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For decades, numerous pharmacological and non-pharmacological strategies have been evaluated 
without success to limit the consequences of the ischemic cascade, but more rarely the therapies 
were explored as add on remedies on individuals also receiving reperfusion therapies. It is plausible 
that these putative neuroprotectants never reached the ischemic brain in adequate concentrations. 
Currently, the concept of neuroprotection incorporates cerebral perfusion as an obligatory substrate 
upon which ischemic brain survival depends, and it is plausible that some of the compounds tested 
in previous neuroprotection trials might have resulted in more favorable results if reperfusion 
therapies had been co-administered. Nonetheless, pharmacological or mechanical thrombectomy 
are frequently powerless to fully reperfuse the ischemic brain despite achieving a high rate of 
recanalization. This review covers in some detail the importance of the microcirculation, and the 
barriers that may hamper flow reperfusion at the microcirculatory level. It describes the main 
mechanisms leading to microcirculatory thrombosis including oxidative/nitrosative stress and refers 
to recent efforts to ameliorate brain perfusion in combination with the co-administration of 
neuroprotectants mainly aimed at harnessing oxidative/nitrosative brain damage. 
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Introduction

A wider use of specialist stroke units, intravenous thrombolytic 
therapy and mechanical thrombectomy (MT) have resulted in a 
remarkable progress in the acute management of ischemic 
stroke (IS).1-6 However, IS still represents the first cause of per-
manent disability in adult people, the second single most fre-
quent cause of death for people older than 60 years, the sec-
ond most common cause of dementia, representing approxi-
mately 3% to 7% of the total health-care expenditure in high-
income countries.7 In consequence, despite the failure of nu-
merous previous attempts during the last decades (Figure 1), 
there is a pressing need to continue investigating better treat-
ments for this devastating disease.8-11 

On theoretical grounds, neuroprotection in IS is expected to 
be more effective the earlier the intervention is initiated but the 

Field Administration of Stroke Therapy–Magnesium (FAST-MAG) 
trial highlighted that treatment expeditiousness was not suffi-
cient, as a treatment delay as short as 45 minutes after clinical 
onset failed to improve IS outcomes.12 Therefore, other factors 
need to be accounted for in the rapidly changing pathophysiol-
ogy of IS, including the molecular target selected for therapeu-
tic intervention, its time of onset and persistence throughout 
the ischemic process, together with the pharmacokinetics and 
pharmacodynamics of the putative neuroprotectant.13 As dis-
cussed below, oxidative and nitrosative stress play a major dele-
terious role in ischemic cell death during a large therapeutic 
window,14 and not surprisingly this molecular target centers the 
attention of a number of ongoing neuroprotectant trials. An-
other issue of increasing interest in stroke neuroprotection is 
how to maximize the rate of brain reperfusion, as it represents 
an obligatory substrate upon which ischemic brain survival de-
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pends.15 Expectedly, a comprehensive approach to stroke neuro-
protection would include treatment expeditiousness, a mean-
ingful molecular target, pharmacologically fitted neuroprotec-
tants, and strategies aimed to maximize cerebral perfusion.16,17 
This review summarizes ongoing strategies aimed at attaining a 
more effective neuroprotection in IS based on these principles.

Recanalization/complete reperfusion 
mismatch

Arterial recanalization after IS is associated with a 4- to 5-fold 
increase in the odds of good long-term functional outcome 
and a 4- to 5-fold reduction in the odds of death.18 However, 
one out of four patients do not reperfuse despite complete re-
canalization,19-24 and one out of two develop full infarctions on 
regions previously hyperperfused,25 highlighting the essential 
role of adequate brain perfusion for the final ischemic tissue 
fate. In recent randomized controlled trials,1-6 less than half of 
patients treated with MT improved stroke outcomes regardless 
that three out of four had full recanalization. Arguably, the lack 
of clinical improvement could indicate that the recanalization 
occurred when a full brain infarction was established in some 
patients but it should be noted that only 38% of the patients 
obtained full reperfusion after MT, suggesting that the mis-
match between complete recanalization and incomplete reper-
fusion explained the suboptimal efficacy of MT.

The modified thrombolysis in cerebral ischemia (mTICI) 
score26 was the primary reperfusion scale used in the trials and 

in this scale, mTICI score 3 defines complete reperfusion of the 
target downstream territory (TDT) and mTICI 2b score defines 
restoration of more than half of the TDT, respectively (Figure 
2).27 Current guidelines recommend achieving indistinctively 
mTICI 2b or 3 scores following MT, assuming that both scores 
maximize the probability of a good functional clinical out-
come.28 Accordingly, successful reperfusion grouped together 
the patients that obtained either of these two angiographic 
scores in the aforementioned trials. However, some studies,29-31 

but not others,32,33 showed significant outcome differences be-
tween mTICI 3 and 2b scores. Recently,34 we compared the rel-
ative outcomes resulting from mTICI 2b or 3 scores at the end 
of MT using multivariate models adjusted for Highly Effective 
Reperfusion Evaluated in Multiple Endovascular Stroke 
(HERMES) covariates.35 In this study, patients with mTICI 3 
compared with mTICI 2b had a better mRS score at 90 days 
(odds ratio, 2.018; 95% confidence interval, 1.033 to 3.945), 
less infarct growth and smaller final infarctions, supporting a 
more efficient salvage of the ischemic penumbra. Therefore, 
mTICI 3 should always be pursued whenever technically possi-
ble, particularly in patients with salvageable tissue on brain 
imaging.

Microvascular perfusion

Nearly every neuron in the human brain has its own capillary 
and the microcirculation represents more than 96% of the entire 
cerebrovascular system.36,37 Short, middle, and long arteries 

Figure 1. Neuroprotection in acute ischemic stroke. Main mechanisms of the ischemic cascade and some of the neuroprotectants asssessed in phase 2/3 clin-
ical trials without beneficial effects. RNS, reactive nitrogen species; ROS, reactive oxygen species; bFGF, basic fibroblast growth factor; rNIF, recombinant neu-
trophil inhibitory factor; FK-506, tacrolimus.
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branching from the pial vessels supply the human cerebral cortex 
by highly interconnected capillary vessels distributed in superfi-
cial, middle, and deep vascular layers.38 Virtually all brain mi-
crovessels are constantly perfused at any time,36 but changes in 
the microvascular structure may hamper adequate brain reperfu-
sion following recanalization.39 Models of transient brain isch-
emia identified the lack of reflow at the microcirculation despite 
complete recanalization of proximal occlusions on albino rab-
bits.40-42 It was attributed to spasm or swelling of the vessel wall, 
while increased blood viscosity was thought a secondary con-
tributor.40 A rich expression of thromboplastins in the brain lent 
support to speculate that fibrin clots formed within the capillary 
bed,40 while later studies also found capillary-obstructing leuko-
cytes.43 Clogging of the perivascular space, activation of tissue 
factor,44 distal microembolism from a proximal thrombus,45,46 mi-
crovascular compression by swollen astrocyte end-feet,47,48 or 
platelet and neutrophil adhesion, were also associated with the 
no-reflow. Genetic manipulation and use of anti-inflammatory 
agents restored effectively the no-reflow and improved stroke 
outcomes in experimental animals,49-53 but pharmacologic inhibi-
tion of leukocytes, platelets, or fibrin-platelet interactions were 
found deleterious or futile in patients with IS.54-58

Oxidative and nitrosative stress also participates in the no-
reflow as the result of a rich expression of pro-oxidant nicotin-
amide adenine dinucleotide phosphate (NADPH) oxidases 
(NOX)59 in brain endothelium, vascular smooth muscle, adven-
titia, and capillary pericytes.60 In particular, pericytes are 
deemed to play a major role because pericytes apposed to cen-
tral nervous system capillaries regulate the microcirculatory 
blood flow.61 Elegant experimental studies showed that peri-
cytes constricted at the start of ischemia because lacking ade-

nosine triphosphate was not able to pump Ca2+ out of the cell, 
while suppression of oxidative-nitrosative stress relieved peri-
cyte contraction and restored microvascular patency.62

The efficacy of thrombolytic agents greatly depends on the 
quantity of intravascular thrombus,63 and therefore the no-re-
flow could be theoretically treated by manipulating the fibri-
nolytic system. Arguably, thrombi that form in the microvascu-
lar bed might be more susceptible to lyse than larger proximal 
thrombi. Based on this principle, the CHemical Optimization of 
Intraarterial Cerebral Embolectomy (CHOICE) trial is currently 
testing whether intraarterial alteplase is superior to placebo to 
improve the no-reflow at the end of MT, in a multicenter, dou-
ble blind, placebo controlled phase 2 trial expected to termi-
nate in late 2019.

Neuroprotection of the reperfused 
tissue: targeting the redox state

A major unifying thread in IS indicates that assorted molecular 
pathways converge following the onset of ischemia to produce 
damaging levels of free radicals and non-radicals such as per-
oxynitrite.64 Sources of high concentrations of reactive species 
include the mitochondria,65 the activity of cyclooxygenase en-
zymes,66 NOX expressed by neurons,67 endothelial cells,68 and 
infiltrating neutrophils, and the hypoxic-dependent conversion 
of xanthine dehydrogenase into xanthine oxidase. Oxidative/ni-
trosative stress starts to rise during the early ischemic phase, 
followed by a much larger increment both in neurons and en-
dothelial cells during early reperfusion.69 For this reason, there 
is a growing interest in the study of putative neuroprotectants 
that harness the redox state in the selected population of pa-

Figure 2. Main results in recent endovascular trials. Pooled percentages of the angiographic and main clinical results obtained in Randomized Trial of Revas-
cularization with Solitaire FR Device versus Best Medical Therapy in the Treatment of Acute Stroke Due to Anterior Circulation Large Vessel Occlusion Present-
ing within Eight Hours of Symptom Onset (REVASCAT), Solitaire™ with the Intention for Thrombectomy as Primary Endovascular Treatment for Acute Ischemic 
Stroke (SWIFT PRIME), Endovascular Treatment for Small Core and Proximal Occlusion Ischemic Stroke (ESCAPE), Extending the Time for Thrombolysis in 
Emergency Neurological Deficits–Intra-Arterial (EXTEND-IA), and Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke 
in the Netherlands (MR CLEAN). mTICI, modified thrombolysis in cerebral ischemia. 
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tients treated with MT. Additionally, peroxynitrite is an espe-
cially attractive molecular target for therapeutic intervention 
because despite of a short half-life this compound is more tox-
ic than other reactive species, as it crosses readily biological 
membranes and interacts with most critical biomolecules.70,71 
Under experimental conditions, peroxynitrite is largely gener-
ated in the ischemic penumbra where it builds up for about 6 
to 12 hours.72 Once formed, peroxynitrite facilitates the demise 
of the penumbra by lipid peroxidation, mitochondrial damage, 
protein nitration and oxidation, depletion of antioxidant re-
serves, activation or inhibition of various signaling pathways, 
DNA damage, and blood-brain barrier (BBB) breakdown.73 

Clinical trials
Uric acid (UA) is a potent peroxynitrite scavenger,74,75 and the 
evaluation of its putative neuroprotectant effects is at an ad-
vanced phase of clinical development. UA is the end product of 
the catabolism of purines, the most abundant natural antioxi-
dant in humans and several-fold more effective than previous 
antioxidant compounds tested in IS.76 Following brain ischemia 
there is a rapid reduction of the endogenous levels of UA that 
reach the nadir within 6 hours after clinical onset.77 In a rat 
thromboembolic model, UA conveys synergistic neuroprotec-
tion with alteplase,78 and in rodents with transient or perma-
nent ischemia UA decreases the production of reactive oxygen 
species (ROS), reduces infarct volume and improves out-
come.78-81 UA therapy also prevents the production of superox-
ide, nitric oxide, nitric oxide synthase (NOS), endothelial NOS, 
neuronal NOS, and interleukin-18 in the ischemic arterial wall, 
and protein nitrosylation in the brain despite a poor BBB per-
meability,81 suggesting UA mediated neuroprotection mainly 
derives from the cerebral vasculature. Recently, the Efficacy 
Study of Combined Treatment With Uric Acid and r-tPA in 
Acute Ischemic Stroke (URICO-ICTUS) trial confirmed in 421 
patients with IS the safety of UA therapy in combination with 
alteplase, and a significant reduction in the risk of early isch-
emic worsening (Figure 3).82 Whilst the trial was unable to 
demonstrate a significant benefit in the whole study popula-
tion, it significantly achieved the primary outcome of the trial 
in predefined subgroup analyses, including in women,83 patients 
of either sex having stress hyperglycemia,84 and patients that 
received MT as part of the initial reperfusion therapy.85 In the 
latter group, UA therapy showed a 19% absolute increase in 
the proportion of good outcome compared with placebo de-
spite similar rates of complete reperfusion at the end of MT. 
The Uric acid in Reperfusion Injury Control (URIC) trial has been 
recently planned to validate the URICO-ICTUS results in a larger 
population of patients treated with MT. 

The ongoing Safety and Optimal Neuroprotection of 
neu2000 in Ischemic Stroke With Endovascular reCanalization 
(SONIC) trial (NCT02831088) aims to provide proof-of-concept 
for use of Neu2000 as an adjunct neuroprotective agent to-
gether with state-of-the art endovascular therapy (EVT) in pa-
tients with IS. Neu2000 (a derivative of sulfasalazine) is a nov-
el, multitarget neuroprotectant that combines modest, sub-
type-selective (NR2B) blockade of N-methyl-D-aspartate 
(NMDA) receptors with potent scavenging of ROS.86,87 It has 
been suggested that the prior failure of more potent, and sub-
type unselective NMDA antagonist drugs in stroke trials may 
be partly due to excessive reduction of intracellular free calci-
um levels and consequent enhancement of ischemic neuronal 
apoptosis.88 Neu2000 seeks to blunt acute excitotoxicity with-
out risking this downside, and then to additionally target 
downstream free-radical damage, prominently triggered by 
vascular reperfusion. The neuroprotective potential of Neu2000 
has been demonstrated in preclinical animal stroke models 
with a favorable efficacy and therapeutic window (administra-
tion in delayed time window) profile.88,89 

Plasma glucose is another important stressor in experimental 
models of focal cerebral ischemia/reperfusion which may con-
tribute to the worsening the fate of stroke.90,91 Unlike originally 
incriminated,92 extracellular lactate accumulation is not a crucial 
determinant of brain injury in experimental hyperglycemia,93 for 

Figure 3. Study flow and main outcomes in Efficacy Study of Combined 
Treatment With Uric Acid and r-tPA in Acute Ischemic Stroke (URICO-ICTUS) 
trial 3. All the patients received alteplase within 4.5 hours after symptoms 
onset and were randomized 1:1 to a 90 minutes intravenous infusion of uric 
acid or placebo. The primary outcome—rate of patients with a modified 
Rankin Scale (mRS) score 0 to 1, or 2 if this was the premorbid functional 
status—showed a non-significant statistical trend. Main secondary outcomes, 
including the median mRS (P=0.05) and the mRS shift (odds ratio, 1.40; 95% 
confidence interval [CI], 0.99 to 1.98; P=0.05) were statistically significant. 
rtPA, recombinant tissue plasminogen activator; IQR, interquartile range.
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prevention of tissue acidosis does not avoid brain tissue damage 
under hyperglycemic conditions.94 Rather, oxidative stress and 
inflammatory mechanisms are increasingly involved in hypergly-
cemia-induced endothelial injury in transient ischemia,95 while 
antioxidants have shown experimentally to attenuate this dam-
age.96 Inactivation of the glucose-dependent nicotinamide ade-
nine dinucleotide phosphate oxidase enzyme blocks neuronal 
ROS production and negates the deleterious effects of hypergly-
cemia.97 As discussed above, in URICO-ICTUS, UA therapy was 
more effective in patients with stress hyperglycemia than in nor-
moglycemic patients at stroke onset, suggesting that a greater 
availability of glucose increased the formation of free radicals in 
the ischemic penumbra.98 Currently, the Intensive Insulin Therapy 
With Tight Glycemic Control to Improve Outcomes After Endo-
vascular Therapy for Acute Ischemic Stroke trial (NCT02054429) 
is assessing the safety and efficacy of lowering glucose (blood 
sugar), in addition to MT, to improve 90-day functional and neu-
rological outcomes in comparison to standard glycemic care in 
100 patients with IS. The study will involve treatment of 100 (50 
intensive insulin therapy and 50 standard glycemic control) 
non-diabetic patients presenting within 8 hours of acute IS who 
have undergone EVT.

Preclinical studies
Other compounds with redox based properties have shown 
neuroprotective effects in experimental models of brain isch-
emia but have not reached yet a phase of clinical testing at the 
bedside. Amongst these compounds, 3, 4-dihydro-6-hydroxy-
7-methoxy-2,2-dimethyl-1(2H)-benzopyran (CR-6) is a syn-
thetic, structurally simpler, analogue of vitamin E, with the ad-
ditional capacity to scavenge nitrogen-reactive species, that 
has shown neuroprotective effects in brain ischemic rats.99 In-
terestingly, CR-6 was only effective in animals that developed 
hyperemia at reperfusion, highlighting the relevance of reper-
fusion for redox based neuroprotection.99

Another treatment option supports directly targeting the right 
enzymatic source of ROS rather than applying non-specific anti-
oxidants after radicals have already been generated.100 It has also 
been proposed a more targeted supply of antioxidants to key 
subcellular locations, for example the mitochondria.101 A most 
attractive candidate is the NOX family, the only known enzymes 
solely dedicated to ROS production. NOX are multicomponent 
protein complexes containing a catalytic subunit that transfers 
electrons from NADPH to oxygen, thereby forming ROS. There 
are seven isoforms with different tissue distribution and whose 
components are separated between the cytosol and the plasma 
membrane.102 Under basal conditions, these components are kept 
apart rendering the enzyme inactive, but becoming activated at 

the onset of reperfusion.59 NOX4 is the most widely distributed 
NOX isoform in the vasculature and its expression is higher in 
cerebral arteries compared with peripheral blood vessels.103 After 
an ischemic insult, NOX4 is upregulated in neuronal cells and 
brain microvascular endothelial cells,104 while NOX2 is synthe-
sized by microglial cells and recruited phagocytes.105 Controver-
sies remain whether NOX2,106 or NOX4107 plays the most relevant 
role in stroke pathophysiology, although deletion of both 
NOX2,108 and NOX4,109 have been associated with reduction in 
infarct size, while overexpression of NOX4 was associated with 
larger infarcts.110

Compounds with a low specificity to inhibit NOX have also 
been investigated in experimental models of cerebral ischemia/
reperfusion injury, including diphenylene iodonium,111 the serine 
protease inhibitor 4-(2-aminoethyl) benzenesulfonyl fluoride,112 
and 3-hydroxy-3-methyl-glutaryl reductase inhibitors (statins).113 
L-arginine is a NOS substrate and precursor to nitric oxide, as 
well as an enhancer of cerebral blood flow.114 In 10 experimental 
studies of the effects of L-arginine on behavior and/or infarct 
volume the results were heterogeneous and inconclusive.115,116

Another approach is to boost the activity or preventing the 
inhibition of intrinsic antioxidant defenses, including the re-
cently discovered master regulators of antioxidant defenses 
nuclear factor-erythroid 2-related factor 2 (Nrf2) or peroxi-
some proliferator-activated receptor-γ coactivator 1α.117 Re-
cently, Nrf2 has shown cytoprotective mechanisms in the reti-
na in response to ischemia-reperfusion injury and pharmaco-
logic induction of Nrf2 has been posited as a new therapeutic 
strategy for retinal ischemia-reperfusion.117

The toxicity of peroxynitrite may also be prevented indirectly 
by strategies that block nitric oxide or superoxide generation, 
or by using direct approaches including peroxynitrite or per-
oxynitrite-derived radical scavengers, and peroxynitrite decom-
position catalysts.118 In addition to the effects of UA discussed 
previously, other indirect inhibitors of peroxynitrite include 
N-tertbutyL-α-phenylnitrone (PBN), the NOS inhibitor Nω-
nitro-L-arginine (L-NA), and the BBB-impermeable NOS inhibi-
tor L-N5-(1-iminoethyl)-ornithine (L-NIO). These three agents 
have shown to prevent pericyte constriction, restore the paten-
cy of capillaries, and improve tissue recovery in brain ischemic 
mice.62,119 Interestingly, a similar degree of neuroprotection and 
inhibition of 3-nitrotyrosine formation was found with the 
BBB-impermeable L-NIO, as compared to BBB-permeable L-NA 
and PBN,62 emphasizing that the vasculature is a major source 
of radicals during reperfusion and suggesting that vascular-bed 
strategies can result in an effective neuroprotection.

Peroxiredoxins (Prxs) belong to a ubiquitous family of peroxi-
dases that have been shown to readily and catalytically reduce 
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peroxynitrite to nitrite through the reaction of the peroxidatic 
cysteine. There is emerging evidence that the antioxidant Prxs 
become inactivated during an ischemic episode,120 and Prxs 
have also been shown to be protective in several models of 
ischemia in vitro and in vivo through overexpression studies.121

Synthetic molecules that react directly and catalytically de-
compose peroxynitrite include metalloporphyrins of iron and 
manganese. Peroxynitrite decomposition catalysts such as 
5,10,15,20-tetrakis(N-methyl-4′-pyridyl) porphyrinato iron III 
(5+) (FeTMPyP) and 5,10,15,20-tetrakis(4′-sulphonatophenyl) 
porphyrinato iron III (3–) (FeTPPS) can reduce infarction size, 
brain edema, and neurological deficits when administered at 
6-hour after experimental ischemia,122 and improve vascular 
dysfunction in mild hyperglycemic ischemic rats.123 The catalyzed 
reaction is a net isomerization of peroxynitrite to nitrate. The ef-
ficacy of some of the manganese-based compounds, primarily 
MnTE-2-PyP (5+), have been tested in vivo and have shown to 
exert marked neuroprotective effects against focal ischemic in-
sults.124 The fact that the compound remained effective even 
when it was given up to 6 hours after ischemia implicates the 
role of peroxynitrite in the delayed ischemic death processes. A 
related compound, Mn (III) tetrakis (N-N′-diethylimidazolium-2-
yl) porphyrin (AEOL-10150) has demonstrated efficacy in pre-
clinical models of stroke in rats and mice although the greater 
effects were observed following intracerebroventricular adminis-
tration, although more modest effects were seen after intrave-
nous injection, which may limit its clinical use.124

Conclusions

For many years the field of neuroprotection in IS has yielded a 
long record of frustrating clinical results but also great advanc-
es in our understanding of the mechanisms unleashed during 
the ischemic cascade including the major role of oxidative and 
nitrosative stress within the brain parenchyma and in the mi-
crocirculation. Most previous neuroprotectant trials gave limit-
ed emphasis to the importance of full reperfusion to salvage 
the ischemic penumbra, casting doubts at what concentration 
the putative neuroprotectant did reach the ischemic neurovas-
cular unit. The advent of MT offers an excellent opportunity to 
reverse this situation and opens a new scenario where com-
bined strategies might maximize the arrival of the neuropro-
tectants to the tissue at risk and also the reperfusion of the 
microcirculation. Hopefully, the new strategies which are cur-
rently undergoing might contribute to declare soon that the 
inability to effectively protect the ischemic brain at the bed 
side is a hardship of the past. 
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