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Mapping gene expression profiles to neuroimaging phenotypes in the same anatomical
space provides opportunities to discover molecular substrates for human brain
functional properties. Here, we aimed to identify cell-type-specific gene modules
associated with the regional homogeneity (ReHo) of spontaneous brain activity and their
associations with brain disorders. Fourteen gene modules were consistently associated
with ReHo in the three datasets, five of which showed cell-type-specific expression
(one neuron-endothelial module, one neuron module, one astrocyte module and two
microglial modules) in two independent cell series of the human cerebral cortex. The
neuron-endothelial module was mainly enriched for transporter complexes, the neuron
module for the synaptic membrane, the astrocyte module for amino acid metabolism,
and microglial modules for leukocyte activation and ribose phosphate biosynthesis. In
enrichment analyses of cell-type-specific modules for 10 common brain disorders, only
the microglial module was significantly enriched for genes obtained from genome-wide
association studies of multiple sclerosis (MS) and Alzheimer’s disease (AD). The ReHo
of spontaneous brain activity is associated with the gene expression profiles of neurons,
astrocytes, microglia and endothelial cells. The microglia-related genes associated with
MS and AD may provide possible molecular substrates for ReHo abnormality in both
brain disorders.
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INTRODUCTION

Resting-state functional magnetic resonance imaging (rs-fMRI)
has been widely used to assess spontaneous brain activity, which
records the blood oxygen level-dependent (BOLD) fluctuations
during rest. Regional homogeneity (ReHo) is a measure reflecting
the degree of local synchronization that occurs over the course
of the rs-fMRI, that is, the similarity of the fluctuation of BOLD
signals of a given voxel with those of its nearest neighbors
(Zang et al., 2004; Zuo et al., 2013), which is measured by
Kendall’s coefficient of concordance (KCC). Abnormal ReHo
may be associated with pathological changes in the brain caused
by specific neuropsychitric diseases (He et al., 2007; Wu et al.,
2009; You et al., 2011). We were particularly interested in this
measure for three reasons: (a) as a data-driven method, ReHo
does not require an a priori hypothesis, which is appropriate
for exploratory analysis; (b) the test-retest reliability of ReHo is
well established. With a popular acquisition and preprocessing
pipeline, ReHo has been demonstrated to be a highly robust
and reliable index for mapping the local activity of the human
functional connectome (Zuo et al., 2013; Zuo and Xing, 2014);
and (c) ReHo has been used to identify brain functional
abnormalities in many brain disorders, such as Alzheimer’s
disease (AD) (He et al., 2007; Zhang et al., 2012), Parkinson’s
disease (PD) (Zeng et al., 2017; Liu et al., 2019), epilepsy (EP)
(Zeng et al., 2013, 2015), stroke (Liu et al., 2014; Zhao et al., 2018),
multiple sclerosis (MS) (Dogonowski et al., 2013; Wu et al., 2016),
bipolar disorder (BP) (Yao et al., 2018; Liu et al., 2020), major
depressive disorder (MDD) (Guo et al., 2011; Sun et al., 2018),
schizophrenia (SCZ) (Xu et al., 2015; Wang et al., 2018), autism
spectrum disorders (ASD) (Paakki et al., 2010; Shukla et al., 2010),
and attention deficit hyperactivity disorder (ADHD) (Cao et al.,
2006; Wang et al., 2013). Although candidate gene studies in
healthy and diseased populations have indicated the genetic bases
of ReHo (Yu et al., 2014; Zheng et al., 2017; Gou et al., 2018;
Shang et al., 2019), the molecular substrates underlying the ReHo
of spontaneous brain activity remain elusive.

Genome-wide association studies (GWASs) of neuroimaging
phenotypes suggest that resting-state brain functional
phenotypes derived from both fMRI (Elliott et al., 2018)
and electroencephalogram (Jawinski et al., 2019) are heritable,
although the latter did not find genome-wide significant hit
due to small sample size (n = 1877). These studies provide the
basis for further linking gene expression with resting-state brain
functional phenotypes, such as ReHo. Allen Human Brain Atlas
(AHBA) provides a new approach for linking gene expression
to neuroimaging phenotypes without stringent requirements for
sample size (Fornito et al., 2019). By projecting gene expression
data from postmortem human brains and neuroimaging data
from living human brains to the same standard space, spatial
correlation analysis between gene expression and neuroimaging
measurement across brain regions or tissue samples can identify
genes associated with neuroimaging phenotypes (Fornito et al.,
2019). With this approach, several studies have provided new
molecular insights into the neuroimaging phenotypes of both
healthy and diseased brains (Hawrylycz et al., 2015; Rittman
et al., 2016; Romme et al., 2017; Romero-Garcia et al., 2018;

Morgan et al., 2019). However, none of these studies have
investigated the association between gene expression and ReHo.

In humans, there are more than 20,000 genes, thousands of
which have unknown functions. Gene-wise spatial correlations
with neuroimaging phenotypes may face challenges not only
in correcting multiple comparisons but also in interpreting
significant genes with unknown functions. Weighted gene
coexpression network analysis (WGCNA) has been proposed to
cluster more than 20,000 genes into several dozen gene modules
based on the similarity of their spatial expression patterns
(Langfelder and Horvath, 2008). Using a module eigengene (ME)
to represent the gene expression profile of each module, one can
identify gene modules associated with neuroimaging phenotypes
by analyzing spatial correlations between ME expression and
neuroimaging phenotypes across brain regions, through which
the numbers of comparisons are greatly reduced. Regarding
the interpretability of significant gene modules, the functions
of each module (generally consisting of hundreds of genes)
can be investigated through a variety of enrichment analyses.
For example, with the RNA-seq data of various types of
purified human neocortical cells, one can identify the cell
type in which a gene module shows specific expression (Xu
et al., 2014). One can also investigate the enrichment of a
certain module for biological processes, molecular functions
and cellular components (Ashburner et al., 2000). Moreover,
one can identify genes shared by neuroimaging phenotypes
and brain disorders through enrichment analyses of phenotype-
related genes for GWAS results of neuropsychiatric diseases
(Gandal et al., 2018). These analyses may provide valuable insight
into the molecular mechanisms underlying the neuroimaging
abnormalities observed in these disorders.

In this exploratory study, we aimed to clarify the following
questions: (a) which gene modules show consistent spatial
correlations between gene expression and ReHo across
neocortical regions; (b) which ReHo-related gene modules
are specifically enriched in particular types of cells in the cerebral
cortex; (c) what biological processes, molecular functions and
cellular components are associated with these cell-type-specific
modules; and (d) which cell-type-specific ReHo-related gene
modules are related to common brain disorders. A schematic
summary of the study design is shown in Figure 1.

MATERIALS AND METHODS

Participants
After excluding participants with any neuropsychiatric illnesses,
contraindications for MRI examination, or imaging artifacts,
1101 right-handed healthy young Chinese Han participants (509
males and 592 females; mean age: 24 years, ranging from 18
to 30 years) were recruited from Tianjin Medical University
General Hospital (discovery sample: n = 409, 161 males and 248
females; mean age: 24 years, ranging from 18 to 30 years) and
Cancer Hospital (replication sample 1: n = 692, 348 males and
344 females; mean age: 24 years, ranging from 18 to 30 years).
The study protocol was approved by the Medical Research Ethics
Committee of Tianjin Medical University, and written informed
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FIGURE 1 | Schematic summary of the study design. This study comprised data preparation, WGCNA, cell-type-specific analysis and enrichment analysis. During
data preparation, three mean ReHo maps were obtained from three independent datasets, and a cortical gene transcription matrix was constructed from AHBA.
Both ReHo maps and the transcription matrix were assigned to neocortical regions from the HCP Atlas. WGCNA was used to cluster individual genes into gene
modules, and spatial correlation was then performed between the ReHo maps and the gene expression profile of each gene module. The significantly correlated
gene modules common to the three datasets were considered ReHo-related gene modules. Cell-type-specific analysis was performed for each ReHo-related gene
module based on the transcriptomic profiles of neurons, astrocytes, oligodendrocytes, microglia, and endothelial cells from the GSE73721 and GSE67835 series,
and the modules that were consistently related to a specific type of neocortical cells in both series were included in the following enrichment analysis. Finally, the
identified cell-type-specific modules were annotated by GO and brain disorder enrichment analysis to identify the functions of these modules and to establish their
relationships with brain disorders. GO, Gene Ontology; GSE, gene series expression; HCP, Human Connectome Project; ReHo, regional homogeneity; WGCNA,
weighted gene coexpression network analysis.

consent was obtained from each participant. To generalize our
findings to participants of other ethnicities, the data of 600
healthy young non-Chinese adults (replication sample 2: 297
males and 303 females; mean age: 29 years, ranging from 22 to
36 years) were obtained from the Human Connectome Project
(HCP) (Van Essen et al., 2013) (Supplementary Table 1).

MRI Data Acquisition
In Tianjin Medical University General Hospital and Cancer
Hospital, MRI data were acquired by using Discovery MR750
3.0-Tesla MR scanners (General Electric, Milwaukee, WI,
United States) with the same parameters. Tight but comfortable
foam padding was used to minimize head motion, and earplugs
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were used to reduce scanner noise. The rs-fMRI data were
acquired using the Gradient-Echo Single-Shot Echo-Planar
Imaging (GRE-SS-EPI) sequence with the following parameters:
repetition time (TR)/echo time (TE) = 2000/30 ms; field of
view (FOV) = 220 mm × 220 mm; matrix = 64 × 64; flip
angle (FA) = 90◦; slice thickness = 3 mm; gap = 1 mm; 36
interleaved transverse slices; and 180 volumes. All subjects were
instructed to keep their eyes closed, relax, move as little as
possible, think of nothing in particular, and stay awake during
fMRI scans. Sagittal 3D T1-weighted images were acquired
by brain volume sequence (TR/TE = 8.16/3.18 ms; inversion
time = 450 ms; FA = 12◦; FOV = 256 mm × 256 mm;
matrix = 256 × 256; slice thickness = 1 mm, no gap; 188 slices).
The HCP MRI data were collected by a customized 3.0-Tesla
MR scanner. The rs-fMRI data were acquired by the GRE-SS-EPI
sequence (TR/TE = 720/33.1 ms; FOV = 208 mm × 180 mm;
matrix = 104 × 90; FA = 52◦; slice thickness = 2 mm, no
gap; 72 transverse slices; and 1200 volumes), and the 3D-T1-
weighted images were acquired by the magnetization prepared
rapid acquisition gradient echo sequence (TR/TE = 2400/2.14 ms;
inversion time = 1000 ms; FA = 8◦; FOV = 224 mm × 224 mm;
matrix = 320 × 320; slice thickness = 0.7 mm, no gap; 260
sagittal slices).

MRI Data Preprocessing
All fMRI data were preprocessed with the same procedures.
The first 5 volumes were discarded to allow signals to reach
equilibrium and to ensure that the participants had adapted
to scanning noise. The remaining volumes were corrected
for intra-volume temporal differences using sinc-interpolation.
Inter-volume head motion was then corrected using rigid-
body transformations. After removing non-brain tissues from
functional and structural images, functional images were
co-registered to corresponding structural images using the
boundary-based registration method. Structural images were
spatially normalized to the Montreal Neurological Institute
(MNI) space, and functional images were normalized to the
MNI space using the transformation parameters derived from
structural image normalization and were resampled to 3-mm
isotropic voxels. Several sources of variance were regressed
out from the functional images, including the frame-wise
displacement (volume-to-volume changes in head position),
linear drift, Friston’s 24 head motion parameter, and signals from
the white matter and ventricles.

Individual-Level zReHo Calculation for
Each Voxel
For each gray matter voxel of each subject, ReHo was defined as
the KCC of spontaneous brain activity between this voxel and its
nearest 26 neighboring voxels (Zang et al., 2004). To improve the
normality and reliability of this measure across subjects, a zReHo
values was calculated for each voxel by subtracting the mean
ReHo values and dividing it by the standard deviation of all gray
matter voxels (Zuo et al., 2013). The resulting zReHo map of each
subject was spatially smoothed with an 8 mm × 8 mm × 8 mm
full width at half-maximum Gaussian kernel.

Group-Level zReHo Calculation for Each
Brain Region
For each of the three groups (one discovery group and
two replication groups), the corresponding zReHo map was
calculated by voxel-wised one-sample t-test using SPM81 within
the gray matter mask, and the mean zReHo maps of each
of the three groups were also calculated and are provided in
Supplementary Figure 1. Brain regions of interest were defined
based on the HCP Atlas (HCP’s multi-modal parcelation version
1.0, HCP_MMP1.0), which divides the human cerebral cortex
into 360 non-overlapping regions (Glasser et al., 2016). In
each group, we calculated the mean zReHo for each region by
averaging the zReHo values of all voxels of that region in the
corresponding zReHo map. Thus, we obtained the mean zReHo
values for each of the 360 cerebral cortical regions in each of
the three groups.

Gene Expression Data Processing
The AHBA provided six donated postmortem brains with 3702
densely sampled expression data of more than 20,000 genes
detected by 58,692 probes. To avoid biases from gross gene
expression dissimilarities between brain regions, we excluded
1998 samples from subcortical nuclei, brainstem and cerebellum,
and kept 1704 cerebral cortical samples. We followed a
standardized pipeline proposed for AHBA data processing to
link gene expression and neuroimaging phenotypes (Arnatkevic
Iute et al., 2019). Specifically, the Re-Annotator toolkit v1.0
was used to update probe-to-gene annotations with the up-to-
date gene symbol ID and name (Arloth et al., 2015), and the
resulting 45,821 probes (20,232 genes) were used for further
processing. After intensity-based filtering, 31,977 probes (15,746
genes) with expression values exceeding the background in at
least 50% of the samples were preserved. After probe selection,
10,027 probes showing the highest correlation with RNA-seq
gene expression were preserved to represent the expression of
the corresponding 10,027 genes. The 10,027 genes exhibited
relatively high reproducible expression patterns across brain
structures between donors, indicating that they are suitable
for investigating correlations between expression data from
postmortem donors and neuroimaging data from living humans.
For each AHBA brain, each tissue sample was assigned to the
nearest neocortical region of the HCP Atlas with a recommended
distance threshold of less than 2 mm (Arnatkevic Iute et al.,
2019). In addition, samples that were assigned to a hemisphere
that differed from the annotations provided with their MNI
coordinates were excluded. After sample assignment, 820 out of
1704 cortical tissue samples were matched to brain regions in
the HCP Atlas (Supplementary Table 2). For each brain region
with more than one tissue sample, the mean gene expression
values of these samples was defined as the expression values of
the gene in that region. Due to the lack of any matched tissue
samples, 76 regions were excluded from further analysis. Thus,
we obtained the expression values of each gene in each of the
284 regions. Scaled robust sigmoid normalization was applied

1http://www.fil.ion.ucl.ac.uk/spm
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to remove donor-specific variability in gene expression (Fulcher
et al., 2013). Finally, a gene transcription matrix of 284 × 10,027
regions × genes was constructed. The code for implementing the
AHBA gene expression data processing steps can be downloaded
from https://github.com/BMHLab/AHBAprocessing.

Calculation of Gene Modules
Based on the gene transcription matrix of 284 × 10,027
regions × genes, WGCNA was used to identify gene modules
and a gene module was defined as a set of genes with similar
expression profile across brain regions (n = 284). For each
brain region (n = 284), we performed principal component
analysis (PCA) of the expression profiles of genes of each module
(n = 30) and defined the first component as the module eigengene
(ME) to represent the gene expression profile of this module.
Specifically, according to the criterion of approximate scale-free
topology (fit index = 0.9), a soft thresholding power of 7 was
chosen to transform the correlation matrix into an adjacency
matrix. Then, the topological similarity of gene expression was
calculated using the adjacency matrix. A hierarchical clustering
algorithm was used to generate a hierarchical clustering tree
(dendrogram) of genes. Gene modules with similar expression
profiles were obtained with dynamic tree-cutting with the
following parameters: a minimum module size of 50 genes; a deep
split of 2; and a height threshold of 0.1. The ME, representing
the expression profile of a module, was defined as the first
principal component of each module. Finally, we obtained ME
values of each gene module (n = 30) of each brain region
(n = 284) from AHBA data.

Identification of ReHo-Related Gene
Modules
Based on the ME values of the 30 modules × 284 brain
regions and zReHo values of the same 284 brain regions, spatial
correlation was performed between ME and zReHo across these
brain regions for each of the 30 modules, respectively. Since
brain regions have different ME values of the same gene module,
we have considered the transcriptional variation of each gene
module between brain regions. However, the spatial correlation
was performed between gene expression and ReHo data derived
from different individuals, only genes with similar expression
profiles across individuals can be identified by this approach.
Because the ME of all 30 gene modules deviated from a normal
distribution (Supplementary Table 3), the ReHo-related gene
modules were identified by the spatial Spearman correlation
between the ME of each module and zReHo across the 284
neocortical regions. The same Bonferroni method was used
to correct for multiple comparisons (Pc < 0.05, equal to an
uncorrected P < 0.05/30 = 0.0017) in both the discovery and
the two replication samples. The criterion for replication was
defined as statistically significant in both the discovery and the
two replication samples.

Cell-Type-Specific Analysis
We performed cell-type-specific analysis for each ReHo-related
gene module. The GSE73721 and GSE67835 series from normal

adult human neocortices include the transcriptomic profiles of
purified neurons, astrocytes, oligodendrocytes, microglia, and
endothelial cells (Darmanis et al., 2015; Zhang et al., 2016).
RNA-seq data of the two series were separately processed using
the following steps: (a) sequencing files downloaded from the
Sequence Read Archive (SRA) database2 were converted to
Fastq files; (b) Prinseq v0.20.4 (Schmieder and Edwards, 2011),
FASTQC v0.11.83, Trim Galore v0.6.4_dev4 and Cutadapt v2.7
(Martin, 2011) were used to trim and filter reads and to identify
and remove adaptors; (c) reads were aligned to the hg38 genome
with STAR v2.7.3a (Dobin et al., 2013) and converted to counts
using HTSeq v0.11.2 (Anders et al., 2015); (d) reads per kilobase
per million (RPKM) values were calculated following the EdgeR
pipeline v3.30.3 (Robinson et al., 2010; McCarthy et al., 2012);
and (e) the averaged RPKM values of each neocortical cell type
were used in the specificity index (SI) analysis to determine the
specific neocortical cell type for which the Reho-related modules
were enriched using pSI v1.15. Specifically, RPKM values from
one neocortical cell type were compared to those of the other cell
types across genes. For each comparison between cell types, the
genes were ranked from the highest to the lowest fold changes.
The SI for each gene was calculated as the average rank across
all comparisons. A P-values was assigned to each SI values
via permutation testing, resulting in a pSI values, representing
how likely it was that a gene was specifically expressed in a
given cell type relative to other cortical cells. A pSI threshold
of 0.05 was used to generate a cell-type-enriched gene list.
Fisher’s exact test was used to evaluate the significance of the
overlap between the candidate gene list in the module and the
cell-type-specific genes as the background list. The Bonferroni
method was used to correct for multiple comparisons (5 cell
types and 14 ReHo-related modules) (Pc < 0.05, uncorrected
P < 0.05/5/14 = 7.14 × 10−4).

Gene Ontology Enrichment Analysis
To characterize the possible biological processes, molecular
functions and cellular components of each ReHo-related
cell-type-specific gene module, GO enrichment analysis was
performed with WebGestalt v20196 using Fisher’s exact test with
FDR correction (qc < 0.05) (Liao et al., 2019).

Enrichment Analysis for Common Brain
Disorders
Associations between ReHo-related cell-type-specific gene
modules and common brain disorders were identified with
MAGMA v1.07b, a software for gene analysis and generalized
gene-set analysis of GWAS data (de Leeuw et al., 2015). The
single nucleotide polymorphism (SNP) P-values of the GWAS
summary statistics of common brain disorders (AD, PD, EP,
Stroke, MS, BD, MDD, SCZ, ADHD and ASD) were obtained
from previous studies (Pankratz et al., 2012; Beecham et al., 2013;

2https://www.ncbi.nlm.nih.gov/sra
3https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
4https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
5http://genetics.wustl.edu/jdlab/psi_package/
6http://www.webgestalt.org/option.php
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Ripke et al., 2013; Autism Spectrum Disorders Working Group
of The Psychiatric Genomics Consortium, 2017; International
League Against Epilepsy Consortium on Complex Epilepsies,
2018; Malik et al., 2018; Martin et al., 2018; Pardinas et al.,
2018; International Multiple Sclerosis Genetics Consortium,
2019; Jansen et al., 2019; Kunkle et al., 2019; Stahl et al.,
2019; Supplementary Table 4). The European panel of the
1000 Genomes phase 3 data were used as reference dataset to
account for linkage disequilibrium (LD) between SNPs. The SNP
locations in the data were determined in reference to human
genome build 37 or 36. MAGMA-based enrichment basically
consists of two steps: gene analysis and gene-set analysis.

The gene analysis followed a multiple linear principal
component regression model to project the SNP P values matrix
for a gene onto its principal components, which were used
as predictors for the brain disorders in the linear regression
model to calculate a gene P values. The gene P values was
then converted to Z values to improve normality, which reflects
the correlation strength of each gene with each brain disorder.
In addition, a gene-gene correlation matrix was calculated to
account for the dependency between genes in the following
gene-set analysis.

In the gene-set analysis, each gene set consisted of the genes
of each ReHo-related cell-type-specific module and represented
as binary indicator variables, coded 1 for disease-related genes
in that gene module and 0 otherwise. General linear regression
analysis was performed at the gene level to test whether genes
in the module were more strongly associated with brain diseases
than genes outside the module while correcting for gene size,
gene density and the minor allele count. Then, the gene-set
P values were obtained and subjected to Bonferroni correction
(the number of comparisons corresponding to the ReHo-related
cell-type-specific gene modules) to assess the enrichment of the
GWAS signal for each gene module. Moreover, the gene P values
of the significant enrichment module were also subjected to
Bonferroni correction (accounting for the total number of genes
in the module) to identify the significant genes within each
module for brain disorders.

RESULTS

ReHo-Related Gene Modules
Based on the similarity of gene expression across brain regions,
WGCNA divided the 10,027 genes into 30 non-overlapping
gene modules (Supplementary Figure 2). Spatial correlations
identified 14 significant ReHo-related gene modules across
neocortical samples in the discovery sample of 409 Chinese
subjects. In a replication sample of 692 Chinese subjects, 15
significant ReHo-related gene modules were identified across
the neocortical samples, and 14 of these modules were identical
to those in the discovery cohort. Furthermore, in another
replication sample of 600 non-Chinese people, 14 out of the 20
gene modules were repeated. Thus, the 14 gene modules common
to the three cohorts were considered as candidate ReHo-related
gene modules (Figure 2 and Supplementary Table 5).

Cell-Type Specificity of ReHo-Related
Gene Modules
In all 14 modules, only five ReHo-related gene modules showed
consistent enrichment for a specific type of neocortical cells in
both the GSE73721 and GSE67835 series, and these modules
were deemed cell-type-specific modules. Specifically, the genes
of the blue module were enriched in neurons and endothelial
cells (Pc = 6.31 × 10−9 in GSE73721, and Pc = 7.73 × 10−4

in GSE67835 for neuron; Pc = 1.18 × 10−2 in GSE73721, and
Pc = 1.87 × 10−2 in GSE67835 for endothelial cell); the genes of
the brown module were enriched in neurons (Pc = 2.17 × 10−20

in GSE73721, and Pc = 1.35 × 10−3 in GSE67835); the genes of
the red module were enriched in astrocytes (Pc = 6.02 × 10−219

in GSE73721, Pc = 1.29 × 10−68 in GSE67835); and the genes of
the dark orange and yellow modules were enriched in microglia
(Pc = 8.44 × 10−105 in GSE73721, Pc = 5.43 × 10−102 in
GSE67835 for the dark orange module; Pc = 8.22 × 10−3

in GSE73721, Pc = 1.17 × 10−2 in GSE67835 for the yellow
module) (Figure 3 and Supplementary Table 6). However,
none of these modules showed significant specific expression in
oligodendrocytes in either series. The ME values of the brown
and yellow modules showed a positive correlation with zReHo
values across neocortical regions (r = 0.51, Pc = 5 × 10−19

for brown module; r = 0.21, Pc = 0.02 for yellow module);
however, the ME values of the blue, red and dark orange
modules showed negative correlations with zReho values across
neocortical regions (r = −0.38, Pc = 1 × 10−9 for blue module;
r = −0.23, Pc = 2 × 10−3 for red module; r = −0.32, Pc = 7 × 10−7

for dark orange module) in both the discovery sample (Figure 4)
and the two replication samples (Supplementary Figures 3, 4).

Among the top hit genes obtained from GWAS of resting-
state fMRI phenotypes, INPP5A in blue module that has been
associated with resting-state activity of the prefrontal cortex in
the UK Biobank paper (Elliott et al., 2018) was also associated
with zReHo, a measure of resting-state brain activity.

GO Enrichment for Cell-Type-Specific
ReHo-Related Gene Modules
The genes of brown module (neuron-endothelial module)
were significantly enriched for transporter complexes
(qc = 1.3 × 10−3) and transcription factor activity
(qc = 7.3 × 10−3) (Figure 5A). The genes of blue module (neuron
module) were associated with signal release (qc = 1.8 × 10−2),
the synaptic membrane (qc = 5.9 × 10−3) and passive
transmembrane transporter activity (qc = 4.1 × 10−2)
(Figure 5B). The genes of red module (astrocyte module)
were enriched for cellular amino acid metabolic processes
(qc = 1 × 10−4), the extracellular matrix (qc = 1.2 × 10−2)
and sulfur compound binding (qc = 3 × 10−4) (Figure 5C).
The genes of dark orange module (microglial module) were
associated with leukocyte activation involved in inflammatory
response (qc = 1.0 × 10−13), major histocompatibility complex
(MHC) protein complexes (qc = 5.6 × 10−9) and antigen binding
(qc = 2.3 × 10−3) (Figure 5D). The genes of yellow module
(microglial module) were associated with ribose phosphate
biosynthetic processes (qc = 2.2 × 10−4) and the mitochondrial
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FIGURE 2 | Identification of ReHo-related gene modules. The original 30 modules in the discovery sample and the two replication samples. Color bar denotes
correlation coefficients between ME and zReHo. Warm color represents positive correlations and cold color represents negative correlations with correlation
coefficients and Bonferroni-corrected P values listed for each module. ME, module eigengene; zReHo, z transformed regional homogeneity.

inner membrane (qc = 3.2 × 10−3) (Figure 5E). Other
significantly enriched GO terms of the five cell-type-specific
modules are listed in Supplementary Table 7.

Brain Disorder Enrichment for
Cell-Type-Specific ReHo-Related Gene
Modules
Since ReHo abnormalities have been reported in brain disorders,
enrichment was applied to investigate whether these cell-type-
specific ReHo-related gene modules are associated with genetic
susceptibility for common brain disorders. Among the 10
common brain disorders considered herein, only the microglial
module was significantly enriched for multiple sclerosis and
Alzheimer’s disease (MAGMA gene-set Pc values of 8.26 × 10−3

and 1.88 × 10−4, respectively, accounting for the 5 cell-type-
specific modules) (Figure 6A and Supplementary Table 8). The
other two GWAS summary statistics of multiple sclerosis and
Alzheimer’s disease with different sample sizes from previous
analysis were further tested to validate our findings. After
Bonferroni correction for 5 cell-type-specific modules, the
microglial module again exhibited significant associations with
multiple sclerosis and Alzheimer’s disease (MAGMA gene-set Pc

values of 3.12 × 10−2 and 1.78 × 10−3, respectively) (Figure 6B
and Supplementary Table 8).

The comparison of MAGMA gene P values against a
Bonferroni-corrected threshold of 0.05/94 = 5.32 × 10−4

in the microglial module revealed that the significant genes
associated with MS were interferon gamma-inducible protein 30
(IFI30), regulator of G-protein signaling 1 (RGS1), and cluster
of differentiation 86 (CD86) in both MS GWAS summaries.
Comparison against a threshold of 0.05/101 = 4.95 × 10−4

in the microglial module revealed that the significant genes
associated with AD were membrane spanning 4-domains A4A
(MS4A4A), human leukocyte antigen-DR alpha (HLA-DRA),
triggering receptor expressed on myeloid cells 2 (TREM2),
human leukocyte antigen-DR beta 5 (HLA-DRB5) and cluster
of differentiation 33 (CD33) in both AD GWAS summaries
(Supplementary Table 9).

DISCUSSION

This study identified five cell-type-specific gene modules
associated with ReHo. The neuron-endothelial module was
enriched for transporter complexes, the neuron module for
the synaptic membrane, the astrocyte module for amino acid
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FIGURE 3 | Cell-type-specific analyses for ReHo-related modules in the GSE73721 and GSE67835 series. The size of a given circle corresponds to the
cell-type-specific enrichment -log10 Bonferroni-corrected P-values for each module. Solid red indicates significant enrichment in both series, faint red indicates
significant enrichment in only one series, and white indicates non-significant in neither series. GSE, gene series expression; ReHo, regional homogeneity.

metabolism, and the microglial modules for leukocyte activation
and ribose phosphate anabolism, indicating that neurons,
astrocytes, microglia and endothelial cells are all associated
with the ReHo of spontaneous brain activity. We also found
that the ReHo-related microglial module was enriched for MS
and AD, indicating that the molecular pathology of microglial
cells is a possible mechanism underlying ReHo abnormalities
in both diseases.

Regional homogeneity is a measure of the local
synchronization of BOLD signals among neighboring voxels
(Zang et al., 2004), and the BOLD signal is a reflection of
neurovascular coupling linking neural firing to cerebral blood
flow changes to accommodate changing energy demands during
brain activity (Metea and Newman, 2006). Neurovascular
coupling depends on the structure and function of the
neurovascular unit consisting of neurons, astrocytes and
vessel endothelial cells. The associations between ReHo and
gene expression in the neuron, astrocyte and neuron-endothelial
modules are consistent with the neurovascular coupling theory
of BOLD signals. In this study, we identified two sets of genes
significantly expressed in neurons that exert different modulatory
effects on the ReHo of spontaneous brain activity. The higher
expression of the brown module related to transporter complexes
and ligand-activated transcription factor activity corresponds
to higher ReHo; however, the higher expression of the blue
module related to the formation of the synaptic membrane,
signal release, and passive transmembrane transporter activity
corresponds to lower ReHo. These findings indicate that the
ReHo of spontaneous brain activity may be modulated by

neuron-related genes with different functions. In addition, the
endothelial component in the blue module may also account
for this difference. Astrocytes coordinate information exchange
between neurons and vessels and act as a hub for neurovascular
coupling (Filosa et al., 2016). We found that an astrocyte module
enriched for extracellular matrix formation, sulfur compound
binding, and amino acid metabolic processes was associated with
ReHo, indicating that it is not only gene expression in neurons
but also expression in astrocytes that may play an important role
in modulating the ReHo of spontaneous brain activity.

A novel finding of this study was the association between
microglia-related genes and the ReHo of spontaneous brain
activity. Microglia in the central nervous system are responsible
for regulating the immune response involving antigen
presentation, debris phagocytosis and cytokine production
(Sasaki, 2017). The significant enrichment of the dark orange
module for the MHC, antigen binding and leukocyte activation
was consistent with the immune inflammatory role of microglia.
The yellow module was also specifically expressed in microglia
but with different modulatory effects in ReHo compared with
the dark orange module. The enrichment of ribose phosphate
biosynthetic processes and the mitochondrial inner membrane
observed for the yellow module may indicate that genes in this
module may participate in adenosine triphosphate synthesis
in mitochondria for energy supplementation to microglia.
Interindividual and interregional variations in microglia-related
gene expression will influence the function of microglia, resulting
in individual and regional differences in the production of
cytokines and the removal of free radicals (Kaur et al., 2017).
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FIGURE 4 | The spatial correlation between the ME and zReHo of each cell-type-specific module with the correlation coefficient and Bonferroni-corrected P values.
(A) Brown module, (B) blue module, (C) red module, (D) dark orange module, (E) yellow module in the discovery sample. ME, module eigengene; zReHo, z
transformed regional homogeneity.

Both cytokines and free radicals influence components of the
neurovascular unit and, thus, ReHo.

In the enrichment analysis for common brain disorders, one
significant result was the enrichment of the microglial module for
multiple sclerosis, which was consistent with previous findings
of microglial abnormalities in multiple sclerosis (Voet et al.,
2019). In early active multiple sclerosis, microglia predominantly
display a proinflammatory phenotype and express molecules
involved in oxidative injury, phagocytosis, T cell stimulation,
antigen presentation, and iron metabolism (Zrzavy et al.,
2017). In addition to the active lesions, a similar microglial
activation pattern was observed for the gene expression of
different surface markers at the site of lesion expansion
in chronic MS lesions (Frischer et al., 2009; Zrzavy et al.,
2017). Furthermore, microglial modules (clusters of activated
microglia) are observed in the white matter in the shadow
of plaques in MS patients, which are deemed pre-active MS
lesions (Ramaglia et al., 2012; Singh et al., 2013). PET using
18-kDa translocator protein (TSPO)-binding radioligands can
detect MS-related pathology at the molecular level in vivo.
Increased TSPO binding is observed in scattered areas related
to demyelinating lesions in relapsing-remitting MS patients,

which further supports neuroinflammation and neuronal injury
involving activated microglia for MS (Airas et al., 2015). In
the dark orange microglial module, three genes associated
with MS were identified in both GWAS datasets. IFI30 plays
a crucial role in MHC class II-restricted antigen processing,
and its expression is greatly enhanced on microglia in active
demyelinating lesions of multiple sclerosis (Maric et al., 2001;
Satoh et al., 2008). Previous studies have shown the expression
of CD86 in microglia within brain lesions in multiple sclerosis
(Windhagen et al., 1995). Moreover, the expression of CD86 is
influenced by local variants correlated with disease susceptibility
in the pathogenesis of multiple sclerosis (Smets et al., 2018).
Regulators of G-protein signaling (RGS) proteins, especially
RGS1, play a key role in the negative regulation of G-protein-
coupled receptor signaling (Neves et al., 2002). There is a
growing body of literature that suggests that RGS1 is expressed
in microglia (Atwood et al., 2011). RGS1 presents a close
relationship with neuroinflammation by responding to diverse
chemokines (Balashov et al., 1999) and was recently designated as
an MS susceptibility locus by the International Multiple Sclerosis
Genetics Consortium (International Multiple Sclerosis Genetics
Consortium, 2010).
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FIGURE 5 | The top enriched Gene Ontology terms for each cell-type-specific module. (A) neuron (brown) module, (B) neuron-endo (blue) module, (C) astrocyte
(red) module and (D,E) microglia (darkorange and yellow) modules. The dashed line indicates the FDR-corrected threshold. Astro, astrocytoma; BP, biological
process; CC, cellular component; Endo, endothelium; Micro, microglia; FDR, the corrected P values with the false discovery rate method; MF, molecular function;
Neuro, neuron; Oligo, oligodendrocyte.

Our enrichment analysis also provided further evidence
that the dark orange microglial module was associated
with genetic susceptibility for AD (Hansen et al., 2018).
In addition to the characteristic histopathological findings
of extracellular amyloid-β (Aβ) plaques and intracellular
neurofibrillary tangles (NFTs), the cumulative evidence supports
microglia-mediated neuroinflammation as a major contributor
to the neurodegenerative processes and cognitive deficits
observed in AD (Heneka et al., 2015). Histopathological
studies showing activated microglia surrounding Aβ plaques
and NFTs suggest a relationship between neuroinflammation
and AD pathology (Rozemuller et al., 1992; Sheffield et al.,
2000). Neuroinflammation in AD is recognized as a ‘double-
edged sword’ in which microglia exhibit both neuroprotective
and neurotoxic effects (Hansen et al., 2018). In the initial
phase of AD, moderate activation of microglia exerts an
anti-inflammatory function, promoting Aβ clearance and
eliminating reactive oxygen and nitrogen species (ROS/RNS)

(Ahmad et al., 2019). With the progression of AD, overactivated
microglia secrete proinflammatory mediators and upregulate
oxidative stress, which may exacerbate Aβ deposition and
NFT formation, ultimately leading to progressive neuronal and
synaptic damage (Ahmad et al., 2019). By using TSPO to reflect
microglial activation, PET imaging allows the visualization and
quantification of AD-related neuroinflammatory changes in vivo
(Varley et al., 2015). Despite conflicting results, it is generally
accepted that increased TSPO radioligand binding occurs
across brain regions and is correlated with tau aggregation and
amyloid deposition (Dani et al., 2018; Edison et al., 2018), which
further supports the microglia-mediated neuroinflammation
hypothesis for AD. In the dark orange microglial module, a total
of five genes associated with AD were identified in both GWAS
datasets, most of which were established AD-susceptibility genes
(Naj et al., 2011; Guerreiro et al., 2013; Lambert et al., 2013).
MS4A4A is a member of the MS4A gene family and is highly
expressed on the plasma membrane in microglia in the brain;
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FIGURE 6 | The enrichment of cell-type-specific modules in ten common
brain disorders. (A) The significant finding is that the microglial module is
significantly enriched for MS and AD. (B) The discovery and replication
enrichment for MS and AD. The dashed line indicates the
Bonferroni-corrected threshold for 5 cell-type-specific modules. AD,
Alzheimer’s disease; ADHD, attention deficit hyperactivity disorder; ASD,
autism spectrum disorders; BP, bipolar disorder; EP, epilepsy; MDD, major
depressive disorder; MS, multiple sclerosis; SCZ, schizophrenia; PD,
Parkinson’s disease.

its functions are still poorly understood, but possible roles in
protein trafficking and clathrin-dependent endocytosis have
been indicated (Cruse et al., 2015). Previous evidence suggested
that the expression of MS4A4A was increased in the brain tissue
of autopsied AD patients (Allen et al., 2012). TREM2 lies in a
cluster of TREM family genes and is uniquely expressed on the
surface of microglia in the brain (Gao et al., 2017). Mounting
evidence indicates that TREM2 may modulate AD-related
neuropathology by suppressing the inflammatory response,
increasing Aβ phagocytosis, ameliorating tau pathology and
promoting neuronal survival, thus contributing to neuroimmune
homeostasis (Yeh et al., 2017). The HLA-DRA and HLA-DRB5
genes are members of MHC class II, a highly polymorphic region
involved in the immune response and histocompatibility; both
of these genes are predominantly expressed by microglia in

the brain and might play a role in susceptibility to AD (Zhang
et al., 2015; Villegas-Llerena et al., 2016; Yokoyama et al., 2016).
CD33 belongs to the sialic acid-binding immunoglobulin-like
lectin (Siglec) family and is a myeloid cell receptor that is mainly
expressed by microglia in the brain (Jiang et al., 2014). The
expression of CD33 is elevated in AD patients’ brains, where it
is thought to impair Aβ clearance via immunoreactive microglia
(Bradshaw et al., 2013; Griciuc et al., 2013).

There are several limitations to our study. First, there
are currently no AD and MS patients for whom both gene
expression data and ReHo data are available, which prevents
us from establishing a causal link between the expression of
microglia-related genes and ReHo abnormalities in these two
brain disorders. Further replication in patients with MS and
AD may provide us with a more complete understanding of the
effects of the ReHo-related microglial module on both disorders.
Second, for each gray matter voxel of each subject, ReHo is
a measure of the temporal coherence of the fluctuation of the
mean BOLD signals of this voxel with its nearest 26 neighboring
voxels. For each time point, the hemodynamic signal of each
voxel is the mean signal of this voxel during a period of
TR. Although we cannot exclude the effect of the overlapping
signals on ReHo, the similar results derived from fMRI data
with different scan parameters (discovery sample and replication
sample 1: TR = 2000 ms, voxel size = 3.4 × 3.4 × 3.0 mm
with 1 mm gap; replication sample 2: TR = 720 ms, voxel
size = 2.0 × 2.0 × 2.0 mm without gap) indicate a relatively
small effect of the overlapping signals on ReHo. Third, the zReHo
values of neocortical regions used for spatial correlation analysis
were derived from the group-level zReHo map, which may loss
the information of individual variation. The best way to establish
the connection between ReHo and gene expression in a given
brain region is to observe their correlation in a large number
of individuals with both gene expression data of this region and
brain fMRI data to calculate ReHo of this region. However, no
such large-scale data are available so far, even for a single brain
region. An alternative but suboptimal way is to investigate the
spatial correlation between ReHo and gene expression across
brain regions in a single subject. Although ReHo values of
many brain regions can be easily obtained from fMRI data,
gene expression data of many brain regions are available only
in a few datasets, such as the AHBA provided six donated
postmortem brains with 3702 densely sampled expression data
of more than 20,000 genes detected by 58,692 probes. An ideal
strategy is to investigate the spatial correlation between ReHo and
gene expression derived from the same AHBA subject; however,
the fMRI data were not acquired in the AHBA data. Based
on the fact that the expression patterns of some genes across
brain structures are conserved between individuals (Hawrylycz
et al., 2015), several pioneer studies have studied the spatial
correlations between the gene expression of postmortem AHBA
brains and neuroimaging measures of living human brains and
found reasonable associations between gene expression and brain
imaging phenotypes (Rittman et al., 2016; Romme et al., 2017;
Romero-Garcia et al., 2018; Morgan et al., 2019). In this study,
we found that the microglial module was selectively enriched
for multiple sclerosis and Alzheimer’s disease rather than other
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brain disorders, which are well consistent with previous findings
(Hansen et al., 2018; Voet et al., 2019). In summary, although
the spatial correlation analysis is not the best way to investigate
the correlation between ReHo and gene expression, it can
still provide useful information about the association of gene
expression with ReHo.

Although transcription-neuroimaging spatial correlation
analysis identified 14 gene modules that were significantly
associated with ReHo in both Chinese and non-Chinese samples,
more gene modules (n = 20) were associated with ReHo in
non-Chinese than in Chinese (n = 14 for the discovery sample
and n = 15 for the replication sample 1). The reasons for this
discrepancy between different ethnic populations are complex
and are so far known to include (1) the ethnic difference in the
association between gene expression and ReHo; (2) the difference
in ethnic consistency since three of the six AHBA donors are
American Caucasian, but none of them are Chinese; and (3) the
differences in spatial and temporal resolutions between the two
populations, which may influence the resulting ReHo values.

CONCLUSION

In conclusion, this transcription-neuroimaging association study
revealed that the ReHo of spontaneous brain activity was
related to gene expression in cell-type-specific modules of
neurons, astrocytes, microglia and epithelial cells, indicating a
complex cellular architecture of ReHo. Moreover, we linked gene
expression in the microglial module to MS and AD, which may
provide possible molecular substrates for ReHo abnormalities in
both brain disorders.
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Supplementary Figure 3 | The spatial correlation between ME and zReHo of
each cell-type-specific module with correlation coefficient and
Bonferroni-corrected P values in replication sample 1. (A) Brown module, (B) blue
module, (C) red module, (D) dark orange module, (E) yellow module. ME, module
eigengene; zReHo, z transformed regional homogeneity.

Supplementary Figure 4 | The spatial correlation between ME and zReHo of
each cell-type-specific module with correlation coefficient and
Bonferroni-corrected P values in replication sample 2. (A) Brown module, (B) blue
module, (C) red module, (D) dark orange module, (E) yellow module. ME, module
eigengene; zReHo, z transformed regional homogeneity.

Supplementary Figure 5 | The group-level zReHo of three cohorts mapping on
cortical surface of the HCP Atlas. (A) discovery sample, (B) replication sample 1,
(C) replication sample 2. HCP, Human Connectome Project; L, left hemisphere; R,
right hemisphere; zReHo, z transformed regional homogeneity.

Supplementary Figure 6 | The ME values of cell-type-specific modules mapping
on cortical surface of the HCP Atlas. (A) ME brown, (B) ME blue, (C) ME red, (D)
ME darkorange, (E) ME yellow. HCP, Human Connectome Project; L, left
hemisphere; ME, module eigengene; R, right hemisphere.

Supplementary Table 1 | The 820 neocortical sample coordinates with the
corresponding HCP brain regions. HCP, Human Connectome Project; MNI,
Montreal Neurological Institute; Parcel Index, parcelation index.

Supplementary Table 2 | The normality test results of ME for all modules across
neocortical regions. Note: The Kolmogorov-Smirnov test was applied to check the
normality of ME for modules across neocortical regions. ME, module eigengene.

Supplementary Table 3 | The GWAS datasets of common brain disorders
involved in this study. GWAS, genome-wide association studies; IGAP,
International Genomics of Alzheimer’s Project; ILAE, International League Against
Epilepsy; IMSGC, International Multiple Sclerosis Genetics Consortium;
MEGASTROKE, International Stroke Genetics Consortium; PGC, Psychiatric
Genomics Consortium; iPSYCH, Integrative Psychiatric Research Consortium.

Supplementary Table 4 | The significant ReHo-related modules in the discovery
sample and replication samples. Note: the significant modules common to the
three samples are labeled with bold font. r, correlation coefficients between ME
and zReHo; Pc, Bonferroni-corrected P values; ReHo, regional homogeneity.

Supplementary Table 5 | The results of cell-type-specific enrichment analysis in
two GSE samples. The significant cell-type-specific ReHo-related modules in both
GSE samples are labeled with bold font. Astro, astrocytoma; Endo, endothelium;
GSE, gene series expression; Micro, microglia; Neuro, neuron; Oligo,
oligodendrocyte; Pc, Bonferroni-corrected P values; ReHo, regional homogeneity.
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Supplementary Table 6 | The significant GO terms in ReHo-related
cell-type-specific modules. BP, biological process; CC, cellular component; FDR,
the corrected P values with the false discovery rate method; GO, gene ontology;
MF, molecular function; ReHo, regional homogeneity.

Supplementary Table 7 | The enrichment results for 10 common brain disorders
in this study. The significant modules enriched for brain disorders are labeled with
bold font. AD, Alzheimer’s disease; ADHD, attention deficit hyperactivity disorder;
ASD, autism spectrum disorder; BP, bipolar disorder; IGAP, International
Genomics of Alzheimer’s Project; ILAE, International League Against Epilepsy;
IMSGC, International Multiple Sclerosis Genetics Consortium; iPSYCH, Integrative

Psychiatric Research Consortium; MDD, major depressive disorder;
MEGASTROKE, International Stroke Genetics Consortium; MS, multiple Sclerosis;
PD, Parkinson’s disease; PGC, Psychiatric Genomics Consortium; Pc,
Bonferroni-corrected P values; SCZ, schizophrenia.

Supplementary Table 8 | The MAGMA gene level analysis results in the microglial
module for AD and MS. The significant genes common to both discovery and
replication GWAS datasets are labeled with bold font. AD, Alzheimer’s disease;
IGAP, International Genomics of Alzheimer’s Project; IMSGC, International Multiple
Sclerosis Genetics Consortium; MAGMA, multi-marker analysis of genomic
annotation; MS, multiple sclerosis.
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