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Abstract

Spray-dried animal plasma (SDAP) is widely used in diets of domestic animals to improve

health status and increase growth and feed efficiency. Individual steps in the SDAP

manufacturing process, including spray-drying, have been validated to inactivate poten-

tial pathogens. Manufacturing standards have established a minimum exit temperature of

80˚C and a minimum post-drying storage period of 14 days at 20˚C for production of

SDAP. Also, UV-C irradiation has been evaluated as another inactivation step that could

be included in the manufacturing process. The aim of this study was to assess the inacti-

vation effectiveness of spray-drying on Classical swine fever virus (CSFV) and African

swine fever virus (ASFV) and the effect of UV-C inactivation on ASFV as redundant bio-

safety steps of the manufacturing process for producing spray-dried porcine plasma

(SDPP). This study demonstrated that UV-C treatment of liquid porcine plasma can inacti-

vate more than 4 Log10 TCID50/mL of ASFV at 3000 J/L. Spray-drying effectively inacti-

vated at least 4 Log10 TCID50/mL of both CSFV and ASFV. Incorporating UV-C

technology within the SDAP manufacturing process can add another biosafety step to fur-

ther enhance product safety.

Introduction

Spray-dried animal plasma (SDAP) is a natural co-product of the meat packing industry that is

widely used in swine diets to improve health status and increase growth and feed efficiency [1,

2]. Blood is harvested from animals inspected and passed as fit for slaughter for human
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consumption. Blood is collected into containers with anticoagulant, chilled, and centrifuged to

separate plasma. Liquid plasma is then concentrated and spray-dried to produce ingredients

used in food, feed and industrial applications [3].

Individual steps in the SDAP manufacturing process have been validated to inactivate

potential pathogens [4]. Globally, most plasma producers have adapted processing standards

recommended by the European Animal Protein Association (EAPA Code of Practice, https://

www.eapa.biz/quality-safety). Briefly, these standards have established a minimum exit tem-

perature of 80˚C and a minimum post-drying storage period of 14 days at 20˚C. Other inacti-

vation steps, such as UV-C irradiation of liquid plasma, have been evaluated that could be

included in the manufacturing process [4].

The World Health Organization (WHO) has published guidelines for the manufacture of

human blood products [5]. The WHO recommends that the manufacturing process for

human blood products should include one or two robust processing steps that can inactivate

non-enveloped or enveloped viruses. A robust processing step is defined as one that can inacti-

vate 4 Log of virus titer [5].

Ultraviolet-C (UV-C) light is a shortwave electromagnetic radiation with a wavelength of

254 nm (range of 250 and 270 nm) that induces damage in nucleic acids by disrupting DNA or

RNA structure [6]. UV-C technology has been used to disinfect water, food products and sur-

faces [7, 8], and is an alternative to chemical inactivation methods [9]. Previous studies dem-

onstrated that UV-C was effective for inactivating substantial amounts of enveloped and non-

enveloped swine viruses in liquid plasma [10].

Classical swine fever virus (CSFV) is an enveloped +ssRNA virus of the Flaviviridae family,

and is considered a virus that has low survival when exposed to high temperatures [11]. Afri-

can swine fever virus (ASFV) is an enveloped dsDNA virus belonging to the Asfarviridae fam-

ily [12] that can cause high mortality in pigs of all ages and is considered resistant to high

temperatures [13]. Both viruses affect swine and are notifiable diseases to the World Organiza-

tion for Animal Health (OIE) [11].

The aim of this study was to assess inactivation efficiency of spray-drying on CSFV and

ASFV and UV-C inactivation on ASFV to evaluate these processes as redundant biosafety

steps in the manufacturing process for producing spray-dried porcine plasma (SDPP).

Material and methods

Virus and cells

Classical swine fever virus. The CSFV strain Alfort-187 and the PK-15 cell line was pro-

vided by the EU Reference Laboratory for CSF, Institute of Virology, Hanover, Germany. The

CSFV was propagated in the PK-15 cell line and grown in modified Eagle medium (MEM)

that was supplemented with 5% pestivirus antibody negative fetal bovine serum (FBS), 200

mM glutamine, 100 UI penicillin /mL, 100 μg streptomycin /mL and 40 UI nystatin /mL).

CSFV viral stock was produced in successive passages on PK-15 cell line until a final viral titer

of 107.5 TCID50 /mL was acheived. Titration of viral stock solution was done on PK-15 cells

following the OIE CSFV immunoperoxidase technique (IPT) standard protocol [14].

African swine fever virus. The ASFV strain Badajoz-71 was adapted to Vero cells

(ASFV-BA71-V) [15] and was provided by Dr. Marı́a Luisa Salas from Centro de Biologı́a

Molecular Severo Ochoa (CBMSO), Madrid, Spain. The virus was propagated in Vero cells

(ATCC CCL-81) grown in DMEM supplemented with 10% FBS, 200 mM glutamine, 100 UI

penicillin /mL, 100 μg streptomycin /mL, and 40 UI nystatin /mL. The final stock solution was

titrated following the IPT OIE standard protocol for ASFV [16] and a final ASFV titer of 106.9

TCID50 /mL was achieved.
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Plasma

The plasma used to determine ASFV inactivation by UV and CSFV inactivation by spray- dry-

ing was obtained in EU porcine slaughter facilities from animals inspected and approved for

slaughter for human consumption. Blood was collected in stainless steel containers, with an

anticoagulant, refrigerated and transported to the APC Europe facilities (APC-Europe S.L.U.,

Granollers, Spain). Plasma was separated by commercial centrifugation and frozen at -20˚C

until use.

The plasma used to determine ASFV inactivation by spray-drying was collected as

described above but had been commercially spray dried. A total of 2.7 kg of commercial SDP

(Appetein GS; APC Europe S.L.U.) was treated with 10 kGy ionizing radiation (Aragogamma,

S.A. Les Franqueses del Vallés, Spain). Ten kGy ionizing radiation was sufficient to sterilize

the SDP and prevent potential bacterial interference during the virus titration in Vero cells.

After kGy radiation, the SDP was solubilized in sterile water to achieve 28% solids. A 10-mL

sample of solubilized plasma was stored at –80˚C and later tested for the presence of ASFV

antibodies (INgezim PPA COMPAC, INGENASA; Madrid, Spain) or genome [17].

Spray-drying: Inactivation of ASFV and CSFV

Three 1-L batches of unconcentrated porcine plasma were thawed, filtered, and a 10 mL sam-

ple of each batch was stored at –80˚C for later analysis. A volume of 0.010 L of CSFV stock

solution (107.5 TCID50/mL) was added to 0.990 L of plasma to obtain a theoretical final viral

titer of 105.5 TCID50/mL.

For the ASFV experiment, each of three 1-L batches of the reconstituted (28% solids) irradi-

ated SDP were sampled. A 0.1 L sample was stored at –80˚C for later analysis and the remain-

ing 0.9 L w14as inoculated with 0.1 L of ASFV stock solution (106.9 TCID50/mL) to achieve a

viral titer of approximately 105.9 TCID50/mL in each 1-L batch.

The laboratory spray-drier (Büchi Mini Spray Dryer B-290, Büchi Labortechnik, Switzer-

land) used in these experiments was adjusted to an inlet air temperature of 200 ± 5˚C and an

outlet air temperature set at 80 ± 1˚C as previously described [18]. Airflow through the column

and the suspension flow to the nozzle was set at 45 m3 h-1 (at 20˚C) and 0.2 lh-1, respectively.

The airflow through the feed nozzle was adjusted to 0.7 m3h-1 (at 20˚C). Residence time was

estimated to be 0.41 s.

Plasma samples were collected after spray-drying to know the inactivation effect of the labo-

ratory spray-drier process alone. Then sub-samples of spray-dried product collected after

spray-drying were kept at 80˚C for 60 s to simulate the typical residence time of the dried

product in a commercial spray drier [19]. Triplicate 0.5 g samples of spray-dried plasma kept

in 0.5 cm glass tubes (inner diameter) were placed in a water bath set at 90±1˚C for 60 s. The

90˚C water bath temperature was necessary to assure that the spray dried plasma in the tubes

was maintained at 80˚C inside the tube. Thermal probes were used to monitor the temperature

of the spray dried plasma in the tubes and to assure that the temperature of the dried plasma

was maintained at the desired 80˚C for 60 s. Samples were then placed in a dry-ice cooled con-

tainer until all samples were processed, then stored at -80˚C until final analysis.

Prior to viral titration, the spray-dried samples were reconstituted by adding 5.5 mL of dis-

tilled water to 0.5 g of plasma sample. Titration of virus was done using the whole plate for

each dilution (from -1 to -5 dilutions using 12- well plates) to amplify the detection capability

of the test. Plates were read by IPT following the OIE standard protocol for ASFV [16] avail-

able in https://asf-referencelab.info/asf/images/ficherosasf/SOP%202018/SOP-ASF-IPT-1_

REV2018.pdf and in the case of CSFV, the EU diagnostic manual for CSFV was followed [20].

In both cases, plates were quantified by the Reed and Muench procedure [21].
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Negative samples in the titration assay were passaged in a blinded fashion to detect very low

quantities of CSFV or ASFV by inoculating 50 mL of the reconstituted post-dried samples on

10 different 175 cm2 flasks containing either PK-15 cells for CSFV or Vero cells for ASFV (5

mL reconstituted dried sample for each 175 cm2 flask). After three to four days, cell cultures

were harvested and passed to new PK-15 or Vero cell cultures, respectively. Three serial pas-

sages and virus screening by IPT were done before a sample was considered negative.

The reduction factor was calculated as the difference between the virus titer detected in the

inoculated material at start and the titer detected in the final sample after processing.

UV-C: Inactivation of ASFV

A total of 22 L of unconcentrated porcine plasma was inoculated with 2 L of stock viral solu-

tion (containing 106.8 TCID50/mL) achieving an approximate virus titre of 105.7 TCID50/mL.

The 24 L of inoculated plasma was sub-divided into three 8 L batches. The operation time of

the UV-C treatment is based on the quantity of product to be irradiated and the flow rate of

the product feed. At a flow rate of 4000 L/h, 9 s are required for 10 L of product to pass through

the reactor once; thus, one turn of the product through the system is equivalent to a UV-C

dose of 22.95 J/L. The UV-C dosage is expressed as J/L.

The flow of the inoculated plasma was stabilized at 4000 L/h with the UV lamp switched

off. After 5 minutes of stable flow, a positive control (0 J/L) sample was collected into a sterile

container. Then, the UV-C lamp was switched on and irradiation started. A volume of 175 mL

of treated plasma was collected into sterile containers at different UV-C doses (750, 1500,

3000, 6000, and 9000 J/L) and stored at -80˚C for subsequent analysis.

The UV-C reactor system SurePure TurbulatorTM SP-1 was manufactured by SurePure

Operation AG (Zug, Switzerland) and has been previously described [10].

A standard ‘Cleaning in Place’ (CIP) process based on a treatment with 5% NaOH, was

implemented before and after each UV-C treatment [22].

Quantification of ASFV in plasma samples was analyzed by titration on Vero CCL81 cell

culture using the microtiter assay procedure [23]. Titration of virus was done as previously

described.

Modeling of inactivation

Microbial inactivation kinetics models have been previously described [24]. The GInaFiT soft-

ware includes eight common models describing linear and non-linear inactivation curves [24].

GInaFiT software determines the goodness of fit in terms of root mean square error

(RMSE) for all the tested models. The mathematical model that presents the lowest RMSE

value is considered the model that best fits the data.

The equations that describe the different mathematical models used in this study are

detailed below:

The biphasic model [25] uses the Eq (1):

log10ðNÞ ¼ log10ðN0Þ þ log10ðf � e� kmax1t þ ð1 � f Þ � e� kmax2tÞ ð1Þ

The Biphasic plus shoulder model [24] follows the Eq (2):

log10 Nð Þ ¼ log10 ðN0Þ

þ log10 f � expð� kmax1 � tÞ �
expðkmax1 � SlÞ

1þ expðkmax1 � SlÞ � 1 � expð� kmax1 � tÞð Þ þ 1ð1 � fÞ � expð� kmax2 � tÞ � expðkmax1�SlÞ

ð1þðexpðkmax1�SlÞ� 1Þ�expð� kmax1�tÞÞ
kmax2
kmax1

0

@

1

Að2Þ
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Where N0 is the initial bacterial concentration; t is time; kmax1 and kmax2 are the specific

inactivation rates of the two populations and S1 are the degrees of freedom used for the param-

eter estimation by GInaFiT.

The Weibull model [26] uses the Eq (3):

log10ðNÞ ¼ log10ðNð0ÞÞ � ð
t
d
Þ
p

ð3Þ

Where N represents the microbial cell density, N0 the initial microbial cell density, t is time,

δ is a scale parameter denoted as the time for the first decimal reduction, and p is the shape

parameter that describes concavity or convexity of the curve. The curve shows convexity if

p>1 and the curve is concave if p<1.

Data were expressed as the mean Log10 TCID50 with the standard deviation of three repli-

cates. Mean square error (MSE), goodness of fit, correlation coefficient (R2), adjusted correla-

tion coefficient (adj-R2) was calculated, and 4D values (the dose needed to inactivate 4 Log10 of

viral load) were estimated.

Results

The original plasma used in these experiments was confirmed to be negative for antibodies

and genome for the viruses tested.

Spray-drying experiment

Viral inactivation by spray drying is summarized in Table 1. The laboratory spray drying pro-

cess alone had a residence time< 1 sec and a reduction factor of 2.06 and 2.11 Log10 TCID50/

mL for CSFV and ASFV, respectively. However, after the residence time simulation of the con-

ditions in commercial driers at 80˚C for 60 s a reduction factor of 4.11 and 5.78 Log10 TCID50/

mL was achieved for ASFV and CSFV respectively. CSFV negative samples were subjected to

three successive blind passages before being declared negative.

UV-C experiment

UV-C inactivation results for ASFV are summarized in Table 2 and Fig 1. Negative samples at

6000 J/L for ASFV were subjected to 3 blind passages before being considered negative.

The model that best fit the inactivation ASFV data with the lowest RMSE was the biphasic

+ shoulder (Table 3). The simpler models, including the biphasic and Weibull models, had a

slightly greater RMSE and slightly lower correlation coefficient. The more complex models,

biphasic + shoulder and the biphasic, describe multiple virus populations with different inacti-

vation kinetics while the simpler Weibull model describes a more uniform viral population

Table 1. Titration of CSFV and ASFV samples before and after the spray drying treatment (Mean ± SD).

CSFV ASFV

TREATMENT MEAN VIRUS RECOVERED

LOG10 TCID50/mL

REDUCTION

FACTOR (RF)

MEAN VIRUS RECOVERED

LOG10 TCID50/mL

REDUCTION

FACTOR (RF)

POSITIVE CONTROL

INOCULATED PLASMA

5.78 ± 0.16 NA2 5.77 ± 0.20 NA2

SD 200–80 3.72 ± 0.20 2.06 ± 0.25 3.66 ± 0.0 2.11 ± 0.20

SD 200–80 + 60 s 80˚C NEG1 �5.78 1.66 ± 0.0 4.11 ± 0.20

(1) NEG: negative sample
(2) NA.: does not apply.

https://doi.org/10.1371/journal.pone.0249935.t001
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with consistent inactivation kinetics. However, all three models resulted in similar 4D value

estimates between 2130 and 2239 J/L.

Discussion

Spray-drying as an intrinsic safety step in the manufacturing process of SDPP has been shown

effective to inactivate different viruses of concern for the swine industry including porcine

respiratory and reproductive syndrome virus (PRRSV), pseudorabies virus (PRV), swine vesic-

ular disease virus and porcine epidemic diarrhea virus (PEDV) [18, 27–29] as well as bacteria

such as Escherichia coli or Salmonella enterica [30, 31]. Pathogen inactivation by spray drying

occurs due to the combination of rapid desiccation at high temperature [19], that results in

damage to the cytoplasmic membrane [32, 33], damage to genetic material and inactivation of

other proteins including enzymes [33]. During the spray-drying process plasma is exposed to a

minimum of 80˚C throughout substance [3], which is a temperature recognized as effective to

inactivate pathogens such as ASFV, CSFV, Swine vesicular disease virus (SVDV) and Foot and

mouth disease virus (FMDV) in cooked meat products [34]. In the present experiments, just

the spray-drying process without extended residence time showed a reduction factor of 2.06

and 2.11 Log10 TCID50/mL for CSFV and ASFV, respectively. These results demonstrate that

both viruses were inactivated similarly due to damage caused by rapid dehydration at 80˚C

associated with a lab drier with a residence time of less than 1 s [19]. However, the spray-dried

Table 2. Titration of ASFV samples subjected to different doses of UV-C irradiation.

UV Dose (J/L) Mean virus recovered Log10 TCID50/mL SD Accumulated Total Log10 reduction

0 5.60 0.39 0.00

750 4.06 0.05 1.54

1500 2.37 0.13 3.23

3000 0.98 0.02 4.62

6000 BDL� 0.00 5.60

9000 BDL� 0.00 NC†

BDL�: Below Detection Limit; NC†: Not Calculated.

https://doi.org/10.1371/journal.pone.0249935.t002

Fig 1. Mean ASFV Log10/mL values after UV-C irradiation of porcine plasma at different UV irradiation doses.

Best fit mathematical models are shown. Blue diamonds indicated measured results of the viral titer at different UV-C

irradiation doses expressed as mean log 10/mL (n = 3 replicates). Red line is the identified inactivation curve model.

https://doi.org/10.1371/journal.pone.0249935.g001
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samples that were subjected to the extended residence time (80˚C for 60 s) associated with

commercial driers had an inactivation of 4.11 Log10 TCID50/mL for ASFV and 5.78 Log10

TCID50/mL for CSFV. Complete inactivation was achieved for CSFV using the extended dwell

time (60 s). Spray-drying with 60 s dwell time was slightly more effective for inactivating CSFV

suggesting that ASFV is more heat resistant than CSFV. These results agree with others [35,

36] demonstrating that ASFV is more heat stable than CSFV.

The commercial process of SDPP involves several biosafety steps, including collection of

blood from healthy animals declared fit for slaughter for human consumption, which excludes

collection of blood from sick animals. Therefore, it is unlikely SDPP producers would receive

blood from animals with peak viremia. According to the risk assessment conducted by the

French safety agency [37], it is very unlikely that a pig at the peak viremia would be accepted

for slaughter for human consumption due to the obvious symptoms and bad physical condi-

tion of the animal. Therefore, the window of time for an infected asymptomatic ASFV animal

to be accepted for slaughter for human consumption would be only a few days (1 to 3) after

infection when the amount of virus in the blood would be significantly lower than in viremic

animal. In addition, the manufacturing process involved in commercial plasma involves other

safety steps. The commercial SDPP process includes a dilution factor for any potential viral

load because of the pooling of blood from thousands of clinically healthy animals into silos at

the abattoir or at the manufacturing facilities. Therefore, the inactivation of 4.11 Log10/mL

found in our study can be considered safe for inactivation of ASFV. Furthermore, the

manufacturing process of SDPP in US and EU includes the step of storage of the final packed

spray-dried product at 20˚C for 14 days [4]. Recently Fischer et al. [38], demonstrated that

ASFV inoculated on SDPP and stored at room temperature (20˚C) for 14 days was inactivated

by more than 5 logs. The combination of these various process control steps reduces the risk of

ASFV transmission through SDPP to essentially zero, as already recognized by ANSES [37].

UV-C has been widely used for the disinfection of surfaces, water and food products [7, 8,

39, 40] due to its germicidal action. Previous research has demonstrated that UV-C treatment

of liquid plasma was effective to inactivate several enveloped and non-enveloped viruses [10,

41] and bacteria [31, 42]. The present results show that UV-C inactivated more than 4 Log of

ASFV and agree with previous research suggesting that UV-C is very effective for inactivating

enveloped viruses, including CSFV as well. Virucidal effects of UV-C may be associated with

damage of the virus genome [6, 43], lipid peroxidation resulting in damage of the envelope

membrane of these viruses [10] and cross-linking of nucleocapside proteins [44].

Estimates of UV-C 4D inactivation for a number of viruses range between 1004 to 3708 J/L

[10], suggesting some differences in susceptibility to UV-C between virus. In the current

experiment, the UV-C 4D value estimate for ASFV was 1912 J/L and is within the range of pre-

viously reported data. Blázquez et al., [10] found that the UV-C 4D value for CSFV inactivation

was 1641 J/L, slightly below the present estimation for ASFV suggesting that CSFV is

Table 3. Kinetics parameters obtained in the three mathematical models with best fit for UV-C inactivation of

ASFV.

Biphasic + shoulder Biphasic Weibull

Mean Sum of Squared Error 0.0385 0.0445 0.0714

Root Mean Sum of Squared Error 0.1963 0.211 0.2673

R-Square 0.9959 0.9948 0.9909

R-Square, adjusted 0.9943 0.9934 0.9894

4D reduction is reached at (minutes) ±11.71 ±11.14 ±11.71

4D reduction is reached at (UV J/L) 2239.54 2130.525 2239.54

https://doi.org/10.1371/journal.pone.0249935.t003
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somewhat less resistant to UV-C irradiation than ASFV. Biphasic inactivation curves can be

explained by a number of phenomena including the cumulative effect of continued damage to

the genetic material [44], the presence of various subpopulations differing in susceptibility to

UV-C or the protective effect of virus aggregates including viral aggregates with other material

[45, 46]. In the present experiment, the best fit model included a biphasic curve with a shoul-

der. While the Weibull model had a slightly larger RMSE, the estimated 4D value was like that

of the biphasic plus shoulder model and the more linear Weibull. Similarly, the best fit models

for CSFV UV-C inactivation were the biphasic curve with a shoulder and the Weibull model

[10].

The WHO proposed minimum manufacturing standards to assure viral safety for interna-

tional trade of human plasma products [5]. These standards recommend that the manufactur-

ing process include one or two independent robust safety steps to inactivate a non-enveloped

or enveloped virus, respectively. They define a robust safety step as one capable of inactivating

4 log of virus. In addition, the WHO recognize that UV-C can inactivate a wide range of

organisms including viruses. Therefore, the data in the present work demonstrate that both,

the UV-C irradiation at 3000 J/L and the spray drying process achieving 80˚C throughout its

substance, are two independent safety steps that meets the WHO standard for a recognition of

a robust processing step. Spray drying and UV-C inactivate viruses by different mechanisms

and the potential synergistic effect of the combined methods may result to a higher degree of

inactivation, but this has not been tested.

In conclusion, this study demonstrated that spray-drying as an independent treatment is

very effective at inactivating both CSFV and ASFV, achieving a reduction of 4 Log10 TCID50/

mL. Furthermore, UV-C treatment of liquid porcine plasma can inactivate more than 4 Log10

TCID50/mL of ASFV at 3000 J/L. Thus, incorporating UV-C technology with the traditional

SDP manufacturing process can add a redundant biosafety step to further enhance product

safety.
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Project administration: Carmen Rodrı́guez, Joan Pujols, Javier Polo.

Resources: Elena Blázquez, Javier Polo.

Software: Elena Blázquez, Joan Pujols.

PLOS ONE Inactivation of CSFV and ASFV in porcine plasma

PLOS ONE | https://doi.org/10.1371/journal.pone.0249935 April 28, 2021 8 / 11

https://doi.org/10.1371/journal.pone.0249935
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