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Abstract: Tyrosinase is the enzyme involved in melanization and is also responsible for the browning
of fruits and vegetables. Control of its activity can be carried out using inhibitors, which is interesting
in terms of quantitatively understanding the action of these regulators. In the study of the inhibition
of the diphenolase activity of tyrosinase, it is intriguing to know the strength and type of inhibition.
The strength is indicated by the value of the inhibition constant(s), and the type can be, in a first
approximation: competitive, non-competitive, uncompetitive and mixed. In this work, it is proposed
to calculate the degree of inhibition (iD), varying the concentration of inhibitor to a fixed concentration
of substrate, L-dopa (D). The non-linear regression adjustment of iD with respect to the initial inhibitor
concentration [I]0 allows for the calculation of the inhibitor concentration necessary to inhibit the
activity by 50%, at a given substrate concentration (IC50), thus avoiding making interpolations
between different values of iD. The analytical expression of the IC50, for the different types of
inhibition, are related to the apparent inhibition constant (Kapp

I ). Therefore, this parameter can be
used: (a) To classify a series of inhibitors of an enzyme by their power. Determining these values
at a fixed substrate concentration, the lower IC50, the more potent the inhibitor. (b) Checking an
inhibitor for which the type and the inhibition constant have been determined (using the usual
methods), must confirm the IC50 value according to the corresponding analytical expression. (c) The
type and strength of an inhibitor can be analysed from the study of the variation in iD and IC50

with substrate concentration. The dependence of IC50 on the substrate concentration allows us to
distinguish between non-competitive inhibition (iD does not depend on [D]0) and the rest. In the case
of competitive inhibition, this dependence of iD on [D]0 leads to an ambiguity between competitive
inhibition and type 1 mixed inhibition. This is solved by adjusting the data to the possible equations;
in the case of a competitive inhibitor, the calculation of Kapp

I1
is carried out from the IC50 expression.

The same occurs with uncompetitive inhibition and type 2 mixed inhibition. The representation of iD
vs. n, with n = [D]0/KD

m, allows us to distinguish between them. A hyperbolic iD vs. n representation
that passes through the origin of coordinates is a characteristic of uncompetitive inhibition; the
calculation of Kapp

I2
is immediate from the IC50 value. In the case of mixed inhibitors, the values of

the apparent inhibition constant of meta-tyrosinase (Em) and oxy-tyrosinase (Eox), Kapp
I1

and the
apparent inhibition constant of metatyrosinase/Dopa complexes (EmD) and oxytyrosinase/Dopa
(EoxD), Kapp

I2
are obtained from the dependence of iD vs. n, and the results obtained must comply

with the IC50 value.
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1. Introduction

Tyrosinase (EC 1.14.18.1) is an enzyme widely distributed in nature, including in
bacteria, fungi, plants and animals [1]. The enzyme catalyses the rate-limiting step in
melanin biosynthesis in mammals, the conversion of L-tyrosine to L-dopa and the oxidation
of the latter to L-o-dopaquinone [2] (Scheme 1). The abnormal functioning of tyrosinase
causes hyperpigmentation or hypopigmentation phenomena [3,4].
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none [1,2]. Monophenolase activity exhibits a lag period 𝜏 before reaching steady state 
[12]. For this reason, the study of inhibitors on this activity of the enzyme is difficult and 
it is best to eliminate the delay period by adding a certain amount of L-dopa, necessary to 
reach the steady state. Once this addition is made, tyrosinase behaves kinetically as a 
Michaelian enzyme [13]. 

Diphenolase activity is of the Michaelian type and is normally used to study the ki-
netics of inhibitors, characterizing the type of inhibition and the strength of the inhibitor 
[13]. In addition, a parameter is calculated, the IC50, which indicates the concentration of 
inhibitor that causes 50% inhibition under certain experimental conditions [14,15]. This 
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lished. In these analytical expressions, the dependence of 𝑖  (degree of inhibition of di-
phenolase activity) on concentration of substrate on which the experiments are performed 
is revealed, except in the case of non-competitive inhibition [16]. An analysis of data, 
based on the plots of 1/IC  vs. V V⁄ , the unihibited rate (V ) divided by the maximal 
rate (V ), was proposed [17]. Subsequently, making use of the dependence of the inhi-
bition degree on the ratio of the substrate concentration, S , to the Michaelis constant 
(K ), S K⁄  discrimination was addressed between mechanisms, considering a mono-
substrate reaction in rapid equilibrium [18]. Experimental design and data analysis based 
on the dependence of IC50 vs. S K⁄  has recently been proposed [19]. 

Since tyrosinase inhibitors can control the activity of the enzyme, their study is very 
important. Thus, in mammalian pigmentation, an excessive action of tyrosinase causes 
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There is great interest in the control of tyrosinase activity, especially through the use of
inhibitors, which can be natural or synthetic [5–11]. This enzyme has two activities: firstly,
monophenolase activity, catalysing the passage from L-tyrosine to L-dopa, and secondly,
diphenolase activity, which catalyses the passage from L-dopa to L-o-dopaquinone [1,2].
Monophenolase activity exhibits a lag period τ before reaching steady state [12]. For this
reason, the study of inhibitors on this activity of the enzyme is difficult and it is best to
eliminate the delay period by adding a certain amount of L-dopa, necessary to reach the
steady state. Once this addition is made, tyrosinase behaves kinetically as a Michaelian
enzyme [13].

Diphenolase activity is of the Michaelian type and is normally used to study the kinet-
ics of inhibitors, characterizing the type of inhibition and the strength of the inhibitor [13].
In addition, a parameter is calculated, the IC50, which indicates the concentration of in-
hibitor that causes 50% inhibition under certain experimental conditions [14,15]. This IC50
parameter is related to the value of the apparent inhibition constant, Kapp

I [16].
The diagnostic value of the reversible enzymatic inhibition of the IC50 parameter and

its relationship with Kapp
I has been described for some time [16]. In the case of a monosub-

strate reaction and under fast equilibrium conditions, the relationship between IC50 and
Kapp

I (competitive, non-competitive and uncompetitive inhibitors) has been established.
In these analytical expressions, the dependence of iD (degree of inhibition of diphenolase
activity) on concentration of substrate on which the experiments are performed is revealed,
except in the case of non-competitive inhibition [16]. An analysis of data, based on the
plots of 1/IC50 vs. V0/Vmax, the unihibited rate (V0) divided by the maximal rate (Vmax),
was proposed [17]. Subsequently, making use of the dependence of the inhibition degree
on the ratio of the substrate concentration, [S]0, to the Michaelis constant (KS

m), [S]0/KS
m

discrimination was addressed between mechanisms, considering a monosubstrate reaction
in rapid equilibrium [18]. Experimental design and data analysis based on the dependence
of IC50 vs. [S]0/Km has recently been proposed [19].

Since tyrosinase inhibitors can control the activity of the enzyme, their study is very
important. Thus, in mammalian pigmentation, an excessive action of tyrosinase causes
hyperpigmentation, such as melasma, freckles and ephelides. In addition, the enzyme is
responsible for the browning of fruits, vegetables, fungi and crustaceans, which leads to a
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decrease in commercial value. For these reasons, we focus our study on the quantitative
characterization of the inhibitors. The purpose of this work is to establish quantitative rela-
tionships between iD and the inhibitor concentration [I]0 at a fixed substrate concentration,
and with the relationship [D]0/Km = n at a fixed concentration of inhibitor, where [D]0 is
the initial concentration of L-dopa, for the diphenolase activity of tyrosinase. From these
data it is possible to determine, from the dependence of iD vs. [I]0, the value of IC50. This
value should make it possible to: (a) Order different inhibitors by their inhibitory power,
where for a lower IC50, the more powerful the inhibitor is; (b) Check an inhibitor studied
via the usual methods (1/V0, i vs. 1/[D]0 at different concentrations of [I]0) whose type
and strength are known (Kapp

I ). It must be confirmed that the analytical expression of the
IC50 corresponding to this type of inhibition is fulfilled; (c) Analyse the variation in iD and
IC50 value with respect to the substrate concentration. If when the value of [D]0 varies, iD
does not vary, the inhibition is non-competitive and the value of Kapp

I is equal to the value
of IC50. In other cases, to determine the type and strength of the inhibitor, the variation
of iD vs. [D]0 must be studied. The experimental results obtained must comply with the
analytical expressions deduced for IC50. In turn, this confirms the validity of the kinetic
study carried out.

2. Results and Discussion
2.1. Diphenolase Activity

Tyrosinase catalyses the hydroxylation of monophenols to o-diphenols (monopheno-
lase activity) and the oxidation of o-diphenols to o-quinones (diphenolase activity).

In the case of tyrosinase diphenolase activity, the mechanism is in Scheme 2 [20]:
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From the mechanism described in Scheme 3, different particular cases can be con-
sidered: competitive inhibition, where the inhibitor binds preferentially to the enzymatic
forms Em and Eox in such a way that Kapp

I2
→ ∞ ; non-competitive inhibition, where the

inhibitor binds to the free enzymatic forms (Em and Eox) and to the complexes (EmD and
EoxD), fulfilling Kapp

I1
∼= Kapp

I2
; uncompetitive inhibitors bind preferentially to the EmD

complexes and EoxD such that Kapp
I1
→ ∞ ; finally, in the mixed inhibition, it is true that

Kapp
I1
6= Kapp

I2
(the expressions of Kapp

I1
and Kapp

I2
are described in the Supplementary Mate-

rial, Equations (S9) and (S10)). Note that these constants are apparent since their analytical
expressions include substrate catalysis rate constants and inhibition equilibrium constants.

The affinity of the enzyme for oxygen is so great [21,22] that at the concentration
of oxygen in the solution it is saturated, and therefore the inhibitor does not bind to
deoxytyrosinase (Ed) K13 → ∞ .

2.2. Tyrosinase Inhibition by Benzoate and Cinnamate

The inhibition of tyrosinase with benzoate and cinnamate has been studied. Working
experimentally at a fixed inhibitor concentration and varying the substrate concentration,
the initial velocities (VD,DC

o,i ) and the representation of 1/VD,DC
o,i vs. 1/[D]0 gives a straight

line. This approach is repeated at various inhibitor concentrations (the lines intersect at
the 1/VD,DC

o,i axis) and Kapp
m is then determined at each inhibitor concentration [13]. A

secondary plot of Kapp
m vs.[I]0 allows for determination of the apparent inhibition constant

Kapp
I [23–25]. The application of this methodology allows us to determine the type of

inhibition and the strength of these inhibitors, meaning in this case that these compounds
behave as competitive inhibitors, being benzoate and cinnamate at pH = 7.0, with Kapp

I
values of 0.53 ± 0.06 mM (benzoate) and 0.44 ± 0.04 mM (cinnamate).

Check of Inhibition by Cinnamate and Benzoate. Calculation of the IC50 Value and Its
Relationship with Kapp

I

In this work, the experimental values of iD have been calculated at a fixed concentration
of substrate, [D]0 = KD

m and different concentrations of inhibitor, both in the presence of
benzoate and in the presence of cinnamate. Adjusting the values of iD to Equation (S16),
the IC50 values shown in Figure 1, ICB

50 for benzoate and ICC
50 for cinnamate are obtained.
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0 (initial rate of dopachrome accumulation when the enzyme
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o,i (initial rate of dopachrome accumulation when the enzyme acts on L-dopa
in the presence of inhibitor), with respect to the inhibitor concentration. (A). Representation of iD for
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benzoate. The experimental conditions were: [E]0 = 5 nM [D]0 = 0.5 mM, phosphate buffer pH = 7,
25 ◦C and the inhibitor concentration (benzoate) was varied (mM): 0, 0.1, 0.3, 0.7, 1, 1.2, 1.4 and 1.7.
(B). Representation of the iD values for cinnamate. The experimental conditions were the same as in
Figure 1A and the inhibitor concentration (cinnamate) was varied according to (mM): 0, 0.1, 0.3, 0.6,
1, 1.4, 1.5 and 1.7.

With the values of ICB
50 = 0.99± 0.02 mM and ICC

50 = 0.80± 0.02 mM obtained for
benzoate and cinnamate, respectively, so being ICC

50 < ICB
50, then cinnamate is a more potent

inhibitor than benzoate. The values of Kapp
I (Equation (S20)) are calculated and compared

with the values obtained from Kapp
I following the experimental method described above for

competitive inhibitors (see Table 1) [13]. Note the similarity between the values obtained
by the two methods. The chemical structures of benzoate and cinnamate are shown in
Figure 2. The docking of these compounds to met-tyrosinase and oxy-tyrosinase is shown
in Figures 3 and 4. The values of the dissociation constants are shown in Table 2. Note that
at the working pH, these compounds are as benzoate and cinnamate and therefore bind
better to met-tyrosinase than to oxy-tyrosinase, as shown in Figures 3 and 4. The KD value
is higher for the case of oxy-tyrosinase (Table 2) due to the repulsion between the negative
charges of the compounds and the peroxide of oxy-tyrosinase.

Table 1. Apparent inhibition constants (Kapp
I ) obtained for benzoate and cinnamate for the dipheno-

lase activity of tyrosinase on L-dopa. (a) Kapp
I values obtained from the value obtained from IC50 and

(b) obtained through the experimental design of a competitive inhibitor.

Inhibitor (a) Kapp
I (mM) (b) Kapp

I (mM)

Benzoate 0.49 ± 0.01 0.53 ± 0.06
Cinnamate 0.40 ± 0.01 0.44 ± 0.04

(a) Kapp
I (mM) obtained from iD, (ICC

50 = (1 + n)Kapp
I1

) with n = 1; (b) Kapp
I (mM) obtained from the analysis of

experimental data on the effect of substrate concentration at different inhibitor concentrations.
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Figure 4. Docking of benzoate (A,B) and cinnamate (C,D) to met-tyrosinase. The binuclear active
copper site in thin sticks (A,C) and the full structure of met-tyrosinase in ribbons (B,D) are depicted
with the ligands. Colour scheme is as in Figure 3.

Table 2. Compounds described as true inhibitors: competitive, non-competitive, uncompetitive and
mixed. Kd is the ligand dissociation constant of docking to the active site of oxy- and met-tyrosinase.

Oxy Met
ReferencesFigures Compound Name Inhibition Type Kd (mM) Kd (mM)

Figure 3A,B and Figure 4A,B Benzoate Competitive 2.76 0.072 [13]
Figure 3C,D and Figure 4C,D Cinnamate Competitive 3.73 0.016 [13]

Figure S8 2′-(Hydroxymethyl)-[1,1′-biphenyl]-2,4-diol Competitive 14.05 1.86 [26]
Figure S9 trans-3,4-Diflurocinnamate Competitive 3.29 0.14 [27]

Figure S10 6-Fluoro-1H-indazole Non-competitive 0.5 0.77 [28]
Figure S10 7-Fluoro-1H-indazole Non-competitive 0.5 0.6 [28]
Figure S10 4-Chloro-1H-indazole Non-competitive 0.5 0.4 [28]
Figure S10 6-Bromo-1H-indazole Non-competitive 0.47 0.9 [28]
Figure S10 7-Bromo-1H-indazole Non-competitive 0.47 0.34 [28]
Figure S11 2-Aminobenzoate Non-competitive 1.87 0.052 [29]
Figure S11 4-Aminobenzoate Non-competitive 2.17 0.081 [29]
Figure S15 Propyl gallate Mixed 3.91 0.68 [30]
Figure S17 Sanggenone C Competitive 255.29 0.034 [31]

Figure S25 (E)-2-Acetyl-5-methoxyphenyl-3-(4-
methoxyphenyl)acrylate Mixed 0.3 0.46 [32]

The chemical structures of these compounds and their derived analogous are shown
in Figure 2.

The dockings of benzoate and cinnamate to oxy-tyrosinase and met-tyrosinase are
shown in Figures 3 and 4.

2.3. Discussion about the Relationship of IC50 and the Values of the Inhibition Constant Kapp
I with

Data from the Literature for Tyrosinase

While conducting a literature review of recently published tyrosinase inhibition stud-
ies, we sometimes observed that there was a lack of correlation between the IC50 values
and the Kapp

I values. Next, some cases are described for the different types of inhibition.

2.3.1. With Reference to Competitive Inhibitors

The study of tyrosinase inhibition can be carried out on diphenolase, monophenolase
activity or both. When the study is carried out using L-tyrosine as a substrate (monopheno-
lase activity), the existence of a transition phase must be taken into account, which causes
a delay period, τ, before the system reaches a steady state [12]. In a previous work, our
group showed the usefulness of adding, at t = 0, the necessary amount of L-dopa to reach
the steady state and to be able to obtain correct measurements of the initial velocity [13].
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Benzimidazothiazolone derivatives are tyrosinase inhibitors [33]. An inhibition study
was carried out using L-tyrosine as substrate and the values obtained for the compounds
are shown in Figure S1. It was established that the three compounds a–c are competitive
inhibitors; the inhibition constants and the IC50 described are: (a) Kapp

I = 16.55 µM
IC50 = 3.70± 0.51 µM; (b) Kapp

I = 3.21 µM IC50 = 3.05± 0.95 µM and (c) Kapp
I = 3.01 µM

IC50 = 5.00± 0.38 µM. From these values it becomes clear for compounds (a) and (b) that
Kapp

I > IC50, which is not in agreement with Equation (S20). In addition, the chemical
structure of the compounds described in Figure S1 shows that these molecules could
behave as alternative substrates to L-tyrosine, and this would also lead to a distortion in
the initial velocity measurements and therefore of Kapp

I and IC50. In the presence of L-dopa
accumulated in the medium when the enzyme acts on L-tyrosine, these compounds can
behave as alternative substrates to L-tyrosine. Regarding the docking, the compounds
bind with practically the same affinity to the met and oxy forms (Table 3). The docking
is shown in Figures S2–S4. In addition, it should be noted that the distance of the oxygen
from the peroxide group in the oxy-tyrosinase form is less than 2.9
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for the ortho position
of the phenolic hydroxyl of the compound, in such a way that the hydroxylation reaction
can occur and behave as an alternative substrate; this could be the origin of the kinetic
deviations. On the other hand, compound b, due to its ortho-diphenolic structure, can
be a substrate for the enzyme, as shown in Figure S3A,B in the docking to oxy and met-
tyrosinase (Table 3). Note that when using L-tyrosine as a substrate there is a delay period,
and if it is not eliminated, it can lead to erroneous initial velocity measurements [13].

Scheme S2 shows how a monophenol can behave as an alternative substrate to L-dopa.
The met-tyrosinase form is inactive on the monophenol, but the oxy-tyrosinase form is
capable of hydroxylating it if certain requirements are met. On the other hand, the met-
tyrosinase form acting on L-dopa (measured substrate) enters the catalytic cycle.

In the study of urolithin and reduced urolithin derivatives as potent inhibitors of
tyrosinase [26], the compounds described in Figure S5 show competitive inhibition with
IC50 values of (a) 18.09 ± 0.25 µM, (b) 4.14 ± 0.10 and (c) 15.69 µM. The values of Kapp

I
described are: 2 µM, 0.4 µM and 3 µM. In this case, it is true that IC50 > Kapp

I , but these
values imply, according to Equation (S20), IC50 = Kapp

I (1 + n), which has been worked
out at values of n = [D]0/KD

m of 8, 10 and 4. In addition, the chemical structure of the
three compounds indicates that they could be substrates of the enzyme (Figure S5), and the
docking data are shown in Tables 2 and 3. Figures S6–S8 show the docking to tyrosinase of
these compounds. The compounds a (Figure S6) and b (Figure S7) from Figure S5 could be
alternative substrates (Table 3). Compound c (Figure S8) from Figure S5 is shown as a true
competitive inhibitor (Table 2).

The study of cinnamate derivatives on tyrosinase monophenolase and diphenolase
activities suggests that trans-3,4-difluorocinnamic acid (Figure S9) behaves as a com-
petitive inhibitor (Table 2), with a value of Kapp

I = 197 ± 11 µM and an IC50 value of
0.78 ± 0.02 mM, which approximately satisfies the Equation (S20) IC50 = Kapp

I (1 + n).
However, the degrees of inhibition for monophenolase (iM) and diphenolase (iD) activ-
ity for the compound trans-3,4 difluorocinnamic acid, since it is a competitive inhibitor,
should be the same [13]. Furthermore, iM = 68.6± 4.2 µM and iD = 780± 2 µM, and the
problem stems from the fact that the inhibition study has been conducted through the
measurement of monophenolase activity with L-tyrosine, so the lag is not eliminated and
the speeds obtained may not be correct [27]. This compound essentially binds to the met
form, according to the docking data (Table 2).
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Table 3. Compounds described as inhibitors: competitive, non-competitive, uncompetitive and mixed, which can behave as alternative substrates or as suicide
substrates. Kd is the ligand dissociation constant of docking to the active site of oxy and met-tyrosinase. d-O2 corresponds to the distance from the oxygen atoms of
the peroxide group of oxy-tyrosinase to a carbon atom adjacent to a -OH group.

Oxy Met Possible Alternative
Substrate ReferencesFigures Compound Name Inhibition Type

Proposed Kd (mM) d-O2 (
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Figure 5A,B [2-(3-Methoxyphenoxy)-2-oxoethyl] 2,4-dihydroxybenzoate Non-competitive 0.5 2.8 0.25 Monophenol [34]
Figure 6A,B 2-(3-methoxyphenoxy)-2-oxoethyl-(E)-3-(4-hydroxyphenyl) acrylate Non-competitive 0.36 2.8 0.25 Monophenol [34]

Figure S2 (Z)-2-(4-Hydroxybenzylidene)benzo[4,5]imidazo[2,1-b]thiazol-3(2H)-one Competitive 0.14 2.9 0.15 Monophenol [33]
Figure S3A,B (Z)-2-(3,4-Dihydroxybenzylidene)benzo[4,5]imidazo[2,1-b]thiazol-3(2H)-one Competitive 0.14 - 0.089 o-Diphenol [33]

Figure S4 (Z)-2-(2,4-Dihydroxybenzylidene)benzo[4,5]imidazo[2,1-b]thiazol-3(2H)-one Competitive 0.25 2.7 0.19 Monophenol [33]
Figure S6 1,3-Dihydroxy-6H-benzo[c]chromen-6-one Competitive 0.71 3.7 0.34 Monophenol [26]
Figure S7 1,3-Dihydroxy-8-methoxy-6H-benzo[c]chromen-6-one Competitive 0.99 3.7 0.51 Monophenol [26]

Figures S13 and S14 Luteolin Uncompetitive
Non-competitive 1.1 - 14.57 o-Diphenol [35]

Figure S18 Oxyresveratrol Non-competitive 4.8 4.8 1.18 Monophenol [31]
Figure S19A,B L-Epicatechin Competitive 3.84 - 4.9 o-Diphenol [31]
Figure S20A,B Catechin Competitive 3.87 - 2.27 o-Diphenol [31]
Figure S22A,B N-trans-Caffeoyltyramine Competitive 1.5 - 0.15 o-Diphenol [36]

Figure S23 N-trans-feruloyltyramine Competitive 0.093 2.9 0.038 Monophenol [36]
Figure S24 N-trans-Coumaroyltyramine Competitive 0.067 2.8 0.032 Monophenol [36]
Figure S26 (E)-2-Acetyl-5-methoxyphenyl-3-(4-hydroxyphenyl)acrylate Non-competitive 0.11 2.8 0.115 Monophenol [32]
Figure S27 (E)-2-Isopropyl-5-methylphenyl-3-(4-hydroxyphenyl)acrylate Mixed 0.15 2.8 0.12 Monophenol [32]
Figure S29 Streblus C Competitive 0.076 2.7 0.071 Monophenol [37]
Figure S30 Streblus D Competitive 1.3 3.4 0.24 Monophenol [37]
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2.3.2. With Reference to Non-Competitive Inhibitors

Non-competitive inhibition of tyrosinase by indazoles has been described (Figure S10) [28].
The values described for Kapp

I are always greater than the IC50, and a possible explanation
for this could be that the activity measurements are made with catechol, which derives
a very unstable o-quinone after its oxidation. These compounds, according to docking
studies, bind practically with the same affinity to the met and oxy forms (Table 2).

On the other hand, the study of tyrosinase inhibition by 2-aminobenzoic acid and
4-aminobenzoic acid shows strict compliance with Equation (S22), and non-competitive
inhibition [29] (Chemical structures are shown in Figure S11), obtaining IC50 values = 4.72 µM
and 20 µM with values of Kapp

I = 4.72 µM and 20 µM, respectively. The affinity of these
compounds for the met form is much higher than for the oxy form, according to the docking
data (Table 2). The presence of peroxide in the oxy-tyrosinase form makes the union of
these compounds weaker (Table 2).

Inhibition of tyrosinase by hydroxyl-substituted benzoate/cinnamate derivatives has
recently been reported (Figure 2) [34]. In this work, the IC50 values described do not
correlate quantitatively with the Kapp

I values described by Equation (S20). Benzoate and
cinnamate are competitive inhibitors, so these derivatives are expected to behave in the
same way, but this is not the case, and they are described as non-competitive. A possible
explanation for this could be that the same substrate concentration range is used for
different inhibitor concentrations. In addition, these molecules have a free hydroxyl, which
could be an enzyme substrate (Table 3 (see later)) which would distort the kinetic analysis
(see Figure 2).

2.3.3. With Reference to Uncompetitive Inhibitors

Inhibition of tyrosinase by a component of Moringa oleifera extract (Figure S12) has been
described [35]. The type of inhibition described is uncompetitive, with an IC50 = 121.3± 0.4 µg/mL
and Kapp

I = 73 µg/mL. As luteolin is the main component of the extract, these data would be
in agreement with a study published a few years ago [38] where an inhibition constant value
of 103 µM and an uncompetitive type of inhibition were proposed. However, luteolin has
recently been described as a non-competitive inhibitor with Kapp

I = 291.75 ± 7.75 µM [39].
These discrepancies of reversible uncompetitive and non-competitive inhibition can be
explained by the chemical structure of luteolin (Figure S12), which, like any compound with
a diphenolic structure, behaves as a substrate of tyrosinase [39]. The affinity of luteolin for
met-tyrosinase is low (Table 3). Docking of luteolin to oxy-tyrosinse is shown in Figure S13
and docking to met-tyrosinase in Figure S14. Because this molecule carries an o-diphenolic
structure, it is oxidized by both met-tyrosinase and oxy-tyrosinase (Table 3).

2.3.4. With Reference to Mixed-Type Inhibitors

The inhibition of tyrosinase by propylgallate is of the mixed type (Figure S15), with
an IC50 value of 0.685 mM and with values of Kapp

I1
= 0.661 mM and Kapp

I2
= 2.135 mM.

According to data from the docking (Table 2), this compound binds better to the met form
than to the oxy [30]. The IC50 value that is obtained by applying the formula described in
the supplementary material Equation (S35) is 1 mM, and the value described experimentally
is 0.685 mM.

2.4. Other Possible Causes of the Lack of Correlation between IC50 and Kapp
I

2.4.1. Inhibitor Can Be Alternative Substrate

Benzoate and cinnamate are competitive inhibitors of tyrosinase diphenolase activity [13].
In this sense, for the derivatives of benzoate and cinnamate studied in [34], a competi-
tive type of behaviour should be expected, but what is described is a “non-competitive”
behaviour. It is noteworthy that the quantitative relationship Equation (S19) between
the values of IC50 and Kapp

I is not fulfilled. Thus, (2-(3-methoxyphenoxy)-2-oxoethyl-2,4-
dihydroxybenzoate) (compound a) had an IC50 value of 23.8 µM, while the Kapp

I value was
130 µM. On the other hand, (2-(3-methoxyphenoxy)-2-oxoethyl-(E)-3-(4-hydroxyphenyl)
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acrylate) (compound b) inhibited tyrosinase with an IC50 value of 5.7 µM, while the Kapp
I

value was 11 µM. The structures of these compounds are shown in Figure 2, and it could
be proposed that they may be substrates of the enzyme. This would result in obtaining
incorrect initial rates.

The docking of benzoate and cinnamate to met-tyrosinase and oxy-tyrosinase is shown
in Figures 3 and 4. The docking of benzoate derivatives Figure 2a is shown in Figure 5 and
that of cinnamate derivatives Figure 2b in Figure 6. From the data shown in Table 3, these
compounds have practically the same affinity towards oxy-tyrosinase and met-tyrosinase
and the distance of the oxygen from the peroxide in the oxy form to the ortho position with
respect to the phenolic hydroxyl is 2.8
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From the chemical structure of the two compounds shown in Figure 2a,b, a hydroxyl
group can be seen in position 4. Docking studies in Figures 5 and 6 show that the two
compounds bind with high affinity for the hydroxyl in position 4, and also the distance
of the oxygens of oxy-tyrosinase to the ortho position is adequate for the electrophilic
aromatic substitution reaction to occur (Table 3) [40–42]. In this way, these compounds
would possibly behave as alternative substrates to L-dopa. In the case of 4-hydroxycinnamic
and 3-hydroxycinnamic, it was shown that they were alternative substrates to L-tyrosine
and L-dopa [43,44]. The interactions with the hydroxyl group at positions 3 and 4 and
the distances of the oxygens in oxy-tyrosinase to the ortho positions make hydroxylation
possible [43,44].

2.4.2. Inhibitor Can Be a Suicide Substrate

In general, o-diphenols are suicide substrates of tyrosinase with different inactivation
potency. In Scheme S2, the action of a possible inhibitor with an o-diphenolic group is
shown, and this compound could be oxidized by both met-tyrosinase and oxy-tyrosinase.
Furthermore, it should be noted that o-diphenols are suicide substrates of the enzyme.
The same substrate used to measure L-dopa activity is also a suicide substrate, but the
important thing is the time that the enzyme and o-diphenol are in contact. The suicidal
action of L-dopa is minimal because the measurements are made at short times, but as in
many inhibition assays, the enzyme is preincubated with the inhibitor (o-diphenol) from 10
to 30 min; the effect of suicide inactivation is relevant and this can lead to distortion of the
kinetic analysis.

Figure S3A,B shows the docking of compound (Z)-2-(3,4-Dihydroxybenzylidene)
benzo[4,5]imidazo[2,1-b]thiazol-3(2H)-one to oxy-tyrosinase and met-tyrosinase. This
compound can behave as a suicide substrate and cause deviations in the determination of
kinetic parameters.

Figures S13 and S14 show the docking of luteolin to oxy- and met-tyrosinase. Due
to the o-diphenolic structure, this compound can be a substrate of the enzyme and have
suicide behaviour [39].

In the case of propyl gallate (Figure S15), the IC50 value is 0.685 mM, lower than
the theoretical value obtained from Kapp

I1
and Kapp

I2
. This slight increase in the strength of

the inhibitor may be because these trihydroxylated compounds are suicide substrates of
tyrosinase, as was shown long ago [45,46].

Tyrosinase inhibition by four polyphenols from Morus and tulles Barley has been
studied [31]. These compounds have been described as competitive inhibitors (Figure S16):
sanggenone C (IC50 = 18.85µM); L-epicatechin (IC50 = 191.99µM); catechin (IC50 = 511.59 µM).
Non-competitive inhibition has been reported for oxyresveratrol (IC50 = 4.50 µM). The
Kapp

I values described were: sanggenone C 11.92 µM; L-epicatechin 119.16 µM; catechin
365.86 µM and oxyresveratrol 4.50 µM. The assay methodology is similar to the cases
described above with preincubations of the enzyme and the inhibitor dissolved in DMSO
for 10 min. The reaction is started by adding L-dopa at a concentration equal to KD

m, and
the IC50 values should meet the relationship IC50 = Kapp

I (1 + n). With n = 1, these would
be IC50 = 2Kapp

I ; however, the IC50 values do not satisfy Equation (S20). In the case of
oxyresveratrol, it is true that IC50 ∼= Kapp

I , because it is a non-competitive type of inhibitor
and could also be a substrate for the enzyme in the presence of H2O2 or L-dopa [47,48].
The docking results are shown in Table 3. In the case of sanggenone C, the compound acts
as a competitive inhibitor (Table 2), acting on met-tyrosinase (Figure S17). The chemical
structure of catechin and epicatechin show an o-diphenol, and they are substrates of the
enzyme, as demonstrated experimentally [49]. The low IC50 values would be justified
because these compounds are suicide substrates (Scheme S2) of the enzyme and a 10 min
preincubation is performed in the assay [49]. The values of the dissociation constants
obtained from the docking are shown in Table 3. The docking Figures are described in
Figures S18, S19A,B and S20A,B.
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When the anti-melanogenesis and anti-tyrosinase power of phenethyl cinnamamides
compounds from an extract of hemp (Cannabis sativa L.) was studied, it was found that among
the compounds studied (Figure S21) [36], the most potent is the N-trans-caffeoyltyramine. Its
diphenolic structure can cause the suicide inactivation of the enzyme, since in the inhibition
test it is preincubated with tyrosinase for 30 min and then the reaction is started with
L-dopa, in addition to an additional 10 min incubation. The three inhibitors, according
to the docking data (Table 3), can be substrates of the enzyme, joining through the phe-
nolic hydroxyl group corresponding to tyramine, in addition to compound (a), which
due to its diphenolic structure, can be a suicide substrate. The dockings are shown in
Figures S22A,B, S23 and S24. The distance of the oxygen from the peroxide to the ortho
position of the phenolic hydroxyl is 2.8
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, respectively, and therefore they can
act as alternative substrates.

2.4.3. Enzyme Inhibition Assay Design

In performing tyrosinase inhibition assays, several aspects must be considered in order
to avoid false interpretations, as described below:

Preincubations and Use of Organic Solvents

It is common in tyrosinase inhibition assays to preincubate the enzyme with the
inhibitor for a long time, and to subsequently start the reaction with the substrate. This
procedure can give erroneous values of the inhibited rate (V0,i) due to a possible reaction of
the inhibitor with the enzyme [32]. Kinetic studies have been carried out on the inhibition
and inactivation of tyrosinase by DMSO in the presence of substrate, and the inhibition
constant of the free enzyme and of the enzyme–substrate complex has been determined.
From these studies, it is shown that at low concentrations of DMSO, the inhibition is
reversible, and at high concentrations, the enzyme is irreversibly inactivated. In addition,
these works indicate that the substrate protects the enzyme from inactivation [50–52].
Inhibition of tyrosinase by cinnamate esters has been studied [32], showing that they are
more potent than their parent compounds, see Figure S25a–c [32]. The calculated values
for the IC50 parameter are: 2.0 µM; 8.3 µM and 10.6 µM and the values of Kapp

I and the
type of inhibition were: (a) non-competitive and Kapp

I = 3.8 µM; (b) mixed Kapp
I = 10.0 µM

and Kapp
IS = 35.6 µM (c) mixed and Kapp

I = 8.0 µM and Kapp
IS = 72.2 µM. Theoretical IC50

values calculated from Equation (S35) are 15.6 µM and 7.20 µM. Note that the IC50 value
for cinnamate is 209.5 µM, lower than that described in [13]. An explanation for this could
be the inactivating effect of DMSO and the long incubation time. It is noteworthy that
4-hydroxycinnamic has a value of 4708.5 µM [32] as it is a substrate, which is in agreement
with that described in [43]. Compounds (a) and (b) could behave as alternative substrates
(Table 3); however, compound (c) is a true inhibitor (see Table 2). The dockings of (a) and
(b) to Eox are shown in Figures S26 and S27.

Tyrosinase inhibition by two new stilbenes extracted from stems of Streblus Ilicifolius
has been described. (Figure S28) [37]. Compound (a) bears a resorcinol end and is much
more inhibitory than (b) which bears a phenol. On the other hand, the inhibition assay
again involves the inhibitor dissolved in DMSO and a 30 min preincubation with which
the DMSO can inactivate the enzyme. The reaction is subsequently started by adding
L-dopa and is incubated again for 7 min. In our opinion, the design of the inhibition test is
not adequate, and also, in the presence of L-dopa, these compounds could be alternative
substrates. Compound (a) binds oxy better than (b) (Table 3). Figures of the docking of
tyrosinase to these two compounds are shown in Figures S29 and S30. These compounds,
especially streblus C, can behave as alternative substrates (Table 3).

2.5. Proposal for an Experimental Design to Determine the Type and Strength of a Tyrosinase
Inhibitor from iD Values

An experimental design is proposed together with data analysis that allows several
aspects to be determined with a few experiments—the IC50 value, the type of inhibition and
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the Kapp
I value. This design is described and carried out with data obtained by simulating

the different mechanisms under study. This would be carried out in the following stages:
Step 1. Progress curves in the absence and presence of inhibitor, obtained by simulation,

according to the differential equations corresponding to each mechanism of inhibition,
described in the supplementary material. Determination of the iD values, varying the
concentration of inhibitor, at a fixed substrate concentration [D]0 = KD

m (Table S1). Table S1
shows the data for the different types of inhibition considered in this paper.

Step 2. Representation of inhibition degree values versus inhibitor concentration.
Figure 7 shows the values of iD vs. [I]0 for each type of inhibition.
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b, uncompetitive; c, non-competitive. (B) d, mixed type (1) and e, mixed type (2). Conditions:
a. Competitive: [E]0 = 10× 10−9 M, [Eox]0 = 0.3× [E]0, [Em]0 = 0.7× [E]0; [D]0 = 0.5× 10−3 M;
[O2]0 = 0.26× 10−3 M, and the inhibitor concentration was varied according to (µM): 0, 10, 15,
30, 45, 60, 72.5, 100, 200 and 300. The rate constants were: k2 = 5× 106 M−1s−1, k−2 = 10 s−1,
k3 = 900 s−1, k6 = 2.16 × 105 M−1s−1, k−6 = 10 s−1, k7 = 108 s−1, k8 = 2.3 × 107 M−1s−1,
k−8 = 1.03 × 103 s−1, k11 = 106 M−1s−1, k−11 = 10 s−1, k14 = 105 M−1s−1, k−14 = 2.68 s−1,
k16 = 10 s−1. b. Uncompetitive. The simulation conditions were the same as in the previous
case, but the new inhibition constants were: k12 = 106 M−1s−1, k−12 = 10 s−1, k14 = 105 M−1s−1,
k−14 = 2.68 s−1, k15 = 105 M−1s−1, k−15 = 3 s−1. c. Non-competitive. The simulation conditions
were the same as in the first case, but the inhibition constants were: k12 = 106 M−1s−1, k−12 = 10 s−1,
k15 = 105 M−1s−1, k−15 = 3 s−1. d. Mixed type (1). The simulation conditions were the same as
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500 and 700. The inhibition constants were: k11 = 106 M−1s−1, k−11 = 10 s−1, k12 = 106 M−1s−1,
k−12 = 10 s−1, k14 = 105 M−1s−1, k−14 = 2.68 s−1, k15 = 105 M−1s−1, k−15 = 30 s−1. e, Mixed type
(2). The simulation conditions were the same as in the previous case, but the inhibition constants
were: k11 = 105 M−1s−1, k−11 = 30 s−1, k12 = 106 M−1s−1, k−12 = 10 s−1, k14 = 105 M−1s−1,
k−14 = 2.68 s−1, k15 = 106 M−1s−1, k−15 = 10 s−1.

Step 3. Data analysis of iD vs. [I]0 by nonlinear regression according to Equation (S16).
IC50 is determined for each inhibitor: competitive (ICC

50); non-competitive (ICNC
50 ); uncom-

petitive (ICU
50); mixed type (1) (ICM1

50 ) and mixed type (2) (ICM2
50 ) (Table 4).
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Table 4. Determination of the IC50 values for the different types of inhibition.

Type IC50 (µM)

Competitive ICC
50 = 60.8

Non-competitive ICNC
50 = 26.9

Uncompetitive ICU
50 = 53.2

Mixed type (1) ICM1
50 = 40.4

Mixed type (2) ICM2
50 = 15.9

Step 4. Determination of iD for [D]0 = 2KD
m and with [I]0 fixed (Table S2).

Step 5. Possible types of inhibition:

A. i2KD
m

D < iKD
m

D : could be competitive.

B. i2KD
m

D = iKD
m

D : is non-competitive and Kapp
I = ICNC

50 .

C. i2KD
m

D > iKD
m

D : could be uncompetitive.

D. i2KD
m

D < iKD
m

D : ambiguity between competitive and mixed type (1).

E. i2KD
m

D > iKD
m

D : ambiguity between competitive and mixed type (2).

In case B, there is no ambiguity between the types of inhibition. It would be a non-
competitive inhibitor with ICNC

50 = Kapp
I , from the value of ICNC

50 (Table 4). The constancy
of the value of iD when varying the concentration of the substrate, the type of inhibition
(non-competitive) and the strength of the inhibitor are obtained for Kapp

I (26.9 µM), as per
Equation (S22). In all other cases, there is ambiguity, which needs to be resolved.

Step 6. Solution of the ambiguity between competitive inhibition and mixed type (1).
Two iD values are obtained by simulation with [D]0 = 5KD

m and [D]0 = 10KD
m. If the

inhibition decreases significantly (for example: from 25.77% to 16.11%) ( iD → 0), then it
would be a competitive inhibitor. If the inhibition decreases slightly (for example: from
51.02% to 48.37%), then it could be a mixed type (1) inhibition. In any case, the adjustment
of the experimental data of iD vs. n according to Equations (S17) and (S31) helps to
discern between competitive inhibition and the mixed type (1) (Figure 8A,B). The inhibition
constant (Kapp

I1
) is determined by nonlinear regression adjustment of (iD vs. n) according to

Equation (S17) (Figure 8A). The determined value of Kapp
I1

must comply with the value of
ICC

50 according to Equation (S20). For Kapp
I1

(Table 4), in the case of competitive inhibition
and in the case of mixed type (1) inhibition, the adjustment is performed by nonlinear
regression of (iD vs. n) according to Equation (S31), determining Kapp

I1
and Kapp

I2
(Figure 8B).

These values must comply with Equation (S35) and are described in Table 4.
Step 7. Solution of the ambiguity between uncompetitive and mixed type (2) in-

hibition. Figure 9A,B shows the values of iD obtained for the variation in [D]0 at fixed
inhibitor concentration.



Molecules 2022, 27, 3141 16 of 22

Molecules 2022, 27, x FOR PEER REVIEW 16 of 22 
 

 

A. 𝑖 < 𝑖 : could be competitive. 
B. 𝑖 = 𝑖 : is non-competitive and K = IC . 
C. 𝑖 > 𝑖 : could be uncompetitive. 
D. 𝑖 < 𝑖 : ambiguity between competitive and mixed type (1). 
E. 𝑖 > 𝑖 : ambiguity between competitive and mixed type (2). 

In case B, there is no ambiguity between the types of inhibition. It would be a non-
competitive inhibitor with IC = K , from the value of IC  (Table 4). The constancy 
of the value of 𝑖  when varying the concentration of the substrate, the type of inhibition 
(non-competitive) and the strength of the inhibitor are obtained for K  (26.9 µM), as 
per Equation (S22). In all other cases, there is ambiguity, which needs to be resolved. 

Step 6. Solution of the ambiguity between competitive inhibition and mixed type (1). 
Two 𝑖  values are obtained by simulation with D = 5K  and D = 10K . If the in-
hibition decreases significantly (for example: from 25.77% to 16.11%) (𝑖 → 0), then it 
would be a competitive inhibitor. If the inhibition decreases slightly (for example: from 
51.02% to 48.37%), then it could be a mixed type (1) inhibition. In any case, the adjustment 
of the experimental data of 𝑖  vs. n according to Equations (S17) and (S31) helps to dis-
cern between competitive inhibition and the mixed type (1) (Figure 8A,B). The inhibition 
constant (K ) is determined by nonlinear regression adjustment of (𝑖  vs. n) according 
to Equation (S17) (Figure 8A). The determined value of K  must comply with the value 
of IC  according to Equation (S20). For K  (Table 4), in the case of competitive inhibi-
tion and in the case of mixed type (1) inhibition, the adjustment is performed by nonlinear 
regression of (𝑖  vs. n) according to Equation (S31), determining K  and K (Figure 
8B). These values must comply with Equation (S35) and are described in Table 4. 
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Figure 8. (A) Solution of the ambiguity between competitive and mixed type (1) inhibition. Repre-
sentation of iD vs. n. The simulation conditions were the same as in Figure 6A,B, but the inhibitor
concentration [I]0 was constant (100 µM). The substrate concentration (mM) was varied: 0.25, 0.35,
0.5, 1, 2, 3, 5 and 10. The adjustment by non-linear regression (iCD vs. n), according to Equation (S17),
allows us to obtain Kapp

I1
(Kapp

I1
= 32.6 µM). Note that this value, according to Equation (S20), meets

the value of ICC
50 (Table 4), which confirms the inhibition mechanism. (B) If it is a type (1) mixed

inhibitor (Kapp
I1

< Kapp
I2

), the simulated data would not fit Equation (S17) but would fit Equation (S31),
as shown in (B). In the latter case, Kapp

I1
(Kapp

I1
= 26.2 µM) and Kapp

I2
(Kapp

I2
= 74.5 µM) are determined.

Note the fulfillment of Equation (S35), and therefore, the value of ICM1
50 , (Table 4), which confirms the

inhibition mechanism.
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if a hyperbola is obtained that passes through the origin of coordinates, it could be an uncompetitive
inhibition as per Equation (S25). Data analysis using nonlinear regression of this equation allows for
obtaining the value of Kapp

I2
(Kapp

I2
= 25.1 µM). Note the fulfilment of Equation (S28) (Table 4), which

confirms the inhibition mechanism. (B) ([I]0 = 50 µM) If the representation of iD vs. n gives rise to a
hyperbola that does not pass through the origin of coordinates, it could be a type (2) mixed inhibition
with Kapp

I2
< Kapp

I1
. The non-linear regression fit (iD vs. n), according to Equation (S31), allows Kapp

I1

and Kapp
I2

to be determined, resulting in Kapp
I1

(Kapp
I1

= 31.5 µM) and Kapp
I2

(
Kapp

I2
= 10.1 µM

)
. Note

that these values satisfy Equation (S35) (see Table 4), which confirms the inhibition mechanism.

3. Material and Methods
3.1. Enzyme Source

Mushroom tyrosinase (3130 U/mg) was purchased from Merck Life (Madrid, Spain)
and purified as previously described [53]. Protein content was determined by Bradford’s
method [54]. This enzyme is a tetramer with two heavy subunits, H, and two light ones,
L [55].

3.2. Reagents

Benzoate, cinnamate and L-dopa were purchased from Merck Life (Madrid, Spain). Stock
solutions of substrates were prepared in 0.15 mM phosphoric acid to prevent auto-oxidation.

3.3. Spectrophotometric Assays

Absorption was recorded in a visible-ultraviolet PerkinElmer Lambda 35-spectrophotometer
(Perkin Elmer, Madrid, Spain), online interfaced with a compatible laptop. The temperature
was maintained at 25 ◦C. Kinetics assays were also carried out with the above instruments
by measuring the appearance of the products in the reaction medium. The activity on
L-dopa was measured at 475 nm [56].

3.4. Simulation Assays

Initial rate (VD,DC
0 ) of the diphenolase activities in the absence (Scheme 1) and presence

of different concentrations of inhibitor (Scheme 2) were calculated from the simulated
progress curves obtained by numerical solution of the nonlinear set of differential equations
corresponding to these mechanisms (see Supplementary Material). The systems of differen-
tial equations were solved numerically for particular sets of values of the rate constants
and of initial concentrations of the species involved in the reaction mechanisms (WES) [57].

3.5. Kinetic Data Analysis

The initial velocity in the absence of inhibitor VD,DC
0 , and in the presence VD,DC

o,i ,
were calculated by linear regression of the spectrophotometric recordings of the change in
absorbance at 475 nm versus time. From these values, the degree of inhibition is determined:

iD% =
(

VD,DC
0 −VD,DC

o,i /VD,DC
0

)
× 100

Non-linear regression analysis [58] of the iD% values with respect to [I]0 obtained at the
same substrate concentration allows for obtaining the IC50. For each type of inhibition there
is a relationship between IC50 and the inhibition constant (competitive, non-competitive
and uncompetitive) or constants (mixed). When the substrate concentration is varied,
keeping the inhibitor concentration fixed, the non-linear regression analysis of the corre-
sponding equation provides the values of Kapp

I1
: competitive inhibition, Equation (S17);

Kapp
I2

: uncompetitive inhibition, Equation (S25); and both constant at mixed inhibition,
Equation (S31).

The REFERASS computer program was used to obtain the rate equations of these
mechanisms in the presence of inhibitor or of an alternative substrate [59].
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3.6. Computational Docking

Molecular docking of the ligands was studied in the active site of mushroom tyrosinase.
Their chemical structures were built from chemical structures obtained from the PubChem
Substance and Compound database [60] (Table S1). The molecular structure of tyrosinase
was taken from the Protein Databank (PDB ID:2Y9W, Chain A) [55], corresponding to the
deoxy-form of tyrosinase from Agaricus bisporus. Input protein structure for docking was
prepared by adding all hydrogen atoms and removing water molecules. The met and oxy
forms of tyrosinase were built as previously described [61]. Gasteiger’s partial charges
and rotatable bonds were assigned by AutoDockTools4 software [62,63]. AutoDock 4.2.6
software package [63] was used for docking calculation. Lamarkian Genetic Algorithm
was chosen to explore the space of active binding to search for the best conformers. Grid
parameter files were built using AutoGrid 4.2.6 [64]. Other docking parameters were used
as in [65]. PyMOL 2.3.0 (Schrödinger) was employed to build and inspect the molecule
structures and docked conformations [66]. Docking conformations were selected from
clusters of conformations that can lead to ligand catalysis with the lowest free energy of
binding. Ligand–protein interactions were analysed using PLIP software [67].

4. Conclusions

The study of tyrosinase inhibition is very important due to the multiple applications
it can have in pathological processes of pigmentation, such as the browning of fruits and
vegetables. The importance of the IC50 parameter and its quantitative relationships with
the apparent inhibition constants are highlighted. Thus, from the IC50 value, the inhibition
constant for a competitive, non-competitive, or uncompetitive inhibitor can be determined
when the inhibition mechanism is confirmed. In the case of mixed inhibition, the iD value
obtained at different substrate concentrations is adjusted against n (n = [D]0/KD

m). Enzyme
inhibition assays are discussed and some techniques for their optimization are proposed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27103141/s1. Scheme S1: Mechanism of action of
tyrosinase on L-dopa in the presence of an alternative substrate (monophenol); Scheme S2: Mech-
anism of action of tyrosinase on L-dopa (D) in the presence of a suicide substrate (o-diphenol);
Figure S1: Chemical structures of benzimidazothiazolone derivatives; Figure S2: Docking of (Z)-2-(4-
Hydroxybenzylidene)benzo[4,5]imidazo[2,1-b]thiazol-3(2H)-one to oxy-tyrosinase; Figure S3: Docking
of (Z)-2-(3,4-Dihydroxybenzylidene)benzo[4,5]imidazo[2,1-b]thiazol-3(2H)-one to oxy-tyrosinase (A)
and met-tyrosinase (B); Figure S4: Docking of (Z)-2-(2,4-Dihydroxybenzylidene)benzo[4,5]imidazo
thiazol-3(2H)-one to oxy-tyrosinase; Figure S5: Chemical structures of urolithin derivatives: 1,3-
Dihydroxy-6H-benzo[c]chromen-6-one (a); 1,3-Dihydroxy-8-methoxy-6H-benzo[c]chromen-6-one (b)
and 2’-(Hydroxymethyl)-[1,1’-biphenyl]-2,4-diol (c); Figure S6: Docking of 1,3-Dihydroxy-6H-benzo
[c]chromen-6-one to oxy-tyrosinase; Figure S7: Docking of 1,3-Dihydroxy-8-methoxy-6H-benzo
[c]chromen-6-one to oxy-tyrosinase; Figure S8: Docking of 2’-(Hydroxymethyl)-[1,1’-biphenyl]-
2,4-diol to oxy-tyrosinase; Figure S9: Chemical structure of a cinnamic acid derivative: Trans-3,4-
diflurocinnamic acid; Figure S10: Chemical structure of some indazoles: 7-bromo-1H-indazole (a);
6-bromo-1H-indazole (b); 4-chloro-1H-indazole (c); 6-fluoro-1H-indazole (d); 7-fluoro-1H-indazole (e);
Figure S11: Chemical structure of benzoic acid derivatives: 2-amino benzoic acid (a); 4-amino ben-
zoic acid (b); Figure S12: Chemical structure of luteolin; Figure S13: Docking of luteolin to oxy-
tyrosinase; Figure S14: Docking of luteolin to met-tyrosinase; Figure S15: Chemical structure of
propyl gallate; Figure S16: Chemical structure of polyphenols: sanggenone C (a); oxyresveratrol (b);
L-epicatechin (c) and catechin (d); Figure S17: Docking of sanggenone C to oxy-tyrosinase; Figure S18:
Docking of oxyresveratrol to oxy-tyrosinase; Figure S19A,B: Docking of L-epicatechin to oxy-
tyrosinase (A) and met-tyrosinase (B); Figure S20A,B: Docking of catechin to oxy-tyrosinase (A) and
met-tyrosinase (B); Figure S21: Chemical structure of phenetyl cinnamamide derivatives: N-trans-
caffeoyltyramine (a); N-trans-feruloyltyramine (b) and N-trans-coumaroyltyramine (c); Figure S22A,B:
Docking of N-trans-caffeoyltyramine to oxy-tyrosinase (A) and met-tyrosinase (B); Figure S23: Dock-
ing of N-trans-feruloyltyramine to oxy-tyrosinase; Figure S24: Docking of N-trans-coumaroyltyramine
to oxy-tyrosinase; Figure S25: Chemical structure of cinnamic acid ester derivatives: (E)-2-acetyl-5-
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methoxyphenyl-3-(4-hydroxyphenyl)acrylate (a), (E)-2-isopropyl-5-methylphenyl-3-(4-hydroxyphenyl)
acrylate (b) and (E)-2-acetyl-5-methoxyphenyl-3-(4-methoxyphenyl)acrylate (c); Figure S26: Docking
of (E)-2-acetyl-5-methoxyphenyl-3-(4-hydroxyphenyl)acrylate to oxy-tyrosinase; Figure S27: Docking
of (E)-2-isopropyl-5-methylphenyl-3-(4-hydroxyphenyl)acrylate to oxy-tyrosinase; Figure S28: Chem-
ical structure of stilbenes: Strebluses C (a) and Strebluses D (b); Figure S29: Docking of Streblus C
to oxy-tyrosinase; Figure S30: Docking of Streblus D to oxy-tyrosinase; Table S1: PubChem CID
numbers correspond to the structure used to build the corresponding ligands; Table S2: Variation of
i_D to different [I]_0 and [D]_0=K_mˆD; Table S3: i_D values for [D]_0=2K_mˆD and [D]_0=K_mˆD;
Table S4: Ligand-protein interactions observed in the docking conformations of the oxy and met
forms of tyrosinase in the cases of competitive inhibition. Analysis of the interactions was carried out
using PLIP software.
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