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ABSTRACT: Although zinc’s involvement in bone calcification is well-established, its role in vascular calcification, charac-
terized by abnormal calcium and phosphorus deposition in soft tissues and a key aspect of various vascular diseases, in-
cluding atherosclerosis, remains unclear. This review focuses on zinc’s action in vascular smooth muscle cell (VSMC) cal-
cification, including the vascular calcification mechanism. Accumulated research has indicated that zinc deficiency induces 
calcification in VSMCs and the aorta, primarily through apoptosis accompanied by a downregulation of smooth muscle 
cell markers. Moreover, zinc deficiency-induced vascular calcification operates independently of the action of alkaline phos-
phatase (ALP) activity, typically associated with osteogenic processes, but is partly regulated via inorganic phosphate trans-
porter-1 (Pit-1). To date, research has shown that zinc regulates vascular calcification through a mechanism distinct from 
that of osteogenic calcification, providing insight into its dual effects on physiological and pathological calcification and 
thereby explaining the “zinc paradox,” wherein zinc simultaneously increases osteoblastic calcification and decreases VSMC 
calcification.
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INTRODUCTION

Calcification is the accumulation of calcium (Ca) and 
phosphorus (P) in body tissues, leading to tissue hard-
ening. This process can occur normally in hard tissues, 
such as bone, or abnormally in soft tissues, such as blood 
vessels (Vorvick, 2022). The majority of Ca (>98%) en-
tering the body is deposited in bones and teeth, with the 
remainder dissolved in the blood. When disorders disrupt 
the balance between Ca and other chemicals in the body, 
minerals can accumulate in various body parts, including 
the arteries, resulting in Ca deposits that affect blood ves-
sel function. Atherosclerosis, initiated by Ca deposition 
in the arteries, progresses as pathogenic vascular calcifi-
cation (Alexopoulos et al., 2012).

The precise mechanisms linking zinc to cardiovascular 
diseases remain under investigation. Apoptosis and in-
flammation, major consequences of zinc deficiency, are 
considered critical determinants of atherosclerosis and 
coronary heart disease, implying the occurrence of patho-
logical calcification with disease progression (Beattie et 
al., 2008; Cho et al., 2008; Allen-Redpath et al., 2013; Ou 
et al., 2013). Conversely, zinc’s stimulatory effect on os-
teoblasts and bone calcification has been reported. Spe-

cifically, insufficient cellular zinc levels disrupt extracellu-
lar matrix (ECM) calcification and matrix protein expres-
sion, thereby disturbing osteogenic calcification (Kwun 
et al., 2010; Alcantara et al., 2011; Seo et al., 2020; Lee 
et al., 2022).

In this review, we address the function of zinc in vas-
cular calcification, including its mechanism. The review 
aims to provide insight into zinc’s role in this patho-
logical calcification process.

VASCULAR CALCIFICATION MECHANISM

Vascular calcification involves the deposition of calcium 
phosphate, forming hydroxyapatite in the blood vessels. 
Once considered a passive and degenerative process, vas-
cular calcification is now acknowledged as a cellular reg-
ulatory process partly analogous to bone formation. It is 
increasingly evident that multiple factors and mutually 
exclusive mechanisms tightly regulate vascular calcifica-
tion (Lau et al., 2010; Lee, 2011; Wu et al., 2013). To 
date, four mechanisms have been proposed to explain 
vascular calcification: apoptosis of vascular smooth mus-
cle cells (VSMCs); loss of calcification inhibitors; circulat-
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ing nucleation complexes; and induction of osteogenesis, 
i.e., phenotypic changes in VSMCs transitioning them 
toward osteoblast-like cells (Giachelli, 2009; Leopold, 
2015).

Apoptosis 
Apoptosis is a programmed cell death mechanism crucial 
for development, homeostasis, and disease processes. En-
dothelial cell and VSMC apoptosis is implicated in blood 
vessel remodeling, injury, and various vascular patholo-
gies, including atherosclerosis (Aravani et al., 2020). 

Physiological calcification in bone and cartilage is be-
lieved to commence in matrix vesicles. These lipid bilay-
er membrane-bound vesicles, formed via “budding” of 
mineralizing cell membranes in various cells, such as os-
teoblasts, chondrocytes, and odontoblasts (Golub, 2009), 
contain essential calcification proteins, facilitating Ca and 
phosphate ion accumulation, leading to hydroxyapatite 
crystal formation. In atherosclerotic plaques, matrix ves-
icle-like structures are derived from VSMCs and contain 
the pro-apoptotic BCL2-associated X (BAX) protein, sug-
gesting a link between these structures and apoptotic 
cells (Li et al., 2022). Although apoptotic bodies formed 
during apoptosis immediately suppress the inflammatory 
response, under pathological conditions, impaired apo-
ptotic body clearance and increased matrix vesicle pro-
duction are observed (Proudfoot, 2019). The resemblance 
between matrix vesicles and apoptotic bodies suggests a 
connection between apoptosis and calcification.

The hypothesis that VSMC apoptosis is involved in vas-
cular calcification initiation is based on apoptotic body 
generation and Ca concentration. However, apoptosis 
alone is insufficient to induce calcification, indicating the 
presence of inhibitory pathways preventing calcification 
in normal VSMCs.

Loss of soft tissue calcification inhibitors 
Physiological Ca and P levels are similar to the solubility 
constant of calcium phosphate in serum; thus, tissues 
are typically exposed to these concentrations. Therefore, 
a mechanism inhibiting soft tissue calcification is thought 
to exist, with inorganic pyrophosphate (PPi) known as a 
vascular calcification inhibitor. Notably, PPi is also pres-
ent in bones but is degraded by the zinc-dependent en-
zyme alkaline phosphatase (ALP), allowing osteogenic 
calcification (Shanahan et al., 2011; Villa-Bellosta et al., 
2011).

Other calcification inhibitors include matrix-Gla protein 
(MGP), osteopontin, and fetuin (Bjørklund et al., 2020). 
Active removal of calcification inhibitors is believed to 
suffice for the initiation of calcification in the ECM, as 
evidenced by calcification in MGP-null mice. Interesting-
ly, such calcification does not affect the VSMC pheno-
type, indicating that VSMC transdifferentiation may not 

be a strict prerequisite for calcification (Rutsch et al., 
2021). These observations emphasize the multifaceted 
nature of vascular calcification initiation mechanisms.

Circulating nucleation complexes 
It has been proposed that vascular calcification is regu-
lated by circulating nucleation complexes released from 
bone turnover (Leopold, 2015). These complexes, com-
prising calcium phosphate and proteins from bone re-
modeling, can induce vascular calcification. For example, 
osteoprotegerin (OPG), a receptor activator of nuclear fac-
tor kappa- ligand (RANKL), has been associated with 
the presence and severity of arteriosclerosis and coro-
nary artery disease. The association between bone and 
vascular calcification is evident in compounds resulting 
from bone turnover, and the underlying mechanisms of 
this interplay are currently under investigation. This bone- 
vascular axis for calcification may pose a potential risk 
akin to the osteoporosis-atherosclerosis axis observed in 
aging women (Demer and Tintut, 2010; Sage et al., 2010).

Induction of bone formation: VSMC phenotypic transition 
to osteoblast-like cells 
VSMCs, highly specialized cells primarily responsible for 
blood vessel contraction and diameter regulation, exhibit 
remarkable plasticity and can undergo phenotypic changes 
in response to various phenotype-regulating stimuli 
(Bennett et al., 2016). Phenotypic switching of VSMCs 
evidently plays a major role in vascular calcification pro-
gression in atherosclerosis and other cardiovascular dis-
eases (Durham et al., 2018). Our studies, among others, 
have revealed that VSMC transdifferentiation into osteo-
blast-like cells involves simultaneous downregulation of 
VSMC markers and upregulation of osteoblast marker 
genes (Alcantara et al., 2024). VSMC marker proteins, 
including smooth muscle 22  (SM22), SM -actin, and 
calponin, are associated with the differentiated and con-
tractile VSMC phenotype. Reduced expression of these 
markers, especially SM22, may serve as a sensitive in-
dicator of early transformation associated with the loss 
of VSMC properties. Conversely, increased expression of 
bone morphogenetic protein 2 (BMP2), a potent bone 
morphogen functioning in atherosclerotic plaque calcifi-
cation, provides robust molecular evidence of active os-
teogenic processes contributing to vascular calcification 
beyond passive mechanisms (Durham et al., 2018). 

VSMC phenotypic transition into osteoblast-like cells 
is exacerbated under high phosphate concentrations. As 
demonstrated by Villa-Bellosta (2021), elevated inorgan-
ic phosphate levels induce calcification in cultured hu-
man VSMCs, mediated by the sodium (Na)-dependent in-
organic phosphate transporter-1 (Pit-1). Therefore, con-
trolling both extracellular and intracellular phosphate lev-
els can be crucial in vascular calcification and may help 
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mitigate VSMC transdifferentiation.

OSTEOGENIC CALCIFICATION MECHANISM

To understand their similarities, vascular calcification 
must be compared with osteogenic calcification, a physio-
logical process mediated by bone-forming osteoblasts and 
bone-resorbing osteoclasts. Osteogenic calcification is a 
tightly regulated and sequential process. Bone is a dynam-
ic tissue that undergoes constant remodeling to maintain 
its volume as well as calcium homeostasis (Murshed and 
McKee, 2010; Murshed, 2018). Its formation involves a 
complex cascade of osteoprogenitor cell recruitment and 
proliferation, ECM development and maturation, and fi-
nally, matrix calcification via differentiated osteoblasts.

Upon initiation of matrix synthesis, osteoblast marker 
genes are activated in a temporal sequence; ALP, collagen 
type I, and the parathyroid hormone/parathyroid hor-
mone-related protein receptor are induced during early 
bone formation, whereas osteopontin and osteocalcin ap-
pear at later stages (Pujari-Palmer et al., 2016; Murshed, 
2018). Subsequent to marker gene induction, mineral-
ization of the collagenous ECM occurs, initiated by in-
organic phosphate produced by ALP, leading to hydroxy-
apatite formation within the ECM. 

The molecular mechanisms regulating osteogenic cal-
cification are being elucidated, with accumulating evi-
dence revealing the crucial roles of secreted noncolla-
genous proteins in ECM calcification and their structural 
contribution to ECM scaffolding properties. These mecha-
nisms highlight the involvement of mineral-binding pro-
teins, along with the scaffolding of collagen, ALP, and 
matrix vesicles, in either promoting or limiting calcifica-
tion (Murshed and McKee, 2010). This model of osteo-
genic calcification contrasts with vascular calcification, 
which primarily occurs through passive mechanisms, such 
as apoptosis, suggesting active mechanisms are integral 
to bone formation.

ALP: A zinc-dependent enzyme
ALP is a ubiquitous plasma membrane-bound glycopro-
tein that catalyzes phosphate compound hydrolysis at ba-
sic pH values. It is expressed in various tissues as non-
tissue-specific ALP and in bone tissues as bone-specific 
ALP, wherein it produces inorganic phosphate that initi-
ates bone calcification to form hydroxyapatite. As a main 
marker of active osteogenesis, missense mutations in the 
ALP gene, essential for bone calcification, disrupt bone 
mineralization and increase PPi concentrations (Brichacek 
and Brown, 2019; Vimalraj, 2020). 

Initially, the role of ALP in calcification was attributed 
to its ability to generate free inorganic phosphate, there-
by increasing inorganic phosphate levels necessary for 

calcification as hydroxyapatite in bone (Cho et al., 2007; 
Kim et al., 2009; Seo et al., 2010). Additionally, accumu-
lated data also indicate that the primary action of ALP in 
soft tissue is the removal of PPi, a potent mineralization 
inhibitor present in the ECM (Villa-Bellosta et al., 2011). 
The role of ALP in vascular calcification is evident, given 
that ALP overexpression induces calcification in VSMCs 
and serum ALP is associated with coronary artery calcifi-
cation (Lee et al., 2020; Abbasian, 2021). 

In ECM calcification of osteoblasts, zinc partially con-
tributes to regulating ALP activity. Indeed, zinc deficien-
cy diminishes ALP activity, inhibiting ECM calcification 
(Kwun et al., 2010; Alcantara et al., 2011; Cho and Kwun, 
2018a, 2018b). In contrast, zinc deficiency-related VSMC 
calcification is independent of ALP action, showing weak 
ALP activity and expression. In zinc-deficient VSMCs, P 
accumulation increases with increasing Na phosphate 
concentration but not with beta-glycerophosphate treat-
ment, which requires ALP activity as a substrate for Pi 
generation. This suggests P accumulation in zinc-defi-
cient VSMCs is independent of, or at least less affected 
by ALP, compared with osteoblasts (Beattie et al., 2012; 
Allen-Redpath et al., 2013; Alcantara et al., 2024).

Pit-1
Pit-1 regulates calcification by promoting intracellular 
phosphate uptake. Inorganic phosphate is a critical de-
terminant of calcification, with its concentration regu-
lated by both ALP and Pit-1. Although ALP, as a key reg-
ulator of osteogenic calcification, modulates local inor-
ganic phosphate concentrations in the ECM by hydro-
lyzing pyrophosphate, Pit-1 regulates cellular inorganic 
phosphate balance through Na-dependent cotransporter 
activity (Crouthamel et al., 2013). Increased inorganic 
phosphate uptake by VSMCs via Pit-1 leads to cultured 
VSMC calcification, accompanied by phenotypic changes 
characterized by downregulation of smooth muscle cell 
marker proteins and upregulation of osteoblast markers 
toward an osteoblastic phenotype (Giachelli, 2009; Lau 
et al., 2010; Yao, 2010; Crouthamel et al., 2013)

In the bone matrix ECM microenvironment, both ex-
tracellular inorganic phosphate levels and cells’ ability to 
actively transport phosphate are necessary for calcifica-
tion. Although zinc’s role as an essential component of 
ALP is well-established, its involvement in phosphate 
transport through Pit-1 remains unclear. Specifically, the 
role of zinc in regulating Pit-1 and ALP relative to vas-
cular calcification is still uncertain. Zinc affects ALP ac-
tivity, but ALP activity does not seem critical in VSMC 
calcification. Conversely, under zinc-deficient conditions, 
inhibition of calcification reduces ALP activity in osteo-
blastic cell models. However, zinc-deficient VSMCs ex-
hibit enhanced Pit-1 expression, whereas zinc does not 
significantly affect its expression in osteoblastic cells 
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Fig. 1. Calcification paradox and vascular calcification mechanism. Zinc (Zn) is well-known for stimulating osteogenic calcification
by enhancing osteoblast proliferation and differentiation while stimulating bone matrix mineralization (calcification); however, its 
role in vascular calcification remains unclear. Various studies have highlighted the dual action of Zn in osteogenic and vascular 
calcification, where Zn can promote osteogenic calcification, while decreasing vascular calcification. Proposed mechanisms for 
vascular calcification include the following: (1) Cell death leading to the release of apoptotic bodies by dying vascular smooth 
muscle cells (VSMCs), concentrating phosphate and calcium minerals and promoting vascular calcification. (2) Loss of circulating 
calcification inhibitor proteins normally present in soft tissues, contributing to vascular calcification. (3) Circulating nucleation com-
plexes, primarily released during bone remodeling, potentially initiating vascular calcification. (4) Induction of bone formation char-
acterized by phenotypic changes in VSMCs toward osteoblast-like cells, also capable of inducing vascular calcification.

(Alcantara et al., 2024). These findings offer insights in-
to the potential mechanisms underlying differential zinc- 
based regulation of osteogenic and vascular calcification 
via Pit-1.

ZINC AND THE CALCIFICATION PARADOX

As previously mentioned, although calcification is bene-
ficial for hard tissue formation, including bone, it displays 
pathological aspects when associated with soft tissues, 
such as blood. Similarly, osteoporosis, characterized by 
low bone calcification and poor bone quality due to im-
balanced bone metabolism, contrasts with vascular calci-
fication as a pathological process, which is often accom-
panied by decreased bone mass and calcification. This 
paradoxical association, termed the “calcification para-
dox,” lacks a fully understood mechanism (De Schutter 
et al., 2011; Zhang and Feng, 2017; Gu et al., 2020; 
Wang et al., 2022). 

The calcification paradox raises questions regarding 
zinc’s regulation of vascular calcification and whether 
zinc deficiency exacerbates or attenuates vascular calcifi-
cation when regulatory mechanisms are similar under 
physiological and pathological conditions. Although zinc 
is a critical regulator of physiological processes, its role 
in the calcification paradox remains under investigation 

(Fig. 1).

ZINC ACTION IN VASCULAR CALCIFICATION

Vascular calcification exhibits distinct mechanisms com-
pared with bone, providing insights into the “zinc para-
dox,” i.e., zinc’s ability to enhance osteoblast calcifica-
tion while inhibiting VSMC calcification (Fig. 1). Zinc 
deficiency-induced VSMC calcification primarily results 
from VSMC apoptosis, and inhibition of apoptosis re-
duces calcification (Allen-Redpath et al., 2013; Shin and 
Kwun, 2013, 2014; Cho and Kwun, 2020). Additionally, 
zinc-deficient VSMCs undergo transdifferentiation into 
osteoblast-like cells, marked by downregulation of the 
smooth muscle cell marker SM22 and calponin as well 
as upregulation of osteoblast marker proteins, including 
runt-related transcription factor 2 (Runx2), osterix, and 
osteopontin (Beattie et al., 2008; Allen-Redpath et al., 
2013). Prolonged exposure to zinc-deficient conditions 
exacerbates transdifferentiation and accelerates VSMC 
proliferation (Alcantara et al., 2013) (Fig. 2).

The notion that VSMC calcification occurs indepen-
dently of (or is at least less affected by) ALP action, com-
pared with osteoblasts, supports an apoptosis-mediated 
calcification mechanism under zinc deficiency (Allen- 
Redpath et al., 2013; Alcantara et al., 2024). Matrix vesi-
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Fig. 2. Proposed model for zinc-mediated vascular calcification. (1) Vascular calcification induced by calcium (Ca) and phosphorus 
(P) accumulation can be triggered by vascular smooth muscle cell (VSMC) apoptosis. VSMC apoptotic bodies and matrix vesicles 
accumulate Ca and P, leading to VSMC calcification. Zinc (Zn) deficiency in VSMCs promotes apoptosis, thereby increasing VSMC 
calcification. The calcification inhibitor protein osteopotin can mitigate this calcification. (2) Zn deficiency alters VSMC characteristics 
toward a calcifying phenotype resembling osteoblastic cells. This alteration is marked by reduced expression of VSMC marker 
proteins [smooth muscle 22  (SM22) and calponin] and transdifferentiation of VSMCs into calcifying cells. (3) Once VSMCs trans-
differentiate into calcifying cells (osteoblast-like cells), Zn deficiency further exacerbates vascular calcification, with distinct mecha-
nisms observed for phosphate compound formation compared with osteogenic calcification. OP, osteopontin; OB, osteoblast; Runx2, 
runt-related transcription factor 2, a bone-specific transcription factor; ECM, extracellular matrix; Cal’n, calcification; Col 1, collagen 
type I; ALP, alkaline phosphatase; MV, matrix vesicle.

cle-bound ALP, a marker of active osteogenesis, is active 
in calcified VSMCs, indicating that ALP is not a major 
initiator of vascular calcification (Golub, 2009). This 
aligns with the notion that apoptotic bodies from dying 
VSMCs, structurally similar to matrix vesicles, serve as 
the primary initiators of vascular calcification under zinc- 
deficient conditions (Fig. 2).

Several epidemiological, clinical, and animal studies 
have associated zinc with cardiovascular disease develop-
ment, with low serum zinc levels linked to coronary artery 
disease. Zinc is implicated in maintaining vascular endo-
thelial cell integrity, essentially by inhibiting signal trans-
duction pathways leading to caspase-dependent apoptosis 
(Seth et al., 2015), a postulated mechanism for initiating 
vascular calcification. Although our understanding of this 
mechanism is limited, accumulated data provide insights 
into zinc’s regulation of VSMC calcification and its po-
tential influence on vascular calcification under zinc de-
ficiency.

Vascular calcification, a major risk factor for cardiovas-
cular diseases, shares similarities with osteoblastic calci-
fication, warranting attention. As zinc is crucial for os-
teoblastic calcification, exploring its role in vascular cal-
cification is worthwhile. Based on the results of various 

studies, the potential mechanisms of zinc in vascular cal-
cification are shown in Fig. 2.

First, in vitro studies show that zinc deficiency induces 
rat VSMC and aorta calcification via VSMC apoptosis, 
independent of an osteogenic mechanism. Thus, inhibi-
tion of apoptosis is associated with decreased VSMC cal-
cification. Zinc deficiency downregulates VSMC marker 
proteins. In vivo, zinc deficiency increases aortic calcifica-
tion while decreasing bone calcification, suggesting that 
bone mineral immobilization under zinc deficiency in-
directly stimulates vascular calcification (Allen-Redpath 
et al., 2013; Shin and Kwun, 2013, 2014; Cho and Kwun, 
2020). Second, zinc deficiency promotes rat VSMC calci-
fication, independent of osteogenic ALP action, regulated 
by Pit-1. Zinc’s regulation of Pit-1 may contribute to the 
loss of VSMC marker expression and increased calcifica-
tion propensity, as blocking phosphate uptake via Pit-1 
restores VSMC marker protein expression (SM22 and 
calponin) under zinc deficiency (Allen-Redpath et al., 
2013; Alcantara et al., 2024). Third, although zinc defi-
ciency initially reduces VSMC proliferation, it accelerates 
this process over the long term, suggesting zinc’s involve-
ment in mechanisms regulating VSMC proliferation and 
contribution to the loss of cell markers and atheroscle-
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rotic calcification (Alcantara et al., 2013; Cho and Kwun, 
2020).

CONCLUSION

Zinc has emerged as a critical regulator of vascular calci-
fication. Given vascular calcification’s association with 
several cardiovascular pathologies, zinc’s protective effect 
against cardiovascular diseases may, in part, stem from its 
ability to inhibit this pathological process. Further stud-
ies are warranted to elucidate the precise mechanisms 
underlying this process and explore the potential of zinc 
in preventing both osteoporosis and atherosclerosis.
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