
protein, MDA, and aerobic bacterial counts. The average reference 
values are shown underneath the images. The linear color bar on the 
right indicates different concentrations, ranging from blue and red, 
which represent low to high values for each parameter. 

Vertical stripes were observed in each distribution map, possibly 
because of random vibrations occurring during spectral push broom 
scanning. In addition, the starch, soluble protein, and MDA densities 
were nonuniform, irregular, and mainly distributed at irregular margins, 

Fig. 5. The result of models based on the characteristics after pretreatments.  
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which may be attributed to complex biochemical changes (e.g., protein 
decomposition and moisture loss). As shown in Fig. 7, the variations in 
the starch contents ranged from 12.2 to 19.10%. With increasing starch 
contents, the color of the corresponding distribution map gradually 
faded from red to blue. The image of a corrupt sample shows that the 
starch content in the corrupted area was minor. The color of the corre-
sponding distribution map gradually changed from blue to red with 
increasing soluble protein contents, MDA contents, and aerobic bacterial 
counts. Specifically, the highest content values were identified in 
corrupt areas. Therefore, object-wise prediction maps could be used to 
non-destructively visualize the starch, soluble protein, and MDA con-
tents, as well as the aerobic bacterial counts in individual potato tubers. 

4. Discussion 

In this study, we used HSI to detect potato dry rot disease and 
measured the physical and chemical changes in the samples during 
infection. Starch is an important constituent of carbohydrates present in 
potatoes, which provide metabolic energy that enables the body to 
perform its function. The starch content of potatoes is affected by stor-
age, repair, abiotic stress, and biological stress (Lal, Tiwari, et al., 2021). 
We found that pathogenic bacteria may decompose and consume 
cellular nutrients in potato tubers during potato tuber infection, which 
lowers starch content. It has been previously reported that biotic stresses 

such as viral infection have detrimental effects on starch quality-related 
parameters. Lal et al. reported that the apical leaf curl disease infection 
in Kufri Pukhraj potatoes caused a severe reduction in starch content 
during storage (Lal, Singh, et al., 2021). Additionally, it was previously 
recorded that F. sambucinum and F. oxysporum infections led to a sub-
stantial reduction in starch content in Kufri Pukhraj and Kufri Chipsona 
varieties (Tiwari et al., 2021). The findings of this study are in agree-
ment with previous reports on the correlation between amylose reduc-
tion and fungal infection in potato tubers. 

We found that soluble protein content increased with an increasing 
degree of dry rot, which may reflect a stress response to infection with 
exogenous pathogenic bacteria that are closely related to the activation 
of various defense enzymes in potato tubers. It has also been reported 
that the reason for the increase in protein content of infected plants may 
be that after the occurrence of pathogenic fungal infection, the activity 
of plant protein synthetase increases or inhibits the activity of protein- 
degrading enzyme, resulting in an increase in protein content, and at 
the same time promotes the synthesis of proteins that are different from 
normal tissues, that is, “disease-course related proteins,” such as ribo-
some inactivated proteins and penetrant proteins (Jain et al., 2022). 

MDA is toxic to plant cells, causing cell membrane dysfunction and 
the destruction of many functional molecules. Therefore, increased MDA 
content can directly damage plant cells. Previous studies have found that 
banana infection with Fusarium oxysporum f. sp. cubense can lead to 

Fig. 6. The results of the LS-SVM and PLSR model with full and characteristic wavelengths by 2DCOS, CARS for four indicators.  
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increased MDA levels and that the degree of infection is positively 
correlated with MDA accumulation (Sun et al., 2013). A similar phe-
nomenon was also found in the pathogenesis of ring rot in crown pears, 
resulting in the rapid accumulation of malondialdehyde. These studies 
indicate that MDA accumulation is not conducive to fruit disease resis-
tance (Sun et al., 2017), which is consistent with our findings. When the 
degree of potato dry rot disease increased, the aerobic bacterial counts 
consistently increased with a relatively stable trend, mainly because of 
infection with the Fusarium fungus, which increased the susceptibility of 
potato cells to secondary bacterial infections. 

Changes in the internal components mentioned above inevitably lead 
to changes in the optical properties of the potatoes. Therefore, models 
were established for the four physicochemical indices and spectral 
variables. First, different pretreatments were used to pretreat the entire 
spectra, and PLSR and LS-SVM models were established. The results 
showed that the SNV-FD, SD, FD-SNV, and SD-SNV methods were the 
best pretreatment methods for all four indicators. The best pretreatment 
methods differed in the prediction of different indicators. This result is 
consistent with that reported in the literature (Zhang et al., 2022). In 
addition, the LS-SVM model performed better than the PLSR model, 
primarily because the LS-SVM algorithm considers all useful linear and 
potentially nonlinear information. We obtained the same results as in 
Yin et al. (2023). The RMSE values were slightly larger for both the 
original and preprocessed spectra, indicating that the model was general 
and could not accurately characterize the degree of dry rot. 

To further verify the advantages of hyperspectral data combined 
with 2D-COS analysis of quantitative peaks, quantitative peaks were 
used to establish a prediction model and compared with the results of 
the CARS model. The results demonstrated that both the CARS and 2D- 
COS methods improved the predictive capability of the model; however, 
the model built using the 2D-COS filtering variables was more accurate, 
indicating that the combined model with 2D-COS screened the charac-
teristic wavelengths more effectively. The identified automatic peaks 
revealed a self-correlation of functional groups that were sensitive to 

fungal infection in dry-rot potatoes. By combining this with asynchro-
nous spectra, sensitive functional groups related to fungal infection and 
their changing orders can be determined. 

A unique advantage of HSI technology compared with traditional 
spectroscopy or computer imaging technology is visualization of the 
prediction index of tested samples. Therefore, HSI containing potatoes 
were respectively input to the calibrated 2DCOS-LSSVM model to obtain 
the predicted starch, soluble protein, and MDA value of each pixel, and 
pseudo-color was used to display the contents distribution of each in-
dividual potato. Similar works for internal attribute were investigated 
by Wang et al., 2024 and Xu et al., 2022. According to the distribution 
maps for different components, rapidly and nondestructively evaluating 
the potato quality is beneficial for both consumers and industries. Our 
findings provide clear evidence that HSI is more powerful than NIR. 
These findings not only provide a theoretical basis for predicting the 
values of different physical and chemical indexes but also provide a 
novel approach for screening characteristic variables during near- 
infrared (NIR) spectrum analysis. 

5. Conclusions 

This study demonstrated the effectiveness of HSI and 2D-COS in 
detecting starch, soluble protein, MDA content, and aerobic bacterial 
counts in dry rot potatoes. The feasibility of the 2D-COS algorithm in 
extracting the characteristic information of the spectra was proven, and 
the extracted feature information was closely related to the internal 
attributes, which significantly improved the model performance. The 
best prediction results for the four indicators were obtained from spectra 
selected using the 2D-COS algorithm. The Rv values of these quantitative 
models were 0.9273, 0.9634, 0.9470, and 0.9487, and the RPD values 
were 2.5506, 3.7201, 2.7517, and 2.8896, respectively. Additionally, 
visual analysis revealed the content distribution of the four indicators in 
the potatoes. In conclusion, this study demonstrates the potential of the 
HSI technique combined with the 2D-COS algorithm for practical 

Fig. 7. The distribution maps related to changes in the starch, soluble protein, MDA, and aerobic bacterial counts.  
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applications in detecting starch, soluble protein, MDA content, and 
aerobic bacterial counts of potato samples to identify the early stages of 
potato dry rot. Based on the proposed algorithm, further investigations 
are required to realize the early detection of other plant diseases. 
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