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Abstract: Sleep Disordered Breathing (SDB) and Alzheimer’s Disease (AD) are strongly associated
clinically, but it is unknown if they are mechanistically associated. Here, we review data covering
both the cellular and molecular responses in SDB and AD with an emphasis on the overlapping
neuroimmune responses in both diseases. We extensively discuss the use of animal models of both
diseases and their relative utilities in modeling human disease. Data presented here from mice
exposed to intermittent hypoxia indicate that microglia become more activated following exposure to
hypoxia. This also supports the idea that intermittent hypoxia can activate the neuroimmune system
in a manner like that seen in AD. Finally, we highlight similarities in the cellular and neuroimmune
responses between SDB and AD and propose that these similarities may lead to a pathological
synergy between SDB and AD.

Keywords: neuroinflammation; intermittent hypoxia; inflammasome; animal models; sexual
dimorphism

1. Introduction

Although neurodegenerative diseases like Alzheimer’s Disease (AD), are strongly
associated with sleep disordered breathing (SDB), the cellular and physiologic mechanisms
underlying this relationship remain poorly understood. Thus, the goals of this review are
to: (1) briefly summarize current knowledge about SDB and AD to call attention to gaps
in knowledge, (2) present experimental evidence supporting the hypothesis that the neu-
roimmune system is a common point of convergence in both SDB and AD pathologies, and
(3) highlight the paucity of understanding of basic cellular mechanisms underlying the in-
tersection between SDB and pathology in AD, with a focus on the neuroimmune response.

2. Neurodegeneration Is Common in Both SDB and AD
2.1. Sleep Disordered Breathing

Sleep disordered breathing (SDB) occurs when individuals repetitively stop breathing
during sleep, often hundreds of times each night. There are three major types of SDB:
(1) obstructive sleep apnea (OSA) where the upper airway either partially or fully collapses
during inspiration, (2) central sleep apnea where respiratory rhythm generating neurons in
the brainstem fail to send sufficient signals to upper airway pharyngeal dilator muscles
and chest wall respiratory pump muscles, and (3) mixed or complex sleep apnea, which
involves a combination of both obstructive and central apneas. OSA is by far the most
common form of SDB, the prevalence of which is increased in individuals with larger
neck circumferences, often due to adipose tissue deposition around the neck that creates
anatomical impediments on the airway [1–5]. Sleep apnea is estimated to affect ~17–26%
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of the adult population in the US, with up to 80% of people with the disorder remaining
undiagnosed [6–8]. The prevalence in the United States of mild, moderate, and severe
OSA is 10%, 3.8% and 6.5% respectively [9], with the remainder of individuals effected by
sleep apnea having central or mixed apneas. It is thought that some obstructive events
may begin as a central event first [10,11]. Cessations in breathing due either to central or
obstructive apneas can cause intermittent hypoxia (IH). IH results when breathing resumes
between episodes of recurrent apneas or hypopneas, reductions in breathing, causing
intermittent re-oxygenation of blood and tissues [12,13]. IH is thought to be causal of
several morbidities associated with SDB including cardiovascular remodeling, metabolic
disorder, sympathetic nervous system hyperactivation, and cognitive impairments [9].

2.2. Neurodegeneration in SDB

Cognitive impairments in individuals with SDB present as attention deficits, memory
loss, and decreased executive functioning [14]. These cognitive impairments correlate with
neuroanatomical changes and gray matter loss, based on magnetic resonance imaging
morphometry [15]. The central nervous system (CNS) regions most affected by SDB
are associated with memory, attention, and higher cognitive function and include the
hippocampus; frontal, parietal, and temporal cortices; and brainstem regions including the
nucleus tractus solitaries [16]. There is also gray matter loss in cerebellar, motor area, and
limbic regions associated with upper airway motor regulation and cognitive processing [17].
Accordingly, exposure of rodents to IH recapitulates some but not all aspects of neuronal
loss observed in human SDB. A seminal paper by Gozal et al. demonstrated cortical
and hippocampal neuronal apoptosis in rats exposed to IH; this neuronal loss correlated
with spatial learning deficits [18]. As the first study to report neurocognitive deficits
in an animal model of IH, it sparked intense research efforts into the neuropathological
consequences and molecular mechanisms underlying IH-induced CNS injury leading
to similar observations in mice and other rat SDB paradigms [19–25]. While rodent IH
models do not display neuronal apoptosis in all CNS regions observed in human SDB
patients, this could be due to the short durations of experimental IH exposures (usually
only weeks), and/or the absence of other morbidities of SDB such as sleep fragmentation
and intermittent hypercapnia that typify human SDB. Sleep fragmentation refers to the
overall amount and distribution of wakefulness during a total sleep period.

SDB is associated with neurodegenerative diseases; over 50% of patients with AD
experience SDB [26]. Despite the prevalence, the impact of SDB on the progression of
neurodegenerative and genetic disorders is less well understood. A study in a small
population of AD patients with OSA found that continuous positive airway pressure
improved cognitive scores in the fields of memory and attention [27], suggesting that some
of the cognitive deficits exhibited in these patients could be slowed or even reversed by
treating the OSA aspect. Although these studies need to be repeated in larger patient
cohorts, evidence from animal IH studies support this general notion. For example, IH
exposure increases cerebral and hippocampal amyloid beta (Aβ) burden [28–30] and
hypoxia induces tau hyperphosphorylation [30–32], two pathologic hallmarks of AD that
will be discussed further below.

2.3. Experimental Models of SDB

Rodent models mimicking key SDB aspects, most commonly IH, have been developed
to better understand mechanisms of SDB [33–36]. Importantly, IH alone can recapitulate
most of the OSA-associated morbidities observed in humans [37], thus disentangling the
complexities of OSA in animal models. The hypoxia exposure paradigms used in rodents
most often range between 5% and 11% O2, while the cycle frequency, cycle length, and daily
duration depend on whether rats or mice are used. Because mice are efficient at physiologi-
cally adapting to hypoxia, inducing pathologic IH requires lower O2 levels, more episodes
per hour, and longer total exposure times than rats [18,38–40]. Sleep fragmentation, a
common IH co-morbidity [41,42], can also be modeled in rodents using mechanical devices
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that interrupt sleep without causing sleep deprivation or reduction in total sleep [43–48].
Sleep fragmentation alone, like IH, can also recapitulate some negative aspects of SDB
including hypertension and metabolic disturbances [49,50]. Recent studies have begun to
tease apart the individual physiologic effects of IH and sleep fragmentation [51].

2.4. Alzheimer’s Disease

AD is the most prevalent form of dementia among the elderly. As many as 5 million
Americans, about 1 in 10 people over the age of 65, have AD [52]. In the United States,
AD is ranked as the 6th leading cause of death [53]. Most observational and experimental
evidence to date indicates that AD is initiated by the accumulation of extracellular plaques
composed of Aβ leading to progressive accumulation and aggregation of hyperphosphory-
lated tau into neurofibrillary tangles (NFTs) [54]. These plaques and NFTs then contribute
to neuronal loss, brain atrophy, and ventricular enlargement [55,56]. Clinically, AD is char-
acterized by progressive loss of memory, emotional and cognitive changes, and diminished
reaction to stimuli [57]; typically, onset of noticeable symptoms occurs after 60 years of age.
Although family history, genetics, environment, lifestyle and SDB are all likely contributing
factors to disease development and progression, there is no definitive predictive factor for
AD [30,57].

Of the various hypotheses on the etiology of AD pathogenesis, the foremost three are
the: (1) amyloid, (2) tau, and (3) infectious origin hypotheses. The amyloid hypothesis states
that the deposition of extracellular plaques, which are primarily composed of Aβ peptides,
is the causative agent underlying AD pathology [58]. Although the amyloid hypothesis is the
most widely accepted, it does not explain all aspects of AD pathogenesis [59,60]. The second
major hypothesis is the tau hypothesis. This hypothesis posits that tau hyperphosphorylation
and accumulation into intraneuronal NFTs is the causative agent of AD [61]. The tau
hypothesis can explain questions and gaps left by the amyloid hypothesis, but it fails explain
the full progression of AD pathology on its own. The final prominent hypothesis for AD
pathogenesis is the infectious origin model. This hypothesis proposes that the initiating
step in AD development is a pathogenic insult, either viral or bacterial, that triggers the
formation of amyloid plaques and NFTs resulting in the onset of AD [62]. The infectious
origin hypothesis is relatively new and much of the data supporting it remains circumstantial.

2.5. Experimental Models of AD

Several animal models of AD have been developed and have significantly contributed
to our understanding of AD pathogenesis, foremost among which is the mouse. Due to
the genetic manipulability of mice, several models with altered tau, such as the P301S line
PS19, Aβ models including the 5XFAD and APPPS1, or mice expressing both altered tau
and Aβ such as the 3xTg mice [63–66] have been developed to elucidate individual aspects
of AD pathology including the formation of NFT or Aβ plaques. More complex models
combine both Aβ and NFT aspects; for example, using an Aβ mouse model as a base, then
seeding the brain with NFTs to explore their combined effects on AD pathology [67]. Many
of these models also exhibit behavioral defects alongside cellular responses, particularly
microgliosis and microglial activation, which closely mimic those observed in humans with
AD. In addition to mouse models, several non-human primate and other rodent models
exist. However, the use of these models has been much more limited [68].

3. Neuroinflammation in AD and SDB
3.1. Microglia and the Inflammasome in AD and SDB

One of the primary functions of microglia is to identify and resolve oxidative stress
and inflammation in the CNS. Novel imaging techniques (including non-invasive two-
photon in vivo microscopy) have shown the normal state of microglia to be anything but
“quiescent” or “resting,” as they are highly dynamic cells; constantly surveying the brain
parenchyma with their processes to interact with neurons, synapses, axons, other glial
cells, and blood vessels [69–73]. Microglia are involved in synaptic plasticity, neurogenesis,



Cells 2021, 10, 2907 4 of 19

learning and memory and functional brain connectivity via their synaptic pruning activi-
ties [74,75]. Since neuroinflammation occurs in both AD and SDB, microglia have become
a recent focus of research, separately, in the AD and SDB fields.

While it has been known for more than a century that microglia are both activated
and proliferative in AD, their contribution to AD pathology remains incompletely under-
stood [76]. The identification of several single nucleotide polymorphisms in microglial
genes associated with increased risk for developing AD [77–79] prompted extensive follow-
up work that has firmly implicated microglia as key players in AD etiology [76].

Microglial function in AD is complex, having both detrimental [80,81] and neuro-
protective activities [82–85]. In early AD, microglia in Aβ models work to clear amyloid
plaques but also release pro-inflammatory cytokines and produce apoptosis-associated
speck-like protein containing a CARD (ASC specks). ASC specks in microglia are hallmarks
of inflammasome activation and seed new Aβ plaque formation [80,81,83–85]. In 5XFAD
mice, inhibiting this inflammasome activity early on can decrease pathology [86]. Depletion
of microglia from 5XFAD mice by pharmacological inhibition of the colony stimulating
factor 1 receptor with PLX3397 improved hippocampal-dependent contextual memory and
lessened neuronal loss, but it did not alter plaque load [87,88]. However, these findings are
complicated by the fact that most of the remaining (non-depleted) microglia were heavily
associated with Aβ plaques [88,89]. Therefore, the implications of these studies on deter-
mining the role of microglia in AD remain unclear. In tau mouse AD models, microglia
enhance neurodegeneration [90]. However, in more complex AD models in which both Aβ

and NFTs are present in a single animal, microglia appear to surround Aβ plaques and
limit their neurotoxic impact resulting in reduced formation of NFTs [67]. Taken together,
these data suggest a complicated role for microglia in the response to AD pathology.

3.2. Astrocytes in AD and SDB

Astrocytes are a population of cells in the CNS that normally regulate the integrity
of the blood brain barrier and sustain normal tissue and cellular function by maintaining
neuronal cell function and regulating tissue homeostasis. Although less studied, astrocytes
also play a role in AD. They proliferate, lose their exclusive spatial autonomy and are
associated with both tau NFTs and Aβ plaques [91–97]. Reactive astrocytes also produce
Aβ and inflammatory cytokines that, together with those produced by microglia, con-
tribute to enhanced neuroinflammation in the AD brain [93]. Reactive astrocytes surround
amyloid plaques [98] and the magnitude of astrogliosis may correlate with plaque number
[99–102]. However, it has also been reported that astrocytes associate with tau and NFTs,
and reactive astrocyte response more closely correlates with NFT burden than plaque
burden [91,97]. Some astrocytic processes become part of the insoluble Aβ plaque that they
surround, and their other hypertrophic processes make abnormal contacts with nearby
blood vessels and neurons [99]. However, astrocytes that are further away from the amyloid
plaques undergo atrophy [101,103,104]. Because astrocytes become differentially activated
or atrophied based on their proximity to the Aβ plaques [104–108], potentially prior to
plaque formation, astrocytes may also contribute to AD pathology.

While considerably less is known about astrocytes in the context of SDB, a recent study
of individuals with OSA showed that they had elevated levels of S100B in serum, a marker
of astrocyte activation [109]. Patients with OSA also exhibit increased levels of midbrain
tissue glutamate as detected by 2D magnetic resonance spectroscopy, implicating excitotox-
icity and astrocyte activation [110]. Exposure of mice to IH also causes astrogliosis [18,111],
but to date, there have been no studies investigating the contributions of astrocytes to IH or
AD-induced neuropathology. In the one recent study currently available, in an AD mouse
model (APP-PS1) IH exposure did not affect Aβ levels or plaque load, but it did increase
astrogliosis (based on glial-fibrillary acidic protein; GFAP) staining [111].
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3.3. Molecular Mechanisms of Neuroinflammation in AD and SDB

Chronic inflammasome activation is common in early onset AD patients [80] with
NOD-, LRR-, and pyrin containing 3 (NLRP3) inflammasomes contributing to Aβ plaque
and tau pathology in the context of Alzheimer’s Disease [80,81,112,113]. In primary mi-
croglial cultures, exposure to soluble Aβ oligomers and protofibrils results in inflamma-
some activation [114]. APP/PS1/NLRP3 and APP/PS1/Caspase-1 deficient mice were
protected from spatial memory deficits despite having no significant difference in total
brain IL-1β [80]. Although loss of NLRP3 inflammasome activation is associated with
reduced tau hyperphosphorylation and improved spatial memory in mice [112], intrahip-
pocampal injections of ASC-specks themselves resulted in the spreading Aβ pathology in
double mutant APP-PSEN1 mice [81], underscoring the complexity of microglia in AD.
β-hydroxybutyrate (BHB) is a byproduct of ketogenesis that is known to inhibit the NLRP3
inflammasome [115]. BHB levels are significantly lower in AD patients [86]. Supplementing
5XFAD mice with BHB resulted in significantly less plaques and less complex microglia
when compared to untreated 5XFADs [86]. Along with fewer ASC specks and lowered
levels of Caspase-1 in the cortex, this suggests that BHB decreases microgliosis and is an
inhibitor of the inflammasome [86].

Although microglial activation of the inflammasome can cause inflammation in the
brain, to date no studies have examined the impact of the inflammasome in SDB. However,
one recent study started to tease apart the relationship between IH and the inflammasome.
This group utilized bone-marrow derived macrophages from lean and obese mice and
subsequently exposed them to IH in vitro [116]. The IH exposure increased the inflamma-
tory profile of both sets of bone-marrow derived macrophages [116]. Pretreatment with
a toll-like receptor 4 (TLR4) inhibitor also prevented IH-induced inflammation [116]. In
bone-marrow derived macrophages from NLRP3-/- mice, there was no increase in the
inflammatory profile due to IH exposure [116]. This study starts to uncover the role that
TLR4/NLRP3 signaling roles play in exposure to IH. Our group has also examined the
effects of IH on microglial inflammatory and TLR4 gene expression levels in microglia in
mice in vivo, following exposure to IH for up to 14 days [117]. We found that microglial
inflammatory gene expression was differentially increased in immunomagnetically isolated
microglia in a region-dependent manner, and that TLR4 gene expression was similarly
increased [117]. Surface TLR4 protein levels of microglia, as detected by flow cytometry,
trended towards being increased at seven days of IH exposure and were significantly
increased by 14 days, an effect that persisted until at least four weeks of IH exposure
(Figure 1). Similarly, microglial surface CD45 protein levels were significantly increased
within seven days of IH exposure, persisting through to 28 days (Figure 2). We also found
that protein expression of neuronal caspase 3 was increased within seven days of IH
exposure and persisted for the 28-day experimental duration (Figure 3), indicating that
microglial activation and neuronal apoptosis are temporally associated. These data support
the idea that microglia become activated in response to IH in vivo, and that microglial
TLR4 signaling and inflammasome activation may be enhanced.
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Figure 1. Microglial surface expression of active TLR4/MD2 is significantly increased by IH expo-
sure in vivo. Mice were exposed to normoxia (room air; Nx), or IH for 7, 14, or 28 days. 14 h follow-
ing the last hypoxic exposure, hippocampal tissue was dissociated, and single cell suspensions were 
stained with anti-TLR4/MD2 and anti-CD11b antibodies for analysis by flow cytometry. (A) Repre-
sentative dot plots of TLR4/MD2 vs. CD11b immunofluorescence. (B) Frequency of TLR4/MD2+ 
cells as a percentage of total CD11b+ cells. (C) Average mean fluorescent intensity of TLR4/MD2 in 
CD11b+ cells. Statistical significance was determined by student’s t-tests. * p < 0.05; ** p < 0.01; *** p 
< 0.001; # 0.05 < p< 0.12. 

 
Figure 2. Microglial CD45 expression increases following IH exposure in vivo. Mice were exposed 
to normoxia (room air; Nx), or IH for 7, 14, or 28 days. 14 h following the last hypoxic exposure, 
hippocampal tissue was dissociated, and single cell suspensions were stained with anti-CD45 and 
anti-CD11b antibodies for analysis by flow cytometry. (A) Representative dot plots of CD45 vs. 
CD11b immunofluorescence. (B) Frequency of CD45+/CD11b+ cells. (C) Average mean fluorescent 
intensity CD45 in CD11b+ cells. Statistical significance was determined by student’s t-tests. * p < 
0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001. 

Figure 1. Microglial surface expression of active TLR4/MD2 is significantly increased by IH exposure in vivo. Mice were
exposed to normoxia (room air; Nx), or IH for 7, 14, or 28 days. 14 h following the last hypoxic exposure, hippocampal tissue
was dissociated, and single cell suspensions were stained with anti-TLR4/MD2 and anti-CD11b antibodies for analysis by
flow cytometry. (A) Representative dot plots of TLR4/MD2 vs. CD11b immunofluorescence. (B) Frequency of TLR4/MD2+
cells as a percentage of total CD11b+ cells. (C) Average mean fluorescent intensity of TLR4/MD2 in CD11b+ cells. Statistical
significance was determined by student’s t-tests. * p < 0.05; ** p < 0.01; *** p < 0.001; # 0.05 < p< 0.12.
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4. Common Mechanisms of SDB and AD
4.1. Bidirectional Effects of SDB and AD on One Another

In the CNS, many of the cellular processes, including the activation of microglia, are
shared between SDB and AD. Only recently has the association between these processes in
SDB and AD been investigated. Evidence suggests that individuals with SDB are at a higher
risk for also having some form of neurodegenerative disease [12,118–122]. When examining
institutionalized patients with dementia, it was determined that greater than 70% of those
patients also had SDB, with over half of them having moderate or severe SDB [123]. This is
important because this rate is nearly three times that expected in the general population,
suggesting that there may be an interaction between SDB and dementia. Another study
that examined post-mortem human brains (from cognitively normal individuals) found
that while SDB severity was a strong predictor of Aβ plaque load in the hippocampus, it
was not correlated with hippocampal NFT burden, nor Aβ plaque or NFT burden in the
brainstem, where respiratory neural control resides [30]. Thus, SDB may contribute to large
Aβ plaque loads, at least in pre-clinical stages of AD progression. Intriguingly, although
SDB patients were also recently found to exhibit reduced CSF soluble Aβ [124–127] and
increased tau proteins in CSF [125] and plasma [128,129], as well as increased Aβ plaques
by PET scan [127,130–133], not all studies are consistent [127]. For example, decreased Aβ 1-
42 and increased tau was reported in CSF from individuals with OSA, which also correlated
with increased memory impairment [125]. However, unlike with OSA, the frequency of
central sleep apnea in AD is less well understood, and the association with AD is thought
to be less common than with OSA [134]. Due to the distinct cellular and pathological
similarities between SDB and AD, we propose that these seemingly unrelated diseases
may interact synergistically to enhance neurodegeneration and disease pathology. We also
suggest that SDB-induced neurodegeneration precedes AD symptom onset, effectively
setting the stage for exacerbated AD progression. In the sections below, we will describe
the evidence including sleep disturbances, sexual dimorphism, common risk factors, and
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inflammation–particularly involving the neuroimmune system–that support the idea that
SDB and AD may have common etiologies.

4.2. Sleep Disturbances

Unsurprisingly, SDB increases sleep disturbances and worsens the quality of sleep
that is experienced, leading to daytime sleepiness, which is associated with deficits in
working memory and vigilance [119]. Interestingly, sleep disturbances including insomnia,
circadian rhythm alterations, and nocturnal agitation are also among the earliest behavioral
changes associated with AD development, and they typically worsen during the devel-
opment of the disease [121,122,134–139]. People reporting short sleep durations (<6 h)
have increased incidence of hypertension, obesity, type II diabetes, cardiovascular disease,
and stroke [140–143]. Sleep studies have shown that AD patients with cognitive deficits
are more likely to have significantly increased sleep disturbances than AD patients with
mild or no cognitive impairments, demonstrating that as AD-associated dementia severity
increases, so too does the number of sleep disturbances [8]. Experimental evidence from
both human studies and animal models have further highlighted the importance of sleep in
AD progression, as the clearance of Aβ occurs mostly during sleep and as little as one night
of disrupted sleep can lead to an increase in detectable Aβ levels in the brain [144,145].
Additionally, CSF tau, an important AD biomarker, increases following sleep deprivation
in humans and in a mouse model of chronic sleep deprivation tau spreading was increased
following sleep deprivation [146]. In the future, additional studies taking advantage of
new technologies and approaches such as sleep monitoring by smart watches will allow
us to further refine our understanding of the link between sleep disturbances and the
development of AD.

Given that sleep disturbances are common in AD, and that SDB is associated with
exacerbated AD related pathological changes, we suggest that SDB enhances and/or
accelerates AD pathology. Patients with severe SDB exhibit hippocampal atrophy, as is
observed in AD [30,147–149], and rats with reduced REM sleep showed reduced neuronal
arborization in the hippocampus [150] and increased neuronal apoptosis in the locus
coeruleus, laterodorsal tegmentum, pedunculopontine tegmentum, and medial preoptic
area [140,151]. Rodents exposed to chronic sleep deprivation have decreased volume in
brainstem respiratory nuclei (NTS and parabrachial nucleus) [152], in the medial prefrontal
cortex [153], in the dorsal and CA2/CA3 hippocampal regions [154], and in the CA1
and dentate gyrus hippocampal regions [155], indicating a detrimental effect on key brain
regions involved in cognition and autonomic nervous system function. 5XFAD mice exhibit
increased sleep fragmentation [156].

4.3. Sex Hormones and Gender Differences

Interestingly, both SDB and AD have prominent sexual dimorphism. For SDB in gen-
eral, men are two to three times more likely to be diagnosed than women, with diagnoses
increasing in both sexes with age [6,7,157–159]. In the United States, 17–24% of men but
only 9% of women aged 50–70 years old experience sleep apnea [6,7]. Men have both
increasing incidence and severity of SDB as they age [7,157]. Regardless of age, increased
SDB severity in men can be predicted by increased obesity, body mass index, waist-hip
ratio, and neck circumference [7,157,160,161]. Many male patients who have SDB and
are obese have high body mass index or waist-hip ratio, or larger neck circumference can
decrease the severity of SDB by weight loss [162]. Women, unlike males, exhibit no positive
correlation between obesity (body mass index) and OSA; OSA severity is not correlated
to waist-hip ratio or neck circumference, nor is SDB affected by weight loss [157,162].
Women tend to be older than men at their initial diagnosis of OSA, and present with less
severe disease [162].

Women with poly-cystic ovarian syndrome (PCOS), typically pre-menopausal with
higher testosterone levels, tend to develop OSA at higher rates than women without PCOS,
which suggests that sex hormones may play a role in OSA development [163]. Additionally,
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women with PCOS and men have similar patterns of adipose tissue deposition and size
of airway structures [164,165]. Although the incidence of OSA does not change in pre-
menopausal women, it increases during and after menopause [7,158,162,166,167]. However,
despite this increased incidence of OSA in post-menopausal women, OSA severity does
not worsen, nor does it become associated with obesity, like it is in men [7,158,162,166,167],
suggesting sexually dimorphic mechanisms in SDB etiology. The increase in OSA inci-
dence in post-menopausal women may be due to the reductions in circulating estrogen
levels (and consequent loss of its neuroprotective effects) and would be consistent with the
increased incidence of SDB in younger women with PCOS in which there are higher levels
of testosterone, and relatively lower levels of estrogen.

Both OSA and AD are sexually dimorphic, with OSA affecting more men than pre-
menopausal women, and AD being more prevalent in women than men [168]. The primary
risk factor for developing AD is age [169]. In men, the risk of developing AD begins to rise
in midlife and increases steadily thereafter [170]. Like SDB development and progression,
women tend to be somewhat “protected” from AD until menopause, at which point OSA
prevalence in women quickly approaches and surpasses that in men [170]. Interestingly,
mirroring what is observed with OSA, younger women with PCOS are at an increased risk
for developing AD [171]. Further, male AD patients have slower cognitive decline than
women [172]. Accordingly, we hypothesize that sex hormones and/or sex differences play
a pivotal role in the progression of these distinct diseases.

4.4. Common Risk Factors and Comorbidities for SDB and AD

Another overlapping aspect of both SDB and AD are disease-associated risk factors
and comorbidities (Table 1). Clinical studies have shown that men with OSA are at an
increased risk for developing comorbidities compared to women [158]. However, in both
sexes, SDB leads to an increased risk for health disorders including cardiovascular and
neurodegenerative disorders [158]. Additionally, both SDB and AD are often accompanied
by hypertension [139,173,174]. Regarding known sex differences, men with OSA are more
often diagnosed with hypertension, tend to have more severe hypertension, and are likely
to have more apneas per hour compared to women with OSA [175,176]. Conversely,
women with OSA tend to have milder hypertension that is unrelated to the number of
apneas per hour [176]. This is similar to findings in rodent models of SDB where male rats
exposed to IH have increased mean arterial pressures, whereas female rats do not [177];
ovariectomized females behaved similarly to males [178]. We hypothesize that since
hypertension also exacerbates inflammation and oxidative stress via increased vascular
dysfunction, patients with OSA and comorbid hypertension may be at increased risk of
subsequently developing AD or other neurodegenerative diseases.

Table 1. Factors commonly observed in Alzheimer’s Disease and Sleep Disordered Breathing. “X”
denotes strong experimental evidence exists; “?” denotes a potential connection.

Alzheimer’s Disease Sleep Disordered Breathing
Neuroinflammation X X

Inflammasome Activation X ?
Hypoxia X

Tau Pathology X
Amyloid β Plaques X ?

Hypertension X X
Sex Differences X X

Neuronal Apoptosis X X
Microglial Activation X X
Astrocyte Activation X X
Sleep Disturbances X X

SDB and AD are often accompanied by increased inflammation and oxidative stress
[117,139,169,173,174,179–182]. Studies in children with OSA have identified increases in
circulating inflammatory markers [183] as well as the AD markers Aβ and presenilin
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1 levels [184]. However, these studies were done in pediatric populations, not in aged
adults who would be more likely to develop AD. Both women and men with OSA (without
other comorbidities) display increased inflammatory biomarkers in blood or exhaled
breath [185–191], as well as increased markers of oxidative stress, such as eNOS, HIF-1α,
and VEGF [179]. Although many studies have measured indices of circulating systemic
inflammation in individuals with OSA, few have examined CNS inflammation in humans
with OSA.

Rodents exposed to IH exhibit increases in both peripheral and central inflammatory
mediators as well as enhanced markers of oxidative stress [19,117,118,139,192–194]. IH
exposure also significantly increases neuronal loss in the hippocampus and prefrontal
cortex [18,19,118,194,195] indicating that repetitive hypoxic events during SDB can cause
oxidative stress and inflammation in CNS regions involved in cognition. Coincidentally,
oxidative stress and inflammation associated with AD are also detected in CNS regions
including the hippocampus [139,196], entorhinal cortex [169,197], rostral ventrolateral
medulla and solitary tract nucleus [198,199], the same regions in which OSA induces grey
matter loss in the human brain (see Neurodegeneration in SDB section above on pg. 2).
Together these data illustrate that similar areas of the brain are affected in both SDB and
AD, underscoring the possibility that these diseases may act synergistically to worsen the
pathology of the other.

4.5. Studying SDB in AD Animal Models

There are very few animal studies that have investigated the intersection of AD and
OSA. One available study exposed 3xTg AD mice to IH and found increased intraneuronal
Aβ amyloid production [29]. Another group looked at the effect of 4-weeks of IH on
astrocytes and Aβ levels in APP-PS1 mice. They found that the Aβ levels remained
unchanged, but there was a significant increase in GFAP positive astrocytes, indicative
of a pro-inflammatory response [111]. This robust astrogliosis was found in several CNS
regions: near blood vessels, and in the neocortex, corpus callosum, CA1 and CA2, dentate
gyrus, thalamus, and striatum, an effect that was not observed as severely in the age
matched WT controls [111]. Although these studies have begun to fill in the gaps related to
the AD and SDB relationship, our ongoing studies aim to identify the role of microglia in
the context of long term (months) IH exposure by assessing neuroimmune cell changes,
microglia marker differences, and astrocyte and microglia morphologic alterations that
regulate the CNS immune response.

5. Summary and Closing Thoughts

Here we have summarized the evidence supporting our hypothesis that there are
several commonalities between AD and SDB pathology, including their co-morbid preva-
lence, the similar regions of brain impacted by neurodegeneration, the involvement of
sleep disruption, the neuroinflammation that is driven by both inflammatory activation of
microglia and aberrant astrocyte function, as well as common hormonal and sex-dependent
influences. Consequently, we propose that microglial activation, via an inflammasome-
dependent mechanism, bridges both disorders, possibly leading to reciprocal and syn-
ergistic exacerbation of both diseases. Although several recent studies have begun to
interrogate the relationship between SDB and AD in human subjects, animal studies are
needed to further probe mechanistic interactions. Additionally, data from rodent studies
support the need for future experiments that explore not only the functional contributions
of microglia and astrocyte activities to this interaction, but also the underlying cellular
signaling pathways. Based on the AD literature, we posit that inflammasome activation
will be a key point of convergence in uniting both pathologies; however, the evidence is
sparse at best in the SDB literature to support this notion. Further studies are necessary
in SDB models to understand the cell types that contribute to neuroinflammation and
neurodegeneration, the cellular signaling pathways recruited to do so, and how those
pathways intersect and link SDB and AD.
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6. Experimental Methods
6.1. Intermittent Hypoxia (IH) Exposure

Adult male C57/BL6 mice were obtained from Harlan Laboratories (Madison, WI,
USA) and housed in AAALAC-accredited facilities with 12 h:12 h light-dark conditions.
All animal exposures were performed using a commercially designed system (BioSpherix,
Redfield, NY, USA). Animals were housed in standard polycarbonate cages with access to
food and water ad libitum and maintained in a specialized chamber (12 × 20 × 30 inches).
Oxygen and carbon dioxide concentrations were continuously monitored by an O2 and
CO2 analyzer and were changed by a computerized system controlling the gas outlets
(Oxycycler model G2 and Watview software). During the sleep cycle (lights on), O2
concentrations were modified to generate a cyclical pattern of 6% and 21% O2 every 90 s
(IH) [200,201]. During their wake period (lights off), O2 concentration was maintained at
21%. Airflow was sufficient to prevent CO2 accumulation, maintaining a concentration
below 0.3%. Normoxic control animals were housed inside a chamber with circulating 21%
O2 to mimic the IH exposure.

6.2. Tissue Isolation and Fixation for Flow Cytometry

CNS tissues were dissociated as previously described [202]. Briefly, mice were eu-
thanized with an overdose of isoflurane and perfused intra-aortically with cold 0.1 M
phosphate buffered saline (PBS). The frontal cortex and hippocampus were dissected out,
placed into cold Hank’s Buffered Salt Solution (HBSS; Cellgro, Herndon, VA, USA) on
ice. Tissue was mechanically dissociated and pushed through a pre-moistened 100 µM
cell strainer with a syringe plunger and washed with cold HBSS supplemented with
0.01 mg/mL DNase (Worthington Biochemicals, Lakewood, NJ, USA). Dissociated tissues
were resuspending in 26% Percoll (GE Healthcare, Waukesha, WI, USA) in 0.1 M PBS and
centrifuged at 850× g for 15 min to remove myelin. Samples were fixed in a modified zinc-
based fixative (mZBF) (0.5% zinc chloride, 0.5% zinc trifluroacetate, 0.05% calcium acetate
in 0.1 M Tris-HCl, pH 6.4–6.7) [203] and glycerol (1:1) and stored at −20 ◦C overnight or
until ready to be stained for flow cytometry [203,204].

6.3. Staining for Flow Cytometry

Fixed samples were washed 3x in ice-cold PBS. Cell surface protein stains CD11b-
APC-Cy7 (1:150; eBiosciences, San Diego, CA, USA) and the active TLR4/MD2 complex
(TLR4-PE-Cy7) (1:25; Biolegend, San Diego, CA, USA) were performed on ice in 50 µL of
1X PBS supplemented with 0.1% BSA for 25 min. Cells were washed 3x and resuspended
in a permeabilization buffer (1X PBS + 0.2% saponin + 0.1% BSA). Intracellular staining
was performed in 50 µL permeabilization buffer on ice for 45 min for NeuN-Alexa488
(1:500; Millipore, Billerica, MA, USA) and caspase-3-PE (1:20; BD Biosciences, San Jose, CA,
USA). Samples were washed and resuspended in the permeabilization buffer containing
DAPI (1 µg/mL; Invitrogen, Carlsbad, CA, USA) to identify cells with intact nuclei. Cells
were analyzed on a BD LSR II and FACSDiva software (BD Biosciences). FCS files were
analyzed via FlowJO software v10.8.0. Cells were gated to live cell singlets as previously
described [205].

6.4. Statistical ANALYSIS

All statistical analyses were performed using GraphPad PRISM version 9.1.0. The
Grubb’s Test was used to identify outliers. Statistical significance (set at p < 0.05) was
determined using Student’s t-tests.
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S.M.C.S.; formal analysis, A.O.K. and S.M.C.S.; figure preparation, A.O.K.; writing-original draft
preparation A.C.E., K.M.M., T.K.U., J.J.W.; writing-review and editing A.C.E., K.M.M., A.O.K., T.K.U.,
J.J.W.; funding acquisition, T.K.U. and J.J.W. All authors have read and agreed to the published
version of the manuscript.
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