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Breast, ovarian, and endometrial cancers have a major impact on mortality in women.

These tumors share hormone-dependent mechanisms involved in female-specific

cancers which support tumor growth in a different manner. Integrated computational

approaches may allow us to better detect genomic similarities between these different

female-specific cancers, helping us to deliver more sophisticated diagnosis and precise

treatments. Recently, several initiatives of The Cancer Genome Atlas (TCGA) have

encouraged integrated analyses of multiple cancers rather than individual tumors. These

studies revealed common genetic alterations (driver genes) even in clinically distinct

entities such as breast, ovarian, and endometrial cancers. In this study, we aimed to

identify expression similarity signatures by extracting common genes among TCGA

breast (BRCA), ovarian (OV), and uterine corpus endometrial carcinoma (UCEC) cohorts

and infer co-regulatory protein–protein interaction networks that might have a relationship

with the estrogen signaling pathway. Thus, we carried out an unsupervised principal

component analysis (PCA)-based computational approach, using RNA sequencing data

of 2,015 female cancer and 148 normal samples, in order to simultaneously capture

the data heterogeneity of intertumors. Firstly, we identified tumor-associated genes

from gene expression profiles. Secondly, we investigated the signaling pathways and

co-regulatory protein–protein interaction networks underlying these three cancers by

leveraging the Ingenuity Pathway Analysis software. In detail, we discovered 1,643

expression similarity signatures (638 downregulated and 1,005 upregulated genes, with

respect to normal phenotype), denoted as tumor-associated genes. Through functional

genomic analyses, we assessed that these genes were involved in the regulation

of cell-cycle-dependent mechanisms, including metaphase kinetochore formation and

estrogen-dependent S-phase entry. Furthermore, we generated putative co-regulatory

protein–protein interaction networks, based on upstream regulators such as the
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ERBB2/HER2 gene. Moreover, we provided an ad-hoc bioinformatics workflow with a

manageable list of intertumor expression similarity signatures for the three female-specific

cancers. The expression similarity signatures identified in this study might uncover

potential estrogen-dependent molecular mechanisms promoting carcinogenesis.

Keywords: TCGA, breast cancer, ovarian cancer, endometrial cancer, bioinformatics, signaling pathway, molecular

signatures, principal component analysis - PCA

INTRODUCTION

Breast, ovarian, and endometrial cancers have a major impact
on mortality in women worldwide (Ginsburg et al., 2017;
deSantis et al., 2019). Nowadays, biomedical data integration
represents an emerging frontier for precision oncology
(Incoronato et al., 2017; Affinito et al., 2019; Zanfardino
et al., 2019). Integrative analyses of female-specific and
hormone-sensitive cancers may decipher still cryptic molecular
features. In this scenario, The Cancer Genome Atlas (TCGA)
may yield an unprecedented public cancer data resource
(Tomczak et al., 2015).

TCGA initiatives and others have demonstrated an extensive
inter- and intratumor heterogeneity across breast, ovarian, and
endometrial cancers (Salvesen et al., 2009; Kandoth et al., 2013;
Ciriello et al., 2015; Grimaldi et al., 2020).

On the other hand, interesting results have been shown
by the TCGA consortium (Pan-Cancer cohort) on hidden
molecular feature similarities and differences across various
cancers (Neapolitan et al., 2015; Hoadley et al., 2018; Liu et al.,
2018; Sanchez-Vega et al., 2018).

Indeed, in 2018, the TCGA Research Network obtained
a global view of the 33 human cancers and their genomic
aberrations at multiple layers of regulations (Hoadley et al., 2018;
Sanchez-Vega et al., 2018). Surprisingly, they found that breast
cancer basal-like emerged as a distinct entity differently from the
other identified tumor subtypes.

In the same year, Berger et al. performed an outstanding
molecular study (Berger et al., 2018). They analyzed various
genomic data from five female cancers, i.e., high-grade serous
ovarian cystadenocarcinoma (OV), uterine corpus endometrial
carcinoma (UCEC), cervical squamous cell carcinoma and
endocervical adenocarcinoma (CESC), uterine carcinosarcoma
(UCS), and invasive breast carcinoma (BRCA). Berger et al.
highlighted unique molecular features (somatic aberrations and
mutated genes), clinically relevant subtypes, and potentially novel
therapeutic targets among five hormone-dependent cancers
(Berger et al., 2018). From a molecular point of view, several
multi-omics studies of each single tumor suggested interesting
uterus endometrial genetic classifications (Kandoth et al., 2013).
Also, other studies dissected multiscale genetic aberrations
by looking at clinical outcomes and/or histopathological
classifications (Sørlie et al., 2001;Mischel et al., 2003; Tothill et al.,
2008; Dai et al., 2015).

However, although these cancers are clinically managed as
distinct entities, the literature findings of co-occurring driver
genes among these three cancers, such as TP53, PI3K pathway

members, and GATA3 genes (Kandoth et al., 2013; Neapolitan
et al., 2015; Hoadley et al., 2018; Liu et al., 2018; Sanchez-
Vega et al., 2018), led us to combine these three female-specific
and hormone-sensitive cancers. We merged all phenotypes
to evaluate intertumor similarities and cross talks between
transcriptomic and protein–protein interaction networks.

There is an increasing interest in studying similarities across
cancer types. Several studies combined the results of multiple
tumor types by meta-analysis methods (Pihur and Datta, 2008).
Other recent approaches merged data together from multiple
cancer types to create a whole integrated dataset for analyses
(Berger et al., 2018; Hoadley et al., 2018).

Moreover, among computational approaches, network-based
methods are gaining great attention in precision medicine (Oulas
et al., 2019). Awidely used network-basedmethod is the weighted
co-expression network WGCNA algorithm (Langfelder and
Horvath, 2008). For instance, this approach was used by Hamed
et al., to explore breast cancer tumor biology (Hamed et al., 2015).
In addition, Zhang et al., carried out an integrative approach
for breast and ovarian cancers (Zhang, 2018). They constructed
a co-expression network G1 (BRCA) and G2 (OV) consisting
of 6,779 genes and defined the numbers of clusters M in both
networks by a spectral clustering approach (Zhang, 2018). On the
other hand, knowledge-based integrative approaches have also
been applied to women cancers. Indeed, Bhyan et al., achieved
52 common driver genes in breast, endometrial, ovarian, and
cervical cancers using specialized disease database annotations
(Bhyan et al., 2019).

In this study, we developed a bioinformatics workflow to
capture expression similarity signatures across three female-
specific cancer types regardless of their tissue or organ origin
and exploit putative regulatory protein–protein interaction (PPI)
networks underlying common tumorigenic processes.

We integrated transcriptomic profiling of publicly available
RNA sequencing (RNA-Seq) data related to 148 normal and
2,015 female tumor samples from the TCGA breast (BRCA),
uterine corpus endometrial carcinoma (UCEC), and ovarian
(OV) projects.

We carried out a principal component analysis (PCA)-
based unsupervised feature extraction (FE) approach followed
by enrichment analyses and co-regulatory PPI networks to
jointly capture expression similarity signatures underlying
the three female-specific hormone-dependent cancers. Thus,
we leveraged the bioinformatics software Ingenuity Pathway
Analysis (IPA) to assess the pathways regulated by these
genes and investigate the putative PPI networks promoting
cancer progression.
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MATERIALS AND METHODS

TCGA Data Download and Preprocessing
TCGA-BRCA, TCGA-OV, and TCGA-UCEC primary solid
tumors and solid tissue normal HT-Seq raw counts were
downloaded using TCGAbiolinks version 2.14.1 (Colaprico et al.,
2016). In the TCGA-BRCA dataset, we filtered out 12 male
samples. Overall, we analyzed transcriptomic data of 2,163
female samples including primary tumors (mixed histology)
and solid tissue normal for TCGA-BRCA (113 cases) and
TCGA-UCEC (35 cases) (ovarian RNA-Seq data, not available
for solid tissue normal samples). Mixed histology annotations
were retrieved from the clinical data, downloaded from the
GDC portal (accessed on August 4th, 2020). We provided the
TCGA patient ID, project ID, and sample type metadata (see
Supplementary Table 1).

Integrated TCGA Data Analysis
TCGA Batch Effects Viewer tool (https://bioinformatics.
mdanderson.org/BatchEffectsViewer/) was used to evaluate
the existence of batch effect(s) in each RNA-Seq dataset.
From a total of 60,483 genes, we only retained those genes
expressed at a counts per million (CPM) above 0.5 in at least
90% of the samples (n = 13,720), and we only considered
filtered genes, which were annotated in Ensembl version 86
based on the GRCh38 genome build (n = 13,703). Then, we
performed a global data normalization via the upper quartile
approach (UQUA) and removed the gene length bias. Finally,
we estimated gene expression as log2(normalized count + 1)
and only considered genes with |logFC|>1 between normal and
tumor conditions.

PCA-Based Unsupervised Feature
Extraction
To extract the most informative tumor-associated genes and
remove any redundancy in the transcriptomic dataset, we
performed a PCA-based unsupervised FE approach, which is
based on correlation analysis. The FE approach was applied to
a unique dataset, composed of the three tumors. We retained a
sufficient number of principal components (PCs), which were
able to explain at least 60% of the total variance. We also
evaluated the most significantly associated variables (genes)
with each one of these components. These variables, called
eigenvalues, were considered significantly associated with PCs
if two requirements were fulfilled: (i) Pearson’s correlation
value was higher than the 95th percentile and (ii) Pearson’s
correlation p < 0.001.

Integrated Pathways and PPI Network
Analyses
We carried out integrated functional analyses using the Ingenuity
Pathways Analysis software (IPA, QIAGEN, Inc. Redwood City,
CA, USA) (Krämer et al., 2014). We investigated the molecules’
subcellular locations and type(s) using the manually curated
annotations included in the IPA Knowledge Base (IPA KB). IPA
researchers categorized gene annotations based on all types of

biological functions useful for IPA software downstream analyses
(Krämer et al., 2014).

We carried out functional enrichment analysis for the 1,643
tumor-associated genes. We used the Ingenuity Knowledge
Base (release date: 2020-06-01) as the reference set for
the integration of functional analyses and protein–protein
interaction networks. One Ensembl ID (ENSG00000279010,
unmapped sense-overlapping feature) was excluded after IPA
mapping IDs. Overall, we found 158 enriched pathways with
the statistical score threshold [–log(p-value) based on Fisher’s
exact test] ≥1.3. We analyzed the top 10 enriched and
statistically significant pathways within a score threshold ≥5.
Protein–protein interaction networks were based on the 1,642
ID expression signatures. They were generated with n =

35 maximum number of molecules per network and node
types which can be direct and indirect relationships excluding
the impact of chemical drugs. Only experimentally validated
observations were included in the IPAKB, release 2020. Networks
were ranked based on the hypergeometric distribution, which
was calculated by the right-tailed Fisher’s exact test.

RESULTS

Integrative Computational Approach
The bioinformatics workflow followed in this study is shown
in Figure 1. We carried out an integrated analysis of gene
expression profiling from three TCGA publicly available datasets
(Table 1). Metadata is provided in Supplementary Table 1 (see
Data Availability Statement). We integrated the transcriptomic
(RNA-Seq) profiles from 2,015 primary tumors and 148 solid
tissue normal samples from TCGA-BRCA, TCGA-UCEC, and
TCGA-OV datasets to capture biological relationships among
these three female tumor types. From a total of 60,483 genes,
we only retained those genes expressed at a CPM above 0.5 in
at least 90% of the samples (n = 13,720) and annotated in the
Ensembl database (version 86) based on the GRCh38 genome
build (n= 13,703). We normalized all filtered counts using the
upper quartile method, considering gene length. Finally, we
included genes with the absolute logFC>1 between normal and
tumor conditions, thus obtaining a total of 2,460 genes to be used
for downstream analysis.

Unsupervised PCA-Based Feature
Extraction
In order to extract the most informative tumor-associated
genes, we performed a PCA based on the unsupervised FE
approach. We only retained the PCs that were able to explain
at least 60% of data variance. Therefore, the first 20 PCs
were extracted (Supplementary Figure 1). Then, we evaluated
the most statistically significant correlated variables (Pearson’s
correlation value higher than 95th percentile and Pearson’s
correlation with p < 0.001) with each one of the components,
by extracting the associated eigenvalues. By applying this
approach, we reduced the dimensionality of our transcriptomic
dataset to 1,643 most informative molecular signatures that
characterized the expression similarity signatures of intertumor
phenotypes. By performing the PCA on these 1,643 genes, tumor
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FIGURE 1 | Flowchart of the bioinformatics pipeline used in this study. TCGA,

The Cancer Genome Atlas; BRCA, breast cancer; UCEC, uterine cervix

endometrial cancer; OV, ovarian cancer; CPM, counts per million; UQUA,

upper quartile normalization method.

samples were randomly distributed in the two-dimensional
space (Supplementary Figure 2). Out of the 1,643 expression
signatures, 1,561 were protein-coding genes.

TABLE 1 | Summary of TCGA dataset handling used in this study.

TCGA dataset RNA-Seq data (BRCA/OV/UCEC)

BRCA/OV/UCEC

Tumors (cases)

1,102a/374/551

BRCA/OV/UCEC

Normal (cases)

113/NAb/35

Total samples 2,175

a12 male samples filtered out from the TCGA–BRCA dataset to analyze only

female samples.
bNot available.

Integrative Functional Analyses
Transcriptomic analyses resulted in 1,643 expression signatures
across the three female-specific and hormone-sensitive cancers.
We analyzed the overall expression changes of the 1,643 tumor-
associated genes, by using the Ingenuity Pathway Analysis
QIAGEN software.

IPA mapped 1,642 out of the 1,643 expression signatures
(ENSG00000279010, sense overlapping unmapped), of which 637
were downregulated and 1,005 were upregulated genes in the
three tumors with respect to the normal samples.

We grouped these expression signatures according to IPA
software Knowledge Base (KB) biological molecular type(s)
(Figure 2A) and subcellular location (Figure 2B) annotations.
In our dataset, most protein-coding genes were enzymes,
transcription factors, and transporter (Figure 2), while the
“other” category encompassed not only protein-coding genes but
also proteins whose biological function is still uncharacterized
and/or cytoskeletal proteins such as members of the actin family
(Pollard, 2016; Svitkina, 2018).

To understand whether the tumor-associated genes
(intertumor similarity signatures) orchestrated oncogenic
signaling pathways, we carried out functional enrichment
analyses. We displayed the most enriched pathways in Figure 3,
whereas the overall results are shown in Supplementary Table 2.

Among the top 10 enriched pathways, ranked for enrichment
score, we identified pivotal signaling pathways linked to many
important cellular processes such as mitotic division, cell cycle
checkpoint control, and S-phase entry regulated by estrogens.

We found that about 39% (39/101) molecular
common signatures, enriched the “Kinetocore Metaphase
Signaling Pathway” with the highest enrichment score
(Supplementary Table 2). The “Kinetocore Metaphase Signaling
Pathway” allows sister chromatid segregation during mitosis
(Tanaka, 2013). Furthermore, during this process, some
hub genes took part in essential protein complexes (i.e.,
KNL1/MIS12/NDC80 protein complexes) with a central role in
connecting kinetochores to microtubules (Tanaka, 2013). These
genes are also regulated by several enzymes including AURKB, a
component of the chromosomal passenger complex (CPC) that
plays a major role in the correction of erroneous attachments
through phosphorylation of the KMN network and the SKA
complex (Tanaka, 2013). Those 39 molecules were upregulated
in our dataset (pink genes, Supplementary Figure 3), in
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FIGURE 2 | Functional annotations of the 1,642 tumor-associated genes. (A) Number of molecules per type. (B) Percentage of molecules in accordance to

subcellular location. Annotations based on the Ingenuity Pathway Analysis manually curated Knowledge Base, QIAGEN software, 2020.

agreement with their biological role. Moreover, IPA regulatory
predictions revealed that the expression changes associated
with the 1,642 intertumor similarity signatures may lead to
the activation of cell proliferative mechanisms (orange bar)
and inhibition of cell cycle checkpoint control (blue bar)
(Supplementary Figure 4).

Other key biological processes promoting tumor
growth were enriched by upregulated genes (Figure 3,
Supplementary Figure 4). In particular, we found that about 30%
(17/56) molecular signatures enriched the “Cell Cycle Control of
Chromosomal Replication” biological process (CDC45, CDC6,
CDC7, CDK1, CDK16, CDK18, CDT1, DBF4, DNA2, LIG1,
MCM2, MCM4, ORC1, ORC6, PCNA, POLD1, TOP2A), while
about 42% (11/26) enriched the “Estrogen-Mediated S-Phase
Entry” signaling pathway (Figure 3, Supplementary Figure 4)
composed of CCNA2, CCNE1, CCNE2, CDC25A, CDK1, E2F1,
E2F2, E2F3, E2F5, E2F7, and E2F8 protein-coding genes.

Thus, our ad-hoc bioinformatics workflow, designed
to capture transcriptional signatures of interfemale
tumors, confirmed that most of the identified similarities
could impact on pro-oncogenic signaling pathways and
hormone-stimuli-dependent cell proliferation.

Protein–Protein Interaction Networks
In summary, functional analyses highlighted that the 1,642
molecular signatures, jointly associated with the three female-
specific cancan, and may regulate important tumorigenic
pathways including estrogen-dependent S-phase entry.

Thus, we leveraged the IPA network analytic algorithms
based on mammalian genes and their products driving direct
or indirect relationships at multiple levels to infer molecular
mechanisms associated with the expression changes of the 1,642
tumor-associated genes.
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FIGURE 3 | Functional enrichment analysis of the 1,642 tumor-associated genes. The top 10 enriched pathways, ranked for enrichment score with threshold ≥5

[–log(p-value), based on Fisher’s exact test]. Bolded numbers on the right represent the total amount of genes within each IPA canonical pathway. Dataset analyzed by

the Ingenuity Pathway Analysis, QIAGEN software, 2020.

Within the PPI networks, we found that ZBTB17, ERBB2,
TGFB1, CSF2, and FOXM1 proteins could potentially act
as upstream regulators, due to their expression trend and
target molecules presented within the dataset. We collected
a total of 25 statistically significant networks associated
with our dataset (Supplementary Table 3). Among them,
the top-scoring network (Figure 4) was centered on ERBB2
gene coding for the erb-b2 receptor tyrosine kinase 2. The
annotation of molecules involved in network 1 (Figure 4) is
reported in Supplementary Table 4. The prioritized ERBB2
network had multiple indirect relationships including (i) the
DNA ligase 1 (LIG1), POLE2, and RFC2 proteins, involved
in the nucleotide excision repairs; (ii) the extra spindle pole
bodies like 1 separase (ESPL1) and myosin X (MXD3),
members of the “Kinetocore Metaphase Signaling Pathways”;
and (iii) the transmembrane receptor unc-5 netrin receptor
(UNC5B) involved in the “Axonal Guidance Signaling”
signaling pathway (Figure 4, Supplementary Figure 4). We
also highlighted a subnetwork of direct protein–protein
interactions formed by the non-SMC condensin I complexes
(NCAPD2, NCAPG, NCAPH) (Figure 4B). Those complexes
are associated with the DNA condensation during cell division
and have transcriptional-based relationships with ERBB2
signaling pathway and cancer development (Hua et al.,
2018).

The IPAKnowledge Base and the 1,642 expression gene trends
enabled us to generate a hypothesis on the potential upstream

and downstream effects of activation or inhibition of molecules
within the networks. IPA suggested that in network 1, ERBB2
could indirectly inhibit three neighbors (blue blunt arrowheads,
Figure 4A) and activate several network neighbors (orange point
arrowheads, Figure 4A). For this application, activity is assumed
to be at the protein level for the nodes of a network or
pathway. Thus, we found potential ERBB2-mediated inhibition
of the cell division cycle 14B (CDC14B) phosphatase, involved
in the PI3K signaling pathway; the CDC42 effector protein 3
(CDC42EP3), a cytoskeleton regulatory protein binding involved
in Rho GTPase signaling; and the carbohydrate sulfotransferase 3
(CHST3) enzyme, a member of the carbohydrate sulfotransferase
3 family. Moreover, ERBB2, over its positive feedback (circular
arrow, Figure 4A), could have expression-mediated relationships
with ABRACL, B4GALT3, CDC14B, CDC42EP3, CDC42EP3,
CDCA2, CDCA7, CHST3, EPSTI1, GBE1, GINS1, HEPH,
HSD17B11, LIG1, NUP210, PHLDB1, POLE2, POLQ, POLR3K,
RFC2, TSPAN13, and UNC5B and transcriptional-mediated
relationships with CDKN3, ESPL1, MFAP2, MXD3, MYO10,
NCAPD2, NCAPG, POLE2, PORCN, RAD51AP1, and SMTN,
leading to their upregulation.

As previously described, the ERBB2-centered network
(network 1) resulted as top scoring out of 25 possible networks
(Supplementary Table 3). Out of network 1, four other
networks are also interesting because they were endowed
with a relatively high score (>30) (Supplementary Table 3,
Supplementary Figures 5, 6).

Frontiers in Genetics | www.frontiersin.org 6 December 2020 | Volume 11 | Article 612521

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Pane et al. Integrative PPI Networks in Female-Specific Cancers

FIGURE 4 | Network inference underlying the 1,642 tumor-associated genes. (A) The top-scoring network (the first over 25 networks) based on the statistical

approach and manually curated IPA Knowledge Base (IPA KB). Network edges associated with ERBB2 direct (continuous lines) or indirect relationships (dashed lines)

at expression, transcription, or protein–protein-binding level. In silico prediction of the ERBB2 downstream impact within the network is highlighted by orange-pointed

arrowheads (activation effect) or blue blunt arrowheads (inhibitory effect) based on the expression changes and the experimentally observed evidences within the IPA

KB. (B) Protein–protein interaction subnetwork within network 1 formed by the non-SMC condensin I complexes (NCAPD2, NCAPG, NCAPH). E, expression; T,

transcription; P, phosphorylation/dephosphorylation; PP, protein–protein interaction (binding).
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DISCUSSION

Breast, ovarian, and endometrial cancers are hormone-sensitive
cancers and showed an extensive inter- and intratumor
heterogeneity (Salvesen et al., 2009; Kandoth et al., 2013; Ciriello
et al., 2015; Grimaldi et al., 2020).

Integrative analyses of these female-specific and hormone-
sensitive cancers may decipher still cryptic molecular features.
Several integrative analyses showed the co-occurrence of driver
genes across distinct tumor entities and the existence of common
molecular mechanisms for their progression also between breast
and gynecological malignancy entities (Neapolitan et al., 2015;
Berger et al., 2018; Hoadley et al., 2018; Liu et al., 2018; Sanchez-
Vega et al., 2018; Bhyan et al., 2019; Zhong et al., 2020).

In this study, we carried out a computational analysis by
integrating three hormone-sensitive female cancer datasets, i.e.,
breast, ovarian, and endometrial TCGA cohorts. Our goal was
to identify intertumor expression similarities and infer putative
co-regulatory protein–protein interaction networks with possible
implications on estrogen-dependent mechanisms. To address
this aim, we developed an ad-hoc bioinformatics pipeline only on
gene expression profiling, including a PCA-based unsupervised
FE method, combined with global normalization in order to
capture global intertumor heterogeneity.

We integrated publicly available transcriptomic data (RNA-
Seq) of 2,163 female samples from breast, endometrial, and
ovarian TCGA datasets. Worth noting, we grouped tumor
and normal samples to perform an overall upper quartile
normalization step of gene expression data. Thus, we minimized
the baseline expression of tissue-related genes in order to
capture female cancer similarity in terms of expression
signatures. We then carried out a PCA-based unsupervised
FE approach resulting in 1,643 expression similarity signatures
as the most informative tumor-associated genes. To assess
whether these tumor-associated genes regulated oncogenic
signaling pathways, we leveraged the commercial IPA software
to analyze functional and downstream effects, based on
PPI networks. Functional enrichment analyses resulted in a
total of 158 statistically significant enriched pathways (p <

0.05), regulated by 1,642 breast, ovarian, and endometrial
expression signature similarities. Above all pathways, we
found top 10 biological processes such as the “Kinetochore
Metaphase Signaling Pathway,” the “Cell Cycle Control of
Chromosomal Replication,” and the “Estrogen-Mediated S-
Phase Entry” signaling pathway. The latter is composed of
CCNA2, CCNE1, CCNE2, CDC25A, CDK1 protein-coding
genes (CCNA2, CCNE1, CCNE2, CDC25A, CDK1) and the E2F
transcription factor family members.

The activity of CDKs, along with the retinoblastoma tumor-
suppressor RB protein and E2F pathway, is a crucial regulator of
cell cycle progression (G1–S transition). Indeed, the deregulation
of the CDK–RB–E2F pathway is recurrent in almost all human
malignancies (Kent and Leone, 2019).

Oncogenic signaling pathways found in our study are in
agreement with previous literature findings (Zhang, 2018; Zhong
et al., 2020). To the best of our knowledge, we carried out
for the first time a transcriptomic integrated PCA-based feature

extraction approach to evaluate intertumor expression signatures
and putative protein–protein interaction networks.

For instance, Bhyan et al. identified several common genes
across four cancers in women involved in endogenous hormonal
regulation pathways (Bhyan et al., 2019). Neapolitan et al.,
discovered in Pan-Cancer analysis which signal transduction
pathway (STPs) were implicated in cancer or cancer subtypes
focusing the attention on “notable” altered pathways (Neapolitan
et al., 2015). These biological processes were the focal adhesion
pathway, P13k–Akt pathway, Rap1 pathway, and calcium
signaling pathway. Several bioinformatics analyses also revealed
that ovarian and uterine cancer shared oncogenic pathways
(Neapolitan et al., 2015; Zhang, 2018) as well as breast and
ovarian cancer cells may even have co-occurrence of cancer
stem cells (CSCs) as a hormone-stimuli response (Wang et al.,
2013). In addition, we investigated putative co-regulatory PPI
networks underlying the 1,642 expression similarity signatures.
Interestingly, we identified a key network centered on ERBB2
(Erb-B2 Receptor Tyrosine Kinase 2), commonly known as
HER2, widely recognized as a breast cancer biomarker and a
relevant player in gynecologic malignancies (Erickson et al.,
2020). There are several findings on ERBB2 gene amplification,
also commonly known as member of the epidermal growth
factor receptor family, in multiple tumor types including early
endometroid uterine cancer (Kandoth et al., 2013; Abdel Azim
et al., 2017) and ovarian cancer (Luo et al., 2018). Many efforts
have been devoted in the last years to target HER2 tyrosine kinase
by various chemical and biological drugs for several cancers
(Yan et al., 2014). In the ERBB2 network, we also found a
subnetwork of direct protein–protein interactions formed by the
non-SMC condensin I complexes (NCAPD2, NCAPG, NCAPH),
a vital complex associated with the ERBB2 signaling pathway and
cancer development (Hua et al., 2018). Currently, understanding
the role of HER2 in gynecological cancers is an interesting field
of investigation. The prognostic value of ERBB2 in ovarian cancer
has been recently evaluated in 5,180 ovarian cancer patients and
was negatively correlated with overall survival outcome (Luo
et al., 2018). Importantly, estrogens act not only through genomic
(nuclear ER receptors) but also through non-genomic actions via
ligand binding (Arnal et al., 2017).

The genomic action, also known as classical estrogen action,
consists of estrogen receptor α (ERα) cytosolic activation by
E2, nuclear ERα dimerization, and direct or indirect DNA
binding in order to regulate target genes involved in cell cycle,
S-phase entry, cell migration, proliferation, and differentiation
(Hewitt et al., 2016; Hua et al., 2018). Estrogens, such as 11β-
estradiol (E2), bind to ERα expressed on breast, ovarian, and
endometrial cancer cells and regulate the expression of target
genes. So far, in mammals, two membrane receptors, ERα and
ERβ, expressed on multiple organ sites, have been mapped. The
majority of breast cancers (about 70%) express ERα, which is the
therapeutic target for hormone-based therapy. Breast, ovarian,
and endometrial cancers share both receptors; however, ERα

and ERβ signaling transductions have different biological effects.
ERα knockout mice model experiments have shown a strong
impact on sexual maturation leading to infertility (Hewitt et al.,
2016). In contrast, mice models lacking Erβ showed reduced
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fertility and ovarian maturation efficiency (Hewitt et al., 2016).
In addition, classical/genomic action has been more investigated
than the estrogens’ non-genomic action; as such, downstream
biological effects are less known. In recent years, in vivo studies
on mice models are helping to understand the mechanistic links
of estrogens through non-genomic action (Adlanmerini et al.,
2014; Hua et al., 2018).

Non-genomic action of estrogens may act via the PI3K/AKT
pathway that represents one of the molecular mechanisms to
mediate the ERBB2/ERBB3 oncogenic signaling pathway (Arnal
et al., 2017).

Probably, the top-scoring network predicted in this
study might uncover the non-genomic estrogen-dependent
downstream effect orchestrated by ERBB2 in these female-
specific cancers. Certainly, the herein in silico generated
hypotheses need precautions and deserve further investigations.

Nevertheless, this study has some limitations. We conducted
the analyses on TCGA publicly available data without an internal
validation dataset. Indeed, the TCGA provided us the chance to
carry out an intertumor study using next-generation sequencing
(NGS) conspicuous data of tumor and normal samples. We are
also aware that our results cannot be generalized since we did
not have any experimental validation. However, our in silico
predictions and the protein–protein interaction networks may
open the way to further investigations. Our methodological
approach proved to be efficient in selecting expression similarity
signatures leading to tumorigenic processes and, thus, may
be a useful workflow for studying other hormone-sensitive
cancers such as thyroid and cervical cancers. Indeed, our
integrated computational pipeline enabled us to capture the
global intertumor (breast, endometrial, and ovarian) expression

similarities regardless of their tissue of origin, with putative co-
regulatory PPI networks orchestrated by ERBB2 underlying these
female tumors.
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