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Abstract

To meet the food and feed demands of the growing population, global food production needs to double by 2050. Climate change-
induced challenges to food crops, especially soil salinization, remain a major threat to food production. We hypothesize that endo-
phytic fungi isolated from salt-adapted host plants can confer salinity stress tolerance to salt-sensitive crops. Therefore, we isolated
fungal endophytes from shrubs along the shores of saline alkaline Lake Magadi and evaluated their ability to induce salinity stress
tolerance in tomato seeds and seedlings. Of 60 endophytic fungal isolates, 95% and 5% were from Ascomycetes and Basidiomycetes phyla,
respectively. The highest number of isolates (48.3%) were from the roots. Amylase, protease and cellulase were produced by 25, 30
and 27 isolates, respectively; and 32 isolates solubilized phosphate. Only eight isolates grew at 1.5 M NaCl. Four fungal endophytes
(Cephalotrichum cylindricum, Fusarium equiseti, Fusarium falciforme and Aspergilus puniceus) were tested under greenhouse conditions for
their ability to induce salinity tolerance in tomato seedlings. All four endophytes successfully colonized tomato seedlings and grew in
1.5 M NaCl. The germination of endophyte-inoculated seeds was enhanced by 23%, whereas seedlings showed increased chlorophyll
and biomass content and decreased hydrogen peroxide content under salinity stress, compared with controls. The results suggest

that the the four isolates can potentially be used to mitigate salinity stress in tomato plants in salt-affected soils.
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Introduction

Soil salinity is a major abiotic stress that affects individual plant
growth and development and influences the diversity of plant
species in affected soils, except those in salt-tolerant plant com-
munities (Bandel et al. 2022). Soil salinity is caused either by nat-
ural processes, such as rock weathering and high evapotranspi-
ration, or man-made processes such as irrigation using brackish
water in farmlands (Jones et al. 2012) and continuous growth of
shallow-rooted crops that raise the water table. The effects of
salinity on plants are exacerbated by climate change that can se-
riously change water cycles through changing patterns of rainfall
and prolonged droughts (FAO 2021).

Lands available for agriculture have declined by 22% over the
last decade, while land underirrigation has almost doubled within
the same period (FAO 2021). However, the expanded irrigated
lands face challenges as more than one-third of the global irri-
gated land is already degraded by induced salinity, while most sta-
ple crops consumed by humans are sensitive to moderately toler-
ant to salt (Cheeseman 2015). The Food and Agriculture Organiza-
tion has estimated the need to increase agricultural productivity
by 50% by 2050 to meet the demands of the growing population
(FAO 2021).

Irrigated agriculture continues to play an important role in
meeting the food needs of the world’s population. Soil salinization,

particularly resulting from irrigation and extreme weather condi-
tions, is expected to increase and thereby continue to threaten
food security in the future, especially in lands with arid and semi-
arid climates, where there is a rising demand for irrigation water
to support agricultural production (Tnay 2019).

Efforts have been put in place in the last three decades to un-
derstand the mechanisms of salt stress tolerance in plants, es-
pecially in halophytes (Zhao et al. 2020). Several physiological,
metabolic and molecular mechanisms are used by plants to mit-
igate salinity stress, and these can be used to engineer crops with
enhanced salinity tolerance. However, crop engineering for salin-
ity tolerance has been slow, expensive and challenging due to the
many knowledge gaps regarding plant responses to salinity stress,
especially at the organelle, transcriptional and expression levels
(Zhao et al. 2020).

In addition to efforts to understand the mechanisms of plant
salinity stress tolerance, dedicated and rigorous efforts have been
made to mine the plant microbiome communities and study their
interactions. Various studies on plant-microbe interactions have
revealed the functions of endophytes in different plants growing
in different environments, including saline, neutral, geothermal,
desert and marine ecosystems (Andreote et al. 2014, Berg et al.
2014, Zhou et al. 2015, Berg et al. 2016, Kaul et al. 2016, Rho et al.
2018, Verma et al. 2021). These microorganisms, especially fungi,
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form symbiotic relationships that confer fitness benefits to plants,
such as biotic and abiotic stress tolerance and improved nutrient
acquisition (Rodriguez and Redman 2008). However, the ecological
roles of endophytic fungi are not fully understood (Gongalves et
al. 2021).

Some benefits conferred by microorganisms are hypothesized
to be related to habitat adaptation (Rodriguez and Redman 2008).
For example, inoculation of an Ampelomyces sp. isolated from a
plant growing under drought and poor nutrient conditions into
tomato seedlings and grown for 8 days without water resulted
in plant survival in the absence of water. Similarly, inoculation
of Penicillium chrysogenum isolated from a plant growing in a
salt-stressed environment into tomato seedlings and exposed to
300 mM NacCl resulted in plants that were healthier than uninoc-
ulated plants throughout the salinity exposure period (Morsy et
al. 2020).

Therefore, collecting novel fungal endophytes from plants
growing in extreme environments is of great biotechnological
value for economically important crop plants because of the
changing climatic conditions, especially in arid and semiarid re-
glons.

Endophytes from extreme environments can confer tolerance
to biotic and abiotic stresses on crop plants (Redman et al. 2011,
Morsy et al. 2020, Mutungi et al. 2021, Moghaddam et al. 2022).
Kenya is home to the East African Rift Valley System, which har-
bors several saline alkaline lakes (soda lakes) that are charac-
terized by saline and alkaline conditions (Schagerl and Renaut
2016). Studies on fungal populations in these unique ecosystems
in Kenya are sparse, and the few that have been conducted have
mainly focused on the diversity of fungi in soil sediments and
water (Orwa et al. 2020). Therefore, the current study focused
on the isolation of fungal endophytes from five shrubs collected
along the shores of the soda Lake Magadi in Kenya. The iso-
lated fungal endophytes were assessed for their potential to en-
hance tomato seed germination and improve tomato growth un-
der salinity stress in a greenhouse.

Materials and methods
Study area and sample collection

The plant samples used in this study were collected from Lake
Magadi, an internally drained saline alkaline lake (Deocampo et
al. 2022) in the southern part of the Kenyan rift valley (2°S and
36°E), with an elevation of ~600 m. The lake is the most hy-
persaline of the East African Rift Valley lakes that were formed
through tectonic and volcanic activities. It is situated in a hydro-
logically closed basin and is characterized by a thick trona deposit
(Schagerl and Renault 2016). The region is semiarid with temper-
atures ranging from 18 to 35°C. Shrubs growing along the shores
of Lake Magadi were collected in March 2016 and GPS coordinates
recorded. One set of plant samples was kept in plastic resealable
bags in a cool box. Fungal endophytes were isolated from these
plants within 48 h of sample collection. A second set of plants
was wrapped in newspapers, labeled and pressed in pieces of car-
ton. These plants were submitted for identification by a botanist
at the National Museums of Kenya.

Isolation of endophytic fungi

Isolation of endophytic fungi followed the procedure described
by Fouda et al. (2015), with some modifications. Briefly, the plant
samples were separated into roots, stems and leaves and washed
in running tap water to remove adhering soil and dust particles.

Plants were then surface sterilized using 3% sodium hypochlorite
for 3 min followed by 70% ethanol for 1 min, followed by several
rinses of sterile distilled water. The last rinse water was plated
out to confirm the sterilization process. Sterilized sections were
asceptically cut into small pieces ~1-cm long with a sterile surgi-
cal blade and placed onto sterile filter paper. The sections were
air dried under a clean bench for ~5 min and then they were
placed onto freshly prepared Potato Dextrose Agar (PDA) medium
(HiMedia, India) containing 50 pg/ml streptomycin sulfate and
0.25 M NacCl. The plates with plant pieces were then incubated
at 28 + 2°C for 7-20 days with regular monitoring. Emerging fun-
gal colonies were isolated onto fresh PDA media and incubated
under the same conditions.

Preservation of fungal cultures

Fungal cultures were preserved via agar slants and fungal spores
for short- and long-term preservation, respectively. Short-term
preservation followed the procedure described by Paul et al.
(2015), with slight modifications. Slant cultures of pure isolates
grown in PDA and incubated at 28°C for 4 days were overlaid
with 15% v/v sterile glycerol and stored at 4°C. Fungal spores for
long-term preservation were collected from cultures grown in PDA
for 2 weeks and then harvested in sterile 15% dimethyl sulfoxide
(DMSO). One milliliter of the spore-DMSO mixture was transferred
to a —80°C freezer, where the temperature was decreased slowly
and at a controlled rate from room temperature to —80°C (Dah-
men et al. 1983). The percentage of spore germination was calcu-
lated for each fungal culture before preservation, and only those
with more than 90% spore germination were preserved.

Characterization of fungal endophytes

Sixty fungal endophytes were grouped into 18 groups based on
morphological characteristics of the growing cultures as displayed
on PDA. These characteristics included growth rate, colony mor-
phology and pigmentation. Representative isolates from each
morphological group were further characterized.

DNA extraction, amplification and sequence
analysis

Fungal DNA was extracted using the manual Cetyltrimethylam-
monium bromide (CTAB) extraction method, as described by
Umesha et al. (2016). Pure fungal cultures were inoculated in PDA
and incubated for 3 to 5 days. Growing mycelia were harvested
using a sterile surgical blade and transferred into a sterile 1.5-ml
Eppendorf microcentrifuge tube. The mycelia were ground with
liquid nitrogen using a micropestle. Lysis buffer (800 pl of 0.1 M
Tris-HCL, 50 mM EDTA, 2.5 M NaCl, 3% SDS and 3.5% CTAB) was
added to the ground mycelia and the mixture was vortexed and
incubated in a water bath at 65°C for 1 h with occasional shaking.
The contents were centrifuged for 10 min at room temperature
(25-27°C). An equal volume of phenol-chloroform-isoamyl alcohol
(25:24:1) was added to 500 pl of the supernatant and mixed well.
The mixture was centrifuged 10 000 x g for 10 min at room tem-
perature, then the supernatant was carefully collected in a fresh
tube and mixed with an equal volume of chloroform-isoamyl al-
cohol (24:1) and 30 pl of sodium acetate. The mixture was then
centrifuged. An equal volume of ice-cold isopropanol was added,
and the sample was kept at —20°C for 2 h. The DNA was pel-
leted by centrifugation for 15 min at 13 000 x g at room tem-
perature. Pelleted DNA was washed with 800 ul of 70% ethanol
and air dried before dissolving in TE buffer (10 mM Tris-HCl PH
8, 1 mM EDTA). The purity of the DNA was checked by 0.8%



agarose gel electrophoresis. The internal transcribed region (ITS1,
5.8S ITS2) of the ribosomal DNA was amplified by PCR using the
primer set ITS1 (5-TCCGTAGGTGAACCTGCGG-3') and ITS4 (5'-
TCCTCCGCTTATTGATGATGC-3') (White et al. 1990). PCR was per-
formed in a 50-pl reaction volume under the following conditions:
95°C for 5 min for the initial denaturation and enzyme activation
followed by 35 cycles of denaturation at 95°C for 30 s, annealing
at 55°C for 1 min, elongation at 72°C for 1 min, then a final elonga-
tion at 72°C for 10 min. The PCR product was visualized under UV
light on a 1.5% agarose gel stained with ethidium bromide. Thirty
microliters of amplicons were submitted to macrogen-Europe for
bidirectional sequencing.

Sequence assembly and phylogenetic analysis

The resulting sequences were trimmed and edited using Chromas
version 2.6.6 (www.technelysium.com.au/wp/chromas). Chro-
matogram viewing and editing, sequence assembly, ambiguity
correction and double-pick mutation detection were performed
using DNABaser version 4 (www. DNABaser.com). The resulting
consensus sequences were matched to highly similar sequences
in the National Institute for Biotechnology Information (NCBI)
database using the Basic Local Alignment Search Tool (BLASTn)
to infer evolutionary relationships. The MEGA11 (Molecular Evo-
lutionary Genetic Analysis) program was used for phylogenetic
analysis (Tamura et al. 2021). Sequences were aligned according
to inferred evolutionary history using the maximum likelihood
method with a bootstrap consensus of 1000 replicates. Evolution-
ary distance was inferred using the Tamura—Nei method (Tamura
and Nei 1993), which considers the number of base substitutions
per site and eliminates all positions with gaps and missing data.

Determination of the enzyme activities
Amylase activity

Amylase production of the isolates was screened using the plate
culture technique as described by Sunitha et al. (2012), with slight
modifications. Glucose yeast extract peptone agar (1 g/l glucose,
0.1 g/l yeast extract, 0.5 g/l peptone, 16 g/l agar) supplemented
with 2% soluble starch and 50 pg/ml streptomycin was used to
screen the isolates. First, an agar plug from a sporulating fungal
plate was placed at the center of a glucose yeast extract peptone
agar plate, and then the plate was incubated at 28°C for 3 days.
Amylase production was detected by flooding the plates with Lu-
gol’s iodine solution (1 g of iodine crystals and 2 g of potassium
iodide dissolved in 100 ml of distilled water). A clear zone around
a fungal colony indicates amylase production.

Cellulase activity

Celluase production was tested by growing the isolates on yeast
extract peptone agar supplemented with 0.5% carboxymethyl cel-
lulose, as described by Carrasco et al. (2016). An agar plug from a
sporulating fungal plate was placed at the center of a freshly pre-
pared plate containing yeast extract peptone agar. The plate was
incubated for 3 days at 28°C, and then it was flooded with 0.2%
Congo red and destained with 1 M NaCl. The development of a
yellow ring around a fungal colony indicated the production of
cellulases.

Protease activity

Protease production was tested on fungal cultures inoculated on
yeast extract peptone agar supplemented with 0.4% gelatin at
pH 6 (Sharma et al. 2015). The plate was incubated at 28°C for
3 days and then flooded with saturated aqgueous ammonium sul-
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fate, which was prepared by dissolving 541.8 g in one liter of dis-
tilled water (4.1 M) at 25°C. Clear zones around the colonies indi-
cated protease activity.

Phosphate solubilization

The ability of pure cultures of fungi to solubilize phosphate was
tested in Pikovskaya agar (Hi Media, India) supplemented with
0.3% tricalcium phosphate. The sterilized medium was poured
into 9-mm plastic Petri dishes and left to cool. Fungal mycelial
plugs from actively growing cultures were placed onto the agar
medium and incubated for 5-8 days. Clear zones around the fun-
gal colonies indicate phosphate solubilization (Bilal et al. 2018).

Fungal growth at increasing sodium chloride
concentrations

The ability of fungal isolates to grow at increasing concentra-
tions of sodium chloride was tested by growing them in plates
of fresh PDA medium supplemented with 0 mM, 0.5 mM, 1 M
and 1.5 M sodium chloride. An agar plug from a sporulating plate
was placed at the center of plates containing the different sodium
chloride concentrations. Three replicate plates per NaCl concen-
tration were incubated for 14 days, and the radial growth of each
culture was measured.

Seed inoculation and assessment of endophytic
competence of the isolates

Fungal cultures

Four fungal isolates were selected for further in vitro experiments.
Seeds were inoculated following the procedure described by Jaber
(2018). Fungal cultures were grown on PDA supplemented with
50 pg/ml streptomycin sulfate and incubated until sporulation
(18-20 days). Each sporulating fungal culture was flooded with
~3 ml of sterile distilled water containing 1% Tween 80, and the
conidia were harvested by gently scraping the surface using a ster-
ile glass rod. The conidial suspension was then gently vortexed,
and the conidial concentration was determined using a Neubauer
hemocytometer (Electron Microscopy Sciences). Conidial viability
was tested by plating 100 pl of spore suspension on a fresh PDA
plate. A sterile coverslip was placed on top of the media and the
plate was incubated for 24 h. Conidia with germ tubes longer than
the length of the conidia were considered germinated. Only sus-
pensions with more than 90% spore germination were considered
for the experiment (Jaber 2018). Twwo concentrations of 10° and 108
conidia/ml were used to inoculate seeds to determine the endo-
phytic competence of the isolates in tomato seedlings.

Determination of the endophytic competence of
fungal isolates

Seed inoculation

Solanum lycopersicum variety Cal J seeds were surface sterilized by
washing them first in tap water followed by a 2-min wash in 3%
sodium hypochlorite, followed by 2 min in 70% ethanol, then three
rinses in sterile distilled water. The final rinse water was plated on
PDA to confirm the effectiveness of surface sterilization (Muvea et
al. 2014). Sterilized seeds were then air dried for 30 min on sterile
filter paper and soaked in either 10° or 10® conidia/ml of each iso-
late overnight. Control seeds were soaked in sterile distilled water
containing 1% Tween 80. Inoculated seeds were air dried for 30
min before being transferred to plastic pots containing sterile ver-
miculite moistened with half-strength Hoagland's solution. Three
seeds were sown in each pot, and the pots were transferred to a
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growth chambersetat27 +2°Cata 12 h: 12 hlight-dark cycle. The
pots were arranged in a completely randomized block design with
four replicates per treatment. Sterilized half-strength Hoagland’s
solution was added as necessary.

Assessment of endophyte colonization

Twenty-one days after germination, the seedlings were gently up-
rooted from the pots. Seedlings were washed in running tap water
to remove any vermiculite adhering to the roots, and then each
seedling was divided into roots, stems and leaves. Each of these
plant parts was surface sterilized as described above. Six pieces
of each plant part per conidial concentration per seedling were
cut into ~1-cm-long pieces using a sterile surgical blade under a
laminar flow hood. The pieces were plated onto PDA plates sup-
plemented with 50 pg/ml streptomyecin sulfate and incubated in
the dark at 25 + 2°C for 14 days. The growing fungal cultures were
stained with lactophenol cotton blue stain. The morphological
characteristics of the seedling-derived cultures were compared
with those of the original isolates (Muvea et al. 2014).

Effect of endophytic fungi on germination of
tomato seeds under salinity stress

The conidial concentration of 10% conidia/ml gave a higher endo-
phyte recovery rate than 10° conia/ml and was therefore chosen
for use in greenhouse experiments. Procedures for seed steriliza-
tion and colonization were performed as described above. Colo-
nized seeds were transferred to 9-mm diameter Petri dishes con-
taining sterile water agar supplemented with 0, 50, 75, 100 and
125 mM sodium chloride. The seeds were incubated in the dark
for up to 10 days while checking daily for germination. Two plates
were set per isolate per salinity concentration and non-inoculated
seeds served as controls.

Effect of endophytic fungi on tomato seedlings
under salinity stress in a greenhouse

Solanum lycopersicum variety Cal J seeds were surface sterilized as
described above and soaked overnight in 10® conidia/ml of each
fungal isolate. Inoculated seeds were air dried on sterile filter pa-
per under sterile conditions for 2 h before transferring them to 1%
sterile water agar plates to avoid additional handling of seedlings
in the course of the experiment. The seeds were germinated by
incubating them in the dark at 25 & 2°C for 4 days, and then the
germinated seeds were transferred to plastic pots (15 x 17 cm)
containing a 5:1 mixture of sterilized forest soil and cattle ma-
nure, respectively. Before potting, the soil and cattle manure mix-
ture was sterilized by autoclaving for 40 min at 121°C, left to cool
overnight, then autoclaved again. Approximately 1 kg of sterile
soil was distributed in each pot, and two germinated seedlings
per isolate were transplanted ~2-cm deep into the soil. Uninocu-
lated seedlings grown under salinity stress and no salinity stress
served as controls. The seedlings were grown in a greenhouse and
maintained under ambient conditions at 25-28°C, arranged in a
completely randomized design. The seedlings were watered with
sterile tap water as required for 30 days with no additional fertil-
ization, followed by watering with sterile tap water supplemented
with 125 mM NaCl for 28 days. The following six treatments at
20 seedlings per treatment were compared: (i) FO4 + 125 mM
NaCl; (ii) FO5 + 125 mM NaCl; (iii) F18 + 125 mM NaCl; (iv) F21
+ 125 mM NacCl; (v) non-inoculated seedlings (C + 125 mM NaCl);
and (vi) non-inoculated (C with no NaCl). After the treatments,
the seedlings were flooded with tap water overnight, uprooted and
washed under running tap water to remove any adhering soil par-

ticles. The seedlings were then wrapped in a paper towel to re-
move excess water. Ten seedlings (one from each replicate) were
selected per treatment for measurements of root and shoot wet
and dry weights. Dry weight was measured by drying the seedlings
in an oven at 68°C for 48 h (Balliu et al. 2015).

Chlorophyll and carotenoid content were measured using the
procedure described by Lichtenthaler and Buschmann (2001).
Briefly, 1.5 g of fresh leaves were ground in the dark in 100% ace-
tone and centrifuged at 10 000 x g for 10 min. The supernatant
was collected for absorbance measurements using a microplate
spectrophotometer (Versamax). The quantities of the pigments
were calculated as follows:

CthI’OphyH A: 12~25A662_2~79A647
CthI’OphyH B: 21-50A64775<1OA662
Total chlorophyll: 20.2A647-8.02A¢6,

where Agg, 1s the absorbance of the solution at 662 nm and Agsy
is the absorbance of the solution at 647 nm.

Hydrogen peroxide levels in the leaves were measured using
the method of Junglee et al. (2014), with slight modifications.
Leaves were harvested from tomato seedlings and 500 mg were
ground in liquid nitrogen using a mortar and pestle. Five milliliters
of 1% TCA (w/v) was added to the ground powder and mixed well.
The homogenate was then centrifuged at 12 000 x g for 15 min at
4°C. The supernatant was mixed with 0.5 ml of 10 mM potassium
phosphate buffer (pH 7) and 1 ml of 1 M potassium iodide. The
absorbance of the mixture was measured at 390 nm. The mixture
without the supernatant served as the control. A standard curve
of hydrogen peroxide was developed by diluting 57 pl of 30% hy-
drogen peroxide to 100 ul with distilled water. Additional 10 x dilu-
tions were prepared and the absorbances of the various dilutions
and measured at 390 nm.

Statistical analysis

The salinity tolerance of the isolates and seed germination rates
were analyzed using one-way ANOVA (P < 0.05) and means com-
pared using the Student’s Newman-Keuls test. The effects of the
endophytes on seedling biomass, chlorophyll content and hy-
drogen peroxide production were determined using the Kruskal-
Wallis chi-square test. Post hoc analysis was performed using
Dunn’s test. Data on endophyte colonization and recovery rates
were fitted to a generalized linear model with a Poisson distribu-
tion. The analysis was performed using R statistical software ver-
sion 2.15.4.

Results

Isolation and characterization of fungal
endophytes

Five different shrubs were collected from the shores of Lake Ma-
gadi and used for the isolation of endophytic fungi. All sampled
plants harbored fungal endophytes. Sixty fungal isolates were pu-
rified from the leaves, stems and roots of collected shrubs (Ta-
ble 1). Grouping of the isolates based on the morphological char-
acteristics of their growth on PDA resulted in 18 different groups.
Indigofera spinosa Forssk generated the highest number of isolates,
whereas Commicarpus grandifloras and Lactuca inermis Forssk gen-
erated the least number of isolates. Most of the fungal isolates
were isolated from roots (48.3%), whereas stems and leaves pro-
duced 30% and 21.7%, respectively. Of the 60 isolates, 25, 30 and
27 were positive for amylase, protease and cellulase production,
respectively. Thirty-two isolates solubilized phosphate (Table 1).
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Figure 1. Unrooted phylogenetic tree of fungal endophytes depicting the evolutionary history of the isolates using the maximum likelihood method
with 1000 bootstrap replicates and complete elimination of gaps and missing data. Phylogenetic analysis was performed in MEGA 11. The percentage
of trees in which the associated taxa clustered together is shown below the branches.

Four isolates were selected for further experiments on the ba-
sis of the rate of growth, sporulation and production of exoen-
zymes (data not provided). Two of these isolates, Cephalotrichum
cylindricum (FO4) and Fusarium equiseti (FO5), were from the stem
of Commicarpus grandifloras; and the other two, Fusarium falciforme
(F18) and Aspergilus puniceus (F21), were from the roots of Indigofera
spinosa Forssk (Fig. 1). All four isolates were able to grow on all
tested NaCl concentrations; they were all positive for the produc-
tion of amylase, cellulase and protease enzymes; and they all sol-
ubilized phosphate (Table 1).

Molecular identification

DNA was extracted from a representative of each of the 18 mor-
phological groups, and the ITS rRNA gene of each was sequenced
for species identification. Analysis of the resulting concensus se-
quences and comparison with homologous sequences in the NCBI

genebank database revealed that the genus Fusarium was iso-
lated at the highest frequency and was represented by eight mor-
phogroups; and these isolates represent seven different Fusar-
ium species (F equiseti, F. pseudoathophilum, F. longifundum, F. falci-
forme, F. clamidosporum, F. solani and F. ipomea). These morphogroups
represented 28 of the 60 isolates. Species within the genus As-
pergillus were the second most frequently isolated (A. puniceus and
A. terreus), and these were represented by four morphogroups, to
which 17 of the 60 isolates belonged. One species within the genus
Cephalotricum (C. cylindricum) was in two morphogroups represent-
ing seven of the 60 isolates. The other identified genera (Schizo-
phyllum, Saracladium, Daratomyces and Fungal species) were each
represented by one morphogroup (Fig. 1). Ninety-five per cent of
theisolates belonged to phylum Ascomycota and the remaining be-
longed to phylum Basidiomycota, both of which are in the subking-
dom Dikarya. Isolates (three of the 60) classified under the phylum
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Figure 2. Fungal endophyte recovery rate from leaves, stems and roots of tomato seedlings inoculated via the seed-soaking method. (A) and (B) show
endophyte recovery rates using conidial concentrations of 106 and 108 Conidia/ml, respectively. Bars represent standard error of the mean (SEM).

Basidiomycota all belonged to one morphogroup and to the genus
Schizophyllum. The rest of the isolates belonged to the phylum
Ascomycota. BLAST search results generated similarity matches
ranging from 97% to 100% identity with known species. The dis-
tribution of the genus in isolation did not show any tissue or plant
specificity.

Endophytic competence of the fungal isolates

Two different concentrations (10° and 108 conidia/ml) of the iso-
lates were tested for their endophytic competence in tomato
seedlings grown on sterile vermiculite. The two conidial concen-
trations were recovered at significantly different rates (P = 0.0018).
However, both concentrations of the four isolates were able to col-
onize all the tomato seedling parts (leaves, stems and roots) within
3 weeks (Fig. 2). We detected a significant difference in endophytic
performance (P < 0.001). Specifically, isolate F21 was re-isolated
at the highest rate at both concentrations. Although the four iso-
lates were derived from the stem and root, we found no significant
difference in fungal colonization for the different plant parts (P =
0.2492). Noisolates were recovered from the control seedlings that
were mock inoculated.

Effect of salinity on fungal endophytes and seed
germination

Salinity significantly affected the radial growth of the isolates
(Fis30 = 169.2, P < 0.001). The isolates significantly differed in
their levels of salinity tolerance across the various sodium chlo-
ride concentrations tested (P < 0.0001) (Fig. 3A), with isolate F21

showing the largest radial growth across all concentrations. For
example, at 1.5 M NaCl, the mean radial growth values of isolates
F18 and F21 were 1.8 £ 0.1 and 2.7 + 0.2 cm, respectively. Increas-
ing concentrations of sodium chloride significantly reduced the
germination of seeds (Fz495 = 80.53, P < 0.0001) (Fig. 3B). In the
controls, NaCl concentrations of 75 mM and above resulted in no
germination. Inoculation of seeds with fungal endophytes signif-
icantly affected germination under salinity stress (P < 0.0001). In
the presence of endophytes, seeds germinated at 100 mM Nacl,
with isolate F21 showing the highest number of germinated seeds
at all NaCl concentrations (Fig. 3B).

Effect of fungal endophytes on tomato seedlings
under NaCl stress

The effect of fungal endophytes on tomato was tested in seedlings
grown in a greenhouse with sterile soil and a fungal spore concen-
tration of 108 conidia/ml. Inoculation of tomato seedlings with the
fungal isolates significantly affected both wet and dry weights (x?
=21.193,df =5, P = 0.00074) of the seedlings compared with those
of the controls with salt stress. Seed inoculation with isolate FO4
resulted in the highest increases in both wet and dry weights com-
pared with those of the controls with salt stress (Fig. 4). Growth of
the seedlings symbiotically with fungal endophytes significantly
(P < 0.01) increased the wet and dry weights of both roots and
shoots compared with those of the control plants deprived of the
endophytes and exposed to salinity stress (Fig. 4). Isolates FO5 and
F18 had similar impacts on both root and shoot fresh weights. On
average, the fresh weights of the roots and shoots of inoculated



Mean radial growth (£SE)

oM 1M 1.2M 1.5M
NaCl concentration

Mutungietal. | 11

(B)

20 4

Mean number of seed germinated (£SE)

Ll T T
omM 50 mM 75mM
NaCl concentration

100mM  125mM

Figure 3. (A) Mean (+SE) radial growth of endophytes on PDA plates (n = 3) supplemented with different concentrations of sodium chloride. (B) Effect
of fungal endophytes on seed germination following seed soaking with 108 conidia/ml and incubation on PDA plates supplemented with 0 to 125 mM

NaCl concentrations (n = 30).

seedlings were 34% and 56% higher, respectively, than those of the
control plants.

Except for isolate F18, the symbiotic association of the iso-
lates with tomato seedlings positively affected the biosynthesis
of photosynthetic pigments (Fig. 5). Specifically, inoculation of the
seedlings with fungal endophytes enhanced the content of chloro-
phyll a (P < 0.0001), chlorophyll b (P < 0.001) and total chloro-
phyll (P < 0.0001) compared with the controls. Plants inoculated
with isolates FO5 and F21 showed a higher percentage increase of
chlorophyll b than chlorophyll a under salinity stress.

The endophytes significantly (x* = 35.364, df = 5, P = 0.0001)
reduced the quantity of hydrogen peroxide produced by the
seedlings under salinity stress compared with that of the controls
(Fig. 6). Seedlings inoculated with isolate F18 exhibited the lowest
tolerance to salinity stress in terms of hydrogen peroxide produc-
tion, whereas those inoculated with isolate FO4 showed the best
performance of the four isolates in reducing hydrogen peroxide.
Isolates FO5 and F21 did not differ significantly (P < 0.05) in their
performance. Salinity increased the amount of hydrogen peroxide
produced in the uninoculated control plants.

Discussion

Lake Magadi is an alkaline saline lake situated in a semiarid
region in the southern part of the Kenyan rift valley. It is fed
by ephemeral streams and has no outlet. Human activities, cli-
mate, geology, altitude and soil type shape and control the vege-
tation, soil macrocommunities and microcommunities and habi-
tats along the Magadi Natron basin (Muiruri et al. 2021). The re-
gion’s climate is changing from dry to even greater aridity, which,
coupled with high evapotranspiration rates, creates high pH and
alkalinity (Owen et al. 2019). These changes in environmental con-
ditions have shaped the plant and microbial communities along
the lake ecosystem to those more adapted to saline and alkaline
conditions. This phenomenon has been noted by Macia-Vicente
et al. (2012), who reported a variable shift in endophytic and rhi-
zosphere fungal communities along a spatially short salinity gra-
dient in which halophytes harbor an endophytic assemblage of
saline-adapted fungi.

Habitat-adapted microorganisms have been used to enable
plants to adapt to biotic and abiotic stresses, enhance growth and

increase reproductive success; some plants are unable to survive
in their habitats without fungal symbiosis (Redman et al. 2002,
Bouzouina et al. 2021, Moghaddam et al. 2022). Our results are
consistent with these findings. Specifically, we showed that se-
lected endophytic isolates can tolerate and grow in salinity con-
centrations of up to 1.5 M NaCl. Moreover, our results complement
the growing body of knowledge on the importance of microorgan-
isms symbiotic to plants in stress environments and their appli-
cations in crop plants. Isolation and utilization of these habitat-
adapted microorganisms in agricultural systems offer an impor-
tant, cheaper and more reliable solution than plant breeding, es-
pecially in saline soils.

We were able to isolate representatives of only two fungal
phyla, Ascomycetes and Basidiomycetes, with a bias toward the for-
mer. Fungal endophyte communities are shaped by various fac-
tors, including host genotype, nutrient status around the plant
and other environmental factors, although the plant is largely
responsible for shaping the association (Bulgarelli et al. 2012,
Wehner et al. 2014, Cheng et al. 2019). Certain fungal phyla have
been more frequently found as endophytes and in the soil rhi-
zosphere than others, especially in abiotically stressed environ-
ments (Macia-Vicente et al. 2012, Hamzah et al. 2018, Zhou et al.
2018, Khalil et al. 2021, Sahoo et al. 2021). The ubiquity of As-
comycetes in soil can probably explain their abundance as endo-
phytes.

In the current study, 46% (28) of the isolates were classified
as Fusarium, based on the DNA internal transcribed spacer gene
region. Fusarium species include both pathogenic and beneficial
plant endophytes, and they are ubiquitous and economically im-
portant fungi that can cause diseases in plants. They can also pro-
duce mycotoxins that are passed on to animals when they feed on
contaminated plants; and they can act as pathogens to humans (ji
et al. 2019, Srinivas et al. 2019). However, Fusarium endophytes in
plants have been shown to lose their pathogenicity under stress
conditions, and thus they become beneficial to the plant by in-
ducing resistance to stress and enhancing growth (Pappas et al.
2018, Ogbe et al. 2023). This characteristic can be a key reason
why plants symbiotically associate with Fusarium species.

Aspergillus was the second most frequently isolated genus of
fungal endophytes in our study (17 isolates classified as either A.
terreus or A. puniceus). The genus Aspergillus is a frequently isolated
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Figure 4. Violin plot representing the effect of different fungal endophytes on seedling growth in terms of root fresh weight (A), root dry weight (B),
shoot fresh weight (C) and shoot dry weight (D) after exposure of seedlings to salinity stress for 21 days. CS, uninoculated control seedlings exposed to
salinity stress. C, uninoculated seedlings without exposure to salinity stress. Treatments with different letters are significantly different from each

other (ANOVA test followed by Student Newman-Keuls test, P = 0.05).

endophyte, as it is capable of growing in vital nutrient-depleted
environments, including within plants growing in extreme envi-
ronments (Kim et al. 2014, Sahoo et al. 2021). They have also been
found to produce highly diverse secondary metabolites with vari-
ous potential industrial applications (El-Hawary et al. 2020). They
have been implicated in the production of endogenous plant hor-
mones, amino acids and other soluble organic acids that help the
plant mitigate stress and enhance growth (Wagas et al. 2015).
Establishing endophytism in non-host plants is especially im-
portant for beneficial endophytes, because they offer the possi-
bility of conferring similar benefits to crop plants. In this study,
we tested the ability of four selected endophytic fungi to com-

petently colonize tomato plants growing in sterile vermiculite by
seed inoculation using two different fungal spore concentrations.
All isolates colonized tomato at both concentrations but differed
in individual fungal performance and plant part. Similar results
were obtained by Akutse et al. (2013), as well as Jaber and Enkerli
(2016), who reported differences in colonization rates for differ-
ent plant parts. Other studies have also inoculated seeds with a
conidial concentration of 10° conidia/ml, resulting in successful
post-inoculation recovery of the endophytes from all plant parts
and effective performance on the test variable (Mutune et al. 2016,
Jaber 2018). Several factors contribute to successful endophyte es-
tablishment in non-host plants, including the concentration of in-
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oculum used, medium used (sterile or non-sterile) and method of
inoculation (Bamisile et al. 2018). Using seed soaking and sterile
vermiculite in our study, the concentration of conidia used corre-
lated with the recovery rates, which is consistent with the results
of other studies (Ownley et al. 2008).

Salinity stress in plants can be a lethal factor that limits the
normal functioning of plants and eventually affects growth and
productivity. At elevated salinity levels, all growth stages (seed
germination, seedling, vegetative growth and maturity), as well as
the quality of the seeds/fruits, are negatively affected (Jafarzadeh
and Aliasgharzad 2007, Yao et al. 2022). Germination and seedling
establishment are the most crucial stages in the plant life cycle.
High salinity stress negatively affects the germination of seeds as
it creates low water potential that disrupts cellular homeostasis
and increases the production of reactive oxygen species (ROS), re-
sulting in oxidative stress that tends to prolong the seed germina-
tion period and lower the germination rate (Zhang and Mu 2009,
Dehnavi et al. 2020).

Under salinity stress conditions, fungal endophytes produce os-
molytes and other stress response mechanisms that ameliorate
the effects of salinity (Niu et al. 2022). We speculate that such
mechanisms were responsible for the enhanced germination of
inoculated seeds growing at sodium chloride concentrations of
50, 75 and 100 mM. Although few studies have focused on the use
of endophytes to improve seed germination under salinity stress,
several studies have indicated that endophytes can be beneficial
to seedling growth under salinity stress (Jogawat et al. 2016, Ku-
mar and Verma 2018, Molina-Montenegro et al. 2020, Verma et
al. 2021). More studies on these positive effects of endophytes on
seed germination, at the molecular and physiological levels, are
essential to aid in the development of strategies to mitigate the
impacts of climate change on food crops.

Salinity stress inhibits plant growth and development by de-
creasing chlorophyll production and accumulating ROS. The de-
velopment of osmotic stress resulting from the accumulation
of Na™ in the cytosol under saline conditions leads to stomatal
closure and the suppression of enzymes involved in chlorophyll
synthesis, which reduces photosynthesis and nutrient absorp-
tion (Zhao et al. 2020). Tomato is moderately sensitive to salinity;
thus, under highly saline conditions, the amount of chlorophyll
in leaves decreases, eventually leading to decreases in fruit yield,
weight and quality (Ebrahim and Saleem 2017). In our experiment,
we used a commercial cultivar, Cal J variety, locally known as Ka-
mongo, which is popular in Kenya due to its high market value
and long shelf life (Geoffrey et al. 2014). This variety was neg-
atively affected at 125 mM NaCl, which markedly reduced leaf
chlorophyll content and increased levels of hydrogen peroxide
compared with those of control seedlings without NaCl. This re-
duction in chlorophyll could be associated with the plants’ inabil-
ity to manage ion toxicity caused by increased Na* and Cl~ ions
in the plant tissues.(Zhang and Mu 2009). Hydrogen peroxide is a
ROS and a signaling molecule generated by plants in response to
stress conditions (Zhu et al. 2016). Elevated levels of hydrogen per-
oxide damage cellular metabolites oxidatively, which affects plant
growth (Hossain et al. 2015). Symbiotic association with endo-
phytic fungi significantly (P < 0.001) reduced the amount of hydro-
gen peroxide produced by the plants, increased their chlorophyll
content and increased their dry weight compared with uninocu-
lated control plants exposed to sodium chloride. These results in-
dicate the endophytes-enhanced sodium chloride tolerance of the
seedlings. We speculate the endophytic fungi in the tomato seeds
and seedlings helped maintain the ionic balance in the plant cy-
tosol, thereby preventing accumulation of toxic Na*t ions while

enhancing photosynthesis in the seedlings under sodium chlo-
ride stress. Ionic homeostasis in plants, reduced ROS production
and concomitant increases in shoot and root weight have been
reported in several studies as mechanisms by which fungal endo-
phytes alleviate salt stress (Bouzouina et al. 2021, Ali et al. 2022).

Fungal endophytes are prolific producers of extracellular en-
zymes and secondary metabolites (Debbab et al. 2013), which are
important in the selection of beneficial microorganisms for use in
agricultural production. Our experiment used four fungal endo-
phytes that were selected based on their abilities to produce the
exoenzymes amylase, protease and cellulases and to solubilize in-
organic phosphorus. Of the 60 fungal isolates obtained, 62% sol-
ubilized inorganic phosphate, a finding that agrees with those of
Ogbe et al. (2023). Phosphorus is the second most important plant
nutrient after nitrogen (Radhakrishnan et al. 2015). Although it is
present at high concentrations in soil, plants are often starved for
phosphorus because it occurs in a form that they cannot absorb
(Castrillo et al. 2017). In soils with high salinity and pH, phospho-
rus forms stable complexes with other ions and becomes unavail-
able to plants (Penn and Camberato 2019, Xie et al. 2022). It has
been suggested that to increase plant productivity, plants grow-
ing in such soils can select and symbiotically associate with mi-
croorganisms that help them alleviate environmental challenges
such as nutrient deficiency (Bulgarelli et al. 2013). Therefore, the
ability of a large number of our isolates to solubilize phosphate
may be the result of the plant’s natural selection during plant-
microbiome evolution.

All endophytic isolates were able to colonize tomato seedlings
that germinated from seeds inoculated via the seed-soaking
method. Seed germination of inoculated seedlings was positively
affected. Moreover, seedling shoot and root weight, and chloro-
phyll content increased, while hydrogen peroxide production de-
creased under salinity stress in the presence of the endophytes. Of
the four isolates tested, isolate F21 (A. puniceus) exerted the great-
est effect, and therefore, this isolate has the most potential for use
in the development of a less expensive approach to climate re-
silient agriculture, especially in arid and semiarid regions where
crops are exposed to several biotic and abiotic stresses. Further
studies are, however, necessary to understand the interactions be-
tween these endophytes and crop plants in the presence of other
naturally existing soil microbiota under salinity stress. The ap-
plicability of seed inoculation under field conditions should also
be studied. We conclude that endophytic fungi from shrubs along
the shores of saline alkaline lakes are potentially beneficial mi-
croorganisms that can be harnessed for sustainable agricultural
production.
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