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Abstract: Discrete Shannon entropy was introduced in view of the mathematical properties of
multiconfiguration methods and then used to interpret the information in atomic states expressed
by the multiconfiguration Dirac–Hartree–Fock wavefunction for Ni-like isoelectronic sequence.
Moreover, the relationship between the concepts, including sudden change of Shannon entropy,
information exchange, eigenlevel anticrossing, and strong configuration interaction, was clarified
by induction on the basis of the present calculation of the energy structure for Ni-like isoelectronic
sequence. It was found that there is an interesting connection between the change of Shannon
entropies and eigenlevel anticrossings, along with the nuclear charge Z, which is helpful to
conveniently locate the position of eigenlevel anticrossings and information exchanging and
understand them from the point of view of information, besides the traditional physical concepts.
Especially, it is concluded that in a given configuration space eigenlevel anticrossing is a sufficient and
necessary condition for the sudden change of Shannon entropy, which is also a sufficient condition
for information exchange.

Keywords: Shannon entropy; configuration space; multiconfiguration Dirac–Hartree–Fock method;
relativistic configuration interaction

1. Introduction

Information concepts have been used in the analysis of a large variety of physical concepts for a
long time. As one of them, Shannon information entropy [1] has been employed to elucidate physical
and chemical properties of nuclear, atomic, and molecular systems from an information theoretical
point of view. Today, Shannon information plays a more and more important role in studying atomic
and molecular properties.

In much of the literature on atomic and molecular physics, the Shannon information entropy
was almost calculated from the one-electron wavefunction, which can elucidate the uncertainty of
localization of electron cloud in position and momentum spaces. González-Férez and Dehesa [2]
calculated the Shannon entropy according to the nonrelativistic one-electron wavefunction in the
presence of the uniform magnetic and electric fields in order to indicate or predict the avoided-crossing
phenomena of some excited states of hydrogen atom in the presence of magnetic and electric fields.
In their work, a sudden change at the avoided-crossing region and an informational exchange between
the states had been found. He et al. [3] also proposed a method to calculate the positions of avoided
crossings for Rydberg potassium in a static electric field on the basis of Shannon entropy. Their work
shows that the Shannon entropy is an efficient parameter for characterization and prediction of avoided
crossings of Rydberg potassium. As far as we know, in atomic and nuclear physics, the information
entropy has already been used to study the quantum chaotic system [4,5] by using configuration
interaction method to analyze the spectrum and the eigenstates of complex atom and heavy nuclei,

Entropy 2020, 22, 33; doi:10.3390/e22010033 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0001-7153-0728
http://dx.doi.org/10.3390/e22010033
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/1/33?type=check_update&version=3


Entropy 2020, 22, 33 2 of 23

in which the wavefunction of the excited states are chaotic superpositions of hundreds or thousands of
principal basis states.

On the other hand, as is well known, a number of level crossings have been found in the
calculation of energy levels, along with various isoelectronic sequences. In early work, Fischer [6]
described the level crossings and the oscillator-strength trends around the region of level crossings in
detail. As mentioned in her work, the two energy curves for the upper and lower states are continuous
and actually anticross. However, in atomic physics, it is customary to identify the level by the dominant
component in an atomic state function like everywhere else. Traditionally speaking, in the study on
the isoelectronic sequence, the level crossing, in fact, means state crossing which is denoted by the
configuration state function that has the largest weight in the atomic state function. Therefore, whether
it is a level crossing in an isoelectronic sequence or anticrossing (or avoided crossing) in an external
field, the eigenlevel anticrossing would be used in order to avoid confusion in the present work.

To our knowledge and mentioned above, Shannon entropy has been used to analyze the quantum
chaotic system (e.g., [4,5]) and indicate the extent of localization [2,3,7–19] and complexity [20–25]
of an electronic cloud on the basis of the one-electron orbitals or density distribution. However,
there is almost no discussion about the information in multiconfiguration methods, such as the
multiconfiguration self-consistent field (MCSCF) and configuration interaction (CI) methods. In this
paper, discrete Shannon entropy was introduced in order to measure information on the atomic states
in the configuration space. In Section 2, we provide a complete description of the theoretical method.
In Section 3, the Shannon entropies are shown for the ground and single excited states, along with the
Ni-like isoelectronic sequence. Then, the relationship between the sudden change of Shannon entropy,
information exchange, eigenlevel anticrossing, and strong configuration interaction is discussed based
on the calculated energy levels, configuration mixing coefficients, and Shannon entropies. Finally,
some concluding remarks and outlook are summarized in Section 4.

2. Theoretical Considerations

In the calculation on atomic structure, the wavefunction of atoms and ions can be obtained by the
multiconfiguration method. Generally speaking, there are two major categories, i.e., multiconfiguration
self-consistent field and configuration interaction methods according to whether the one-electron
orbitals change in the calculation processes. On the other hand, there are also two main treatments,
that is, in nonrelativistic and relativistic ways. In the nonrelativistic treatment, the configuration
interaction with nonrelativistic orbital basis and multiconfiguration Hartree–Fock (MCHF) method
with the one-electron orbitals generated by the self-consistent field procedure [26] have been employed.
Likely, the relativistic configuration interaction (RCI) with relativistic one-electron orbitals and
multiconfiguration Dirac–Hartree–Fock (MCDHF) methods with the relativistic electron orbitals
generated by the self-consistent field procedure [27] have also been used to interpret the atomic states.
Nonetheless, all of them have the same form:

|Ψi(JP)〉 =
nc
∑

j=1
Cij|Γj(JP)〉, i = 1, 2, · · · , nc, (1)

where |Ψi(JP)〉 is the i-th atomic state function (ASF) corresponding to the i-th level. |Γj(JP)〉,
j = 1, 2, · · · , nc are the so-called configuration state functions (CSF), which can expand a subspace
with the certain total angular momentum (J) and parity (P) in the whole configuration space (or infinite
eigenstate space). In this paper, the even and odd parities are described by the superscripts e and
o. nc is the number of the configuration state functions. In multiconfiguration methods, the atomic
state functions are expressed as a linear combination of configuration state functions with the same
symmetry and Cij, j = 1, 2, · · · , nc are the so-called configuration mixing coefficients for the i-th
atomic state function, the modulus square of which can be usually used to indicate the weight of the
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j-th configuration in the i-th atomic state, yielding the normalization condition for the i-th atomic
state function:

nc
∑

j=1
|Cij|2 = 1, i = 1, 2, · · · , nc. (2)

Traditionally, the atomic state or energy level is named after the dominant component in expansion of
atomic state function, i.e., the configuration with the largest modulus square.

In our previous work [28], a discrete Shannon entropy was set up to measure the information in
configuration space because of the properties of configuration mixing coefficients, 0 ≤ |Cij|2 ≤ 1, i,
j = 1, 2, · · · , nc, that is, if we define the configuration weights

ρij ≡ |Cij|2 ∈ [0, 1], i, j = 1, 2, · · · , nc, (3)

then sij = −ρijlnρij is the information entropy for the j-th configuration state function |Γj(JP)〉 in
the i-th atomic state function |Ψi(JP)〉 corresponding to a certain energy level, and it yields the
normalization condition

nc
∑

j=1
ρij = 1, i = 1, 2, · · · , nc. (4)

Therefore, the Shannon entropy of the i-th energy level described by the |Ψi(JP)〉 is defined by

SΨi = −
nc
∑

j=1
ρijlnρij, i = 1, 2, · · · , nc, (5)

which can be used to indicate the information on a certain energy level in quantity, i.e., the Shannon
entropy can measure the uncertainty of the configurations for each certain atomic state in a given
configuration space. According to its mathematical properties, it is easy to show that the range of the
multiconfiguration wavefunction for the i-th atomic state is given by 0 ≤ SΨi ≤lnnc. The zero value
is for the i-th atomic state, where one of the ρij equals 1 and all other ρij are zero, which supplies the
most information in the configuration space from the point of view of information because of its least
entropy. The maximum value results for uniformly weights of configuration states in the i-th atomic
state function

ρij =
1
nc

, j = 1, 2, · · · , nc. (6)

The above situation is a limit of the strongest configuration interaction, which implies there is no
dominant configuration state wavefunction in the configuration space. In a word, in this situation the
weights are distributed equally into each CSF in the subspace; therefore, the atomic state wavefunction
has the most uncertain information.

In the present work, the energy levels of ground and single excited states of Ni-like isoelectronic
sequence were calculated by using the multiconfiguration Dirac–Hartree–Fock and relativistic
configuration interaction methods [27]. As is well known, Ni-like ions have 28 electrons that
constitute their ground configuration of 1s22s22p63s23p63d10 1S0. In order to calculate the energy
levels, we constructed the subspaces for calculating the energy levels of Ni-like ions, which have been
shown in detail in Tables 1 and 2, where the closed subshells were conveniently omitted. For simplicity,
only the ground and single excited configurations were included in this calculation, where there are 51
and 56 configuration state functions with even and odd parity, respectively. Within the framework
of multiconfiguration Dirac–Hartree–Fock method, the radial orbitals were firstly generated from
Dirac–Hartree–Fock equations by a self-consistent field procedure. Next, the relativistic configuration
interaction calculation was carried out to obtain the resultant energies, which include Breit interaction,
finite nucleus and the lowest-order QED correction, and corresponding mixing coefficients in the
configuration space which can be expanded by the configuration basis set that were made of the
relativistic electronic orbitals mentioned above. By the way, the calculated values of energy levels will
not be given again in this paper, which had been compared with other theoretical and experimental
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results within the relative accuracy of about 1% or less [29–31], especially for highly charged ions.
Finally, the Shannon entropy for each energy level can be easily obtained from the configuration mixing
coefficients according to Equations (3) and (5).

Table 1. Subspaces expanded by the ground and single excited configuration state functions with
JP = 0e, 1e, 2e, 3e, 4e, and 5e.

0e 1e 2e 3e 4e 5e

(3d4
3/23d6

5/2)0 (3d−1
5/24d3/2)1 (3d−1

5/24s1/2)2 (3d−1
5/24s1/2)3 (3d−1

5/24d3/2)4 (3d−1
5/24d5/2)5

(3d−1
5/24d5/2)0 (3d−1

5/24d5/2)1 (3d−1
5/24d3/2)2 (3d−1

5/24d3/2)3 (3d−1
5/24d5/2)4 (3p−1

3/24f7/2)5

(3d−1
3/24d3/2)0 (3d−1

3/24s1/2)1 (3d−1
5/24d5/2)2 (3d−1

5/24d5/2)3 (3d−1
3/24d5/2)4

(3p−1
3/24p3/2)0 (3d−1

3/24d3/2)1 (3d−1
3/24s1/2)2 (3d−1

3/24d3/2)3 (3p−1
3/24f5/2)4

(3p−1
1/24p1/2)0 (3d−1

3/24d5/2)1 (3d−1
3/24d3/2)2 (3d−1

3/24d5/2)3 (3p−1
3/24f7/2)4

(3s−1
1/24s1/2)0 (3p−1

3/24p1/2)1 (3d−1
3/24d5/2)2 (3p−1

3/24p3/2)3 (3p−1
1/24f7/2)4

(3p−1
3/24p3/2)1 (3p−1

3/24p1/2)2 (3p−1
3/24f5/2)3

(3p−1
3/24f5/2)1 (3p−1

3/24p3/2)2 (3p−1
3/24f7/2)3

(3p−1
1/24p1/2)1 (3p−1

3/24f5/2)2 (3p−1
1/24f5/2)3

(3p−1
1/24p3/2)1 (3p−1

3/24f7/2)2 (3p−1
1/24f7/2)3

(3s−1
1/24s1/2)1 (3p−1

1/24p3/2)2 (3s−1
1/24d5/2)3

(3s−1
1/24d3/2)1 (3p−1

1/24f5/2)2

(3s−1
1/24d3/2)2

(3s−1
1/24d5/2)2

nc(0e) = 6 nc(1e) = 12 nc(2e) = 14 nc(3e) = 11 nc(4e) = 6 nc(5e) = 2

Table 2. Subspaces expanded by the single excited configuration state functions with
JP = 0o, 1o, 2o, 3o, 4o, 5o, and 6o.

0o 1o 2o 3o 4o 5o 6o

(3d−1
5/24f5/2)0 (3d−1

5/24p3/2)1 (3d−1
5/24p1/2)2 (3d−1

5/24p1/2)3 (3d−1
5/24p3/2)4 (3d−1

5/24f5/2)5 (3d−1
5/24f7/2)6

(3d−1
3/24p3/2)0 (3d−1

5/24f5/2)1 (3d−1
5/24p3/2)2 (3d−1

5/24p3/2)3 (3d−1
5/24f5/2)4 (3d−1

5/24f7/2)5

(3p−1
3/24d3/2)0 (3d−1

5/24f7/2)1 (3d−1
5/24f5/2)2 (3d−1

5/24f5/2)3 (3d−1
5/24f7/2)4 (3d−1

3/24f7/2)5

(3p−1
1/24s1/2)0 (3d−1

3/24p1/2)1 (3d−1
5/24f7/2)2 (3d−1

5/24f7/2)3 (3d−1
3/24f5/2)4

(3s−1
1/24p1/2)0 (3d−1

3/24p3/2)1 (3d−1
3/24p1/2)2 (3d−1

3/24p3/2)3 (3d−1
3/24f7/2)4

(3d−1
3/24f5/2)1 (3d−1

3/24p3/2)2 (3d−1
3/24f5/2)3 (3p−1

3/24d5/2)4

(3p−1
3/24s1/2)1 (3d−1

3/24f5/2)2 (3d−1
3/24f7/2)3 (3s−1

1/24f7/2)4

(3p−1
3/24d3/2)1 (3d−1

3/24f7/2)2 (3p−1
3/24d3/2)3

(3p−1
3/24d5/2)1 (3p−1

3/24s1/2)2 (3p−1
3/24d5/2)3

(3p−1
1/24s1/2)1 (3p−1

3/24d3/2)2 (3p−1
1/24d5/2)3

(3p−1
1/24d3/2)1 (3p−1

3/24d5/2)2 (3s−1
1/24f5/2)3

(3s−1
1/24p1/2)1 (3p−1

1/24d3/2)2 (3s−1
1/24f7/2)3

(3s−1
1/24p3/2)1 (3p−1

1/24d5/2)2

(3s−1
1/24p3/2)2

(3s−1
1/24f5/2)2

nc(0o) = 5 nc(1o) = 13 nc(2o) = 15 nc(3o) = 12 nc(4o) = 7 nc(5o) = 3 nc(6o) = 1

3. Results and Discussion

Over the past three decades, systematic trends have been found in energy levels, oscillation
strengths, radiative and nonradiative probabilities and lifetimes, and so on along an isoelectronic
sequence, which have the same number of electrons in atomic systems with different nuclear charge Z.
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In the present work, we calculated the Shannon entropies of the ground and singly excited states for
Ni-like isoelectronic sequence and focused on the relationship between the sudden change of Shannon
entropy, eigenlevel anticrossing, information exchange, and strong configuration interaction. Figures 1,
2, 5–9 and 11–18 present the Shannon entropies for the levels in the corresponding configuration space,
and the dominant configuration of each level is given in these figures according to the configuration
mixing coefficients. In these figures, the marks are arranged from up to down in order to describe the
eigenlevels of different ions in the corresponding subspace in Ni-like isoelectronic sequence.

Figures 1 and 2 show the Shannon entropies and the dominant components for seven JP = 1e

levels of Ni-like isoelectronic sequence; some of these were discussed in the preliminary work [28],
and a rough conclusion was drawn. The present work shows more detailed analysis and corrected
results. In Figure 1, the Shannon entropies have maxima at Z = 87 and 91 for the 6th and 4th levels,
respectively, while the 5th level has two maxima at Z = 87 and 91. The peaks are considered as
the first kind of sudden change of Shannon entropies in the present work. Apparently, the 4th level
has one peak, the 5th two, and the 6th one. From the perspective of information, the information of
eigenlevels is exchanged near the mentioned peaks position. Definitely, the 4th, 5th, and 6th levels
are, in turn, labeled by their dominant components (3d−1

3/24d3/2)1, (3d−1
3/24d5/2)1, and (3p−1

3/24p1/2)1

in configuration subspace with JP = 1e for nuclear charge Z = 43 to 87. At Z = 88, the dominant
components (3d−1

3/24d5/2)1 and (3p−1
3/24p1/2)1 exchanged, and these levels are labeled as (3d−1

3/24d3/2)1,
(3p−1

3/24p1/2)1, and (3d−1
3/24d5/2)1 from Z = 88 to 91. Further, the dominant components (3d−1

3/24d3/2)1

and (3p−1
3/24p1/2)1 swap with each other at Z = 92, so the levels are named (3p−1

3/24p1/2)1, (3d−1
3/24d3/2)1,

and (3d−1
3/24d5/2)1. In other words, the information of the 5th level exchanges, in turn, with the 6th

and 4th levels at Z = 88 and 92.
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Figure 1. Shannon entropies for the 4th, 5th, and 6th levels labeled as (3d−1
3/24d5/2)1, (3d−1

3/24d3/2)1,
and (3p−1

3/24p1/2)1 in the subspace with JP = 1e for Ni-like isoelectronic sequence with Z = 31–95.
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Figure 2. Shannon entropies for the 8th, 9th, 10th, and 11th levels labeled as (3p−1
1/24p1/2)1,

(3p−1
1/24p3/2)1, (3p−1

3/24f5/2)1, and (3s−1
1/24s1/2)1 in the subspace with JP = 1e for Ni-like isoelectronic

sequence with Z = 31–95.

In order to show the information exchange between the levels at some certain Z, Table 3 and
Figure 3, respectively, present the configuration mixing coefficients and weights of configuration state
functions for the atomic state functions in the subspace with JP = 1e corresponding to the 4th, 5th,
and 6th levels in Figure 1. The weights of the dominant components (3d−1

3/24d3/2)1 for the 4th level,
(3d−1

3/24d5/2)1 for the 5th level, and (3p−1
3/24p1/2)1 for the 6th level of Fr59+ ion (Z = 87) are 98.9%, 66.6%,

and 66.5%, respectively. It is clear that the information of the 5th and 6th levels in configuration space
has not been concentrated one configuration, approximately, on the contrary of the 4th level, so the
dominant components in the 5th and 6th levels have not been clear at Z = 87. Then, the dominant
components swap with each other at Z = 88, so the information exchanged between the 5th and 6th
levels around the positions with the maxima of Shannon entropies. It can be induced that, where there
is a sharp maximum in Shannon entropy, there is an information exchange.
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Figure 3. Weights of configuration state function in the configuration space with JP = 1e for the 4th,
5th, and 6th levels of Ni-like ions with Z = 87, 88, 91, and 92.
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Table 3. Configuration mixing coefficients for the 4th, 5th, and 6th levels in the subspace with JP = 1e at Z = 41, 42, 43, 87, 88, 91, and 92.

Z = 41 Z = 42 Z = 43 Z = 87 Z = 88 Z = 91 Z = 92
CSF 4th 5th 6th 4th 5th 6th 4th 5th 6th 4th 5th 6th 4th 5th 6th 4th 5th 6th 4th 5th 6th

(3d−1
5/24d3/2)1 0.2286 0.0020 −0.0518 0.2186 −0.0065 −0.0532 0.2085 0.0145 −0.0545 −0.0282 −0.0697 −0.0674 −0.0300 −0.0987 0.0082 −0.0838 −0.0759 −0.0100 −0.1157 −0.0192 −0.0108

(3d−1
5/24d5/2)1 −0.2293 0.1266 0.0265 −0.2178 0.1264 0.0258 −0.2060 −0.1262 0.0250 0.0170 0.0340 −0.0014 0.0170 0.0255 0.0217 0.0263 0.0117 0.0236 0.0297 −0.0038 0.0230

(3d−1
3/24s1/2)1 −0.0057 −0.0208 −0.0047 −0.0063 −0.0203 −0.0050 −0.0069 0.0197 −0.0053 0.0078 −0.0081 −0.0041 0.0075 −0.0090 −0.0019 0.0014 −0.0108 −0.0034 −0.0047 −0.0096 −0.0034

(3d−1
3/24d3/2)1 −0.6570 −0.7333 −0.0132 −0.6829 −0.7108 −0.0134 −0.7092 0.6862 −0.0137 0.9945 −0.0932 −0.0351 0.9924 −0.1161 −0.0259 0.7755 −0.6294 −0.0386 0.3029 −0.9518 −0.0380

(3d−1
3/24d5/2)1 0.6796 −0.6669 0.0198 0.6609 −0.6907 0.0197 0.6399 0.7151 0.0196 −0.0554 −0.8161 0.5734 −0.0544 −0.2570 −0.9638 −0.0661 −0.0214 −0.9967 −0.0544 0.0218 −0.9974

(3p−1
3/24p1/2)1 −0.0009 −0.0030 0.9030 −0.0018 −0.0029 0.9158 −0.0026 0.0028 0.9271 0.0794 0.5638 0.8156 0.1025 0.9534 −0.2633 0.6212 0.7726 −0.0609 0.9436 0.3046 −0.0479

(3p−1
3/24p3/2)1 −0.0030 −0.0028 −0.4013 −0.0025 −0.0032 −0.3740 −0.0020 0.0036 −0.3476 −0.0040 −0.0275 −0.0048 −0.0044 −0.0231 −0.0145 −0.0125 −0.0119 −0.0200 −0.0158 −0.0027 −0.0206

(3p−1
3/24f5/2)1 −0.0015 −0.0055 −0.0026 −0.0017 −0.0055 −0.0027 −0.0020 0.0055 −0.0028 0.0050 −0.0038 −0.0006 0.0049 −0.0034 −0.0020 0.0026 −0.0050 −0.0026 −0.0005 −0.0056 −0.0026

(3p−1
1/24p1/2)1 −0.0213 −0.0252 0.0278 −0.0226 −0.0249 0.0244 −0.0238 0.0244 0.0214 0.0205 −0.0018 −0.0006 0.0200 −0.0022 −0.0005 0.0146 −0.0118 −0.0007 0.0056 −0.0174 −0.0007

(3p−1
1/24p3/2)1 0.0319 −0.0205 −0.1090 0.0319 −0.0219 −0.1009 0.0316 0.0233 −0.0932 −0.0053 −0.0183 0.0059 −0.0052 −0.0097 −0.0158 −0.0068 −0.0021 −0.0161 −0.0063 0.0020 −0.0156

(3s−1
1/24s1/2)1 0.0063 −0.0021 −0.0828 0.0066 −0.0024 −0.0813 0.0069 0.0028 −0.0795 −0.0051 −0.0157 −0.0098 −0.0054 −0.0176 −0.0027 −0.0122 −0.0098 −0.0061 −0.0150 −0.0013 −0.0062

(3s−1
1/24d3/2)1 −0.0015 −0.0055 −0.0052 −0.0017 −0.0056 −0.0056 −0.0019 0.0056 −0.0059 0.0030 −0.0036 −0.0020 0.0029 −0.0040 −0.0007 0.0004 −0.0044 −0.0014 −0.0020 −0.0038 −0.0014
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On the other hand, besides the redistribution of the configuration mixing coefficients and weights
in configuration space, along with the nuclear charge Z, these peaks are also the reflection of eigenlevel
anticrossings at Z = 87 and 91, where the energy differences reach the minima, i.e., ∆E6,5 = 0.2609
Hartree and ∆E5,4 = 0.3299 Hartree, which are 5 orders of magnitude smaller than their energy
eigenvalues. In Figure 4, as a schematic diagram, the difference between the 6th and 5th levels reaches a
minimum at Z = 87. Obviously, it can be found that the region of anticrossings can be easily and directly
determined with the help of analysis on the Shannon entropies, along with the isoelectronic sequence
of Ni-like ions. Furthermore, the configuration interaction is the strongest between (3d−1

3/24d5/2)1

and (3p−1
3/24p1/2)1 in Fr59+ ion (Z = 87) and between (3d−1

3/24d3/2)1 and (3p−1
3/24p1/2)1 in Pa63+ ion

(Z = 91). That is, strong configuration interaction can make information obscure and further may lead
to information exchange in the configuration space so that the corresponding Shannon entropies reach
the maxima for the 5th and 6th levels at Z = 87 and for the 4th and 5th levels at Z = 91.

85 86 87 88 89

(3d-1
3/24d5/2)1

(3d-1
3/24d5/2)1

(3d-1
3/24d5/2)1

(3d-1
3/24d5/2)1

(3p-1
3/24p1/2)1

(3p-1
3/24p1/2)1

(3p-1
3/24p1/2)1

(3p-1
3/24p1/2)1

 Atomic number Z

(3p-1
3/24p1/2)1

(3d-1
3/24d5/2)1

           JP=1e

Level anticrossing = State crossing

Figure 4. Energy diagrams for the 5th and 6th levels labeled as (3d−1
3/24d5/2)1 and (3p−1

3/24p1/2)1 in the
subspace with JP = 1e for Ni-like isoelectronic sequence with Z = 85–89.

Exceptionally, there is no obvious changes in the entropies for the 4th and 5th levels around Z = 43.
And it can also be found that the dominant components (3d−1

3/24d5/2)1 and (3d−1
3/24d3/2)1 exchange for

the 4th and 5th levels at Z = 43, and both of the 4th and 5th levels have the same dominant component
(3d−1

3/24d3/2)1 at Z = 42 from Table 3. Previously, we believed that strong configuration interaction can
result in the anticrossing. However, the anticrossing does not take place between the two levels. It is
obvious that the information exchange is not necessarily caused by strong configuration interaction
that also need not lead to the eigenlevel anticrossing.

In our previous work [28], we also discussed the Shannon entropies for the levels labeled as
(3p−1

1/24p1/2)1, (3p−1
1/24p3/2)1, (3p−1

3/24f5/2)1, and (3s−1
1/24s1/2)1 ranging from Z = 68 to 95 and roughly

found the connection between the sudden changes of Shannon entropy and anticrossings. Here,
we expand the region from Z = 31 to 95 in order to show complete information exchanges and
anticrossings for the levels with JP = 1e. Figure 2 gives the Shannon entropies of other four levels
labeled as (3p−1

1/24p1/2)1, (3p−1
1/24p3/2)1, (3p−1

3/24f5/2)1, and (3s−1
1/24s1/2)1, where the exchanges of

dominant component take place at Z = 38, 70, 75, 81, and 86, in turn, according to the position
of sudden changes. That is, the exchanges of dominant component take place at Z = 38, 70, 75, 81,
and 86, which can easily be seen from Tables 4 and 5. Meanwhile, there are five anticrossings around
those ions with Z = 38, 70, 75, 81, and 86. The minima of the energy differences are, respectively,
∆E11,10 = 0.00615 Hartree at Z = 37, ∆E11,10 = 0.0792 Hartree at Z = 70, ∆E10,9 = 0.0613 Hartree at
Z = 75, ∆E11,10 = 0.9544 Hartree at Z = 80, and ∆E9,8 = 0.3714 Hartree at Z = 86. It is interesting that
the kinds of changes for Shannon entropy in Figure 2 are richer than that in Figure 1 mentioned in our
previous work [28]. Besides the narrow peak, there are simple jump-style changes at Z = 38 and 70 and
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overlapping narrow peak around Z = 80. Comparing with the previous results [28], more complete
information is given in this paper, where some results have also been corrected.

At Z = 38 and 70, where the continuity of entropies is not maintained for the two levels, the
Shannon entropies jump either up or down. This step is related to the information exchange for the
corresponding levels more directly than that in the situation of maxima. It is found from Table 4 that
the weights of the dominant components (3p−1

3/24f5/2)1 for the 10th level and (3s−1
1/24s1/2)1 for the

11th level in Figure 2 for Rb9+ ion (Z = 37) are 99.7% and 98.9%, while the weights of the dominant
components (3s−1

1/24s1/2)1 for the 10th level and (3p−1
3/24f5/2)1 for the 11th level for Sr10+ ion (Z = 38)

are 98.8% and 99.7%. Similarly, the weights of the dominant components (3s−1
1/24s1/2)1 for the 10th

level and (3p−1
3/24f5/2)1 for the 11th level in Figure 2 of Tm41+ ion (Z = 69) are 96.6% and 99.8%, while

the weights of the dominant components (3p−1
3/24f5/2)1 for the 10th level and (3s−1

1/24s1/2)1 for the 11th
level of Yb42+ ion (Z = 70) are 99.7% and 96.0%. The common property is that all of the weights are
approximate to one so that the Shannon entropies would be almost equal to zero for those levels,
which shows the unambiguous level information from the configuration space and that the simple
jump-style changes are not related to the strong configuration interaction. Furthermore, there is no
direct relationship between the sudden changes of Shannon entropy and configuration interaction. But,
this result obviously cannot be understood in terms of strong configuration interaction, so it is impled
that this type of information exchanges may be caused by radial orbital mutations between Z = 37 ∼ 38
and Z = 69 ∼ 70. Because the orbital basis, which are generated by multiconfiguration self-consistent
field method, is different for different ions, obviously, information exchange and strong configuration
interaction can be easily analyzed by using mixing coefficient lists and configuration weight graphs
(see Tables 3–5 and Figure 3). So, in order to avoid repetition, only the description of Shannon entropies
and configuration mixing coefficients are given below so as to find their corresponding relationship in
the other configuration space.

Figures 5–7 show the Shannon entropies for thirteen levels in a combined configuration space
with JP = 2e and 3e. Figure 5 gives the Shannon entropies for the 8th, 9th, 10th, 11th, and 12th levels
in the subspace. At Z = 36, the entropies jump down and up for the 10th and 11th levels, where the
dominant components (3d−1

3/24d5/2)3 and (3d−1
3/24d3/2)2 exchange. At Z = 45, the entropies have a

maximum for the 10th level besides jumping for the 9th and 10th, where the dominant components
become (3d−1

3/24d3/2)2 and (3d−1
3/24d5/2)2. There is one maximum for the 12th level at Z = 86, one

maximum for the 11th level at Z = 87, two maxima for the 10th level at Z = 87 and 90, and one
maximum for the 9th level at Z = 90. According the sudden changes of entropies, it can also be found
that the dominant components (3p−1

3/24p1/2)2, (3d−1
3/24d5/2)2, and (3d−1

3/24d5/2)3 have a triangle rotation
for the 10th, 11th, and 12th levels at Z = 87 for the first time, and then the 10th level exchanges its
dominant components twice with the 11th and 9th levels, in turn, i.e., (3p−1

3/24p1/2)2 and (3d−1
3/24d5/2)2

at Z = 91 and (3d−1
3/24d3/2)2 and (3d−1

3/24d5/2)2 at Z = 92.
Figure 6 gives the Shannon entropies for the 15th, 16th, 17th, 18th, and 19th levels. The entropies

jump at Z = 37 for the 18th and 19th levels, where the dominant components (3p−1
3/24f5/2)3 and

(3p−1
3/24f5/2)2 exchange. However, there is an exception that the dominant components (3p−1

3/24f5/2)2

and (3p−1
3/24f5/2)2 exchange at Z = 41. There is an overlapping broad peak at Z = 64, where the

dominant components (3p−1
3/24f5/2)3 and (3p−1

3/24f7/2)3 exchange, but the broad peak is not considered
as a sudden change in Figure 6. At Z = 76, a quadrilateral rotation appears for the dominant components
(3p−1

1/24p3/2)2, (3p−1
3/24f5/2)2, (3p−1

3/24f5/2)3 and (3p−1
3/24f7/2)3. At Z = 77, the dominant components

(3p−1
3/24f7/2)2 and (3p−1

1/24p3/2)2 exchange.
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Table 4. Configuration mixing coefficients for the 8th, 9th, 10th, and 11th levels in the subspace with JP = 1e at Z = 37, 38, 69, and 70.

Z = 37 Z = 38 Z = 69 Z = 70
CSF 8th 9th 10th 11th 8th 9th 10th 11th 8th 9th 10th 11th 8th 9th 10th 11th

(3d−1
5/24d3/2)1 −0.0008 −0.0009 0.0020 −0.0060 −0.0008 −0.0013 −0.0063 −0.0021 0.0002 −0.0055 −0.0064 −0.0026 0.0001 −0.0055 −0.0022 −0.0064

(3d−1
5/24d5/2)1 −0.0001 −0.0002 0.0021 0.0057 −0.0003 0.0001 0.0059 −0.0022 0.0037 0.0041 0.0062 −0.0025 0.0037 0.0041 −0.0028 0.0060

(3d−1
3/24s1/2)1 −0.0204 −0.0065 0.0014 0.0000 −0.0205 −0.0066 0.0000 −0.0015 0.0152 −0.0048 0.0004 −0.0008 0.0149 −0.0047 −0.0007 0.0004

(3d−1
3/24d3/2)1 0.0301 −0.0083 −0.0039 −0.0029 0.0314 −0.0085 −0.0031 0.0042 −0.0299 −0.0067 −0.0027 0.0051 −0.0294 −0.0066 0.0052 −0.0023

(3d−1
3/24d5/2)1 0.0026 0.0358 −0.0020 0.0059 0.0024 0.0373 0.0061 0.0021 −0.0001 0.0314 0.0040 0.0024 −0.0001 0.0308 0.0022 0.0037

(3p−1
3/24p1/2)1 −0.0146 −0.1078 0.0049 −0.0527 −0.0128 −0.1020 −0.0535 −0.0050 −0.0004 −0.0204 −0.0285 −0.0035 −0.0004 −0.0199 −0.0021 −0.0275

(3p−1
3/24p3/2)1 −0.0993 0.1136 0.0044 0.0600 −0.0962 0.1084 0.0612 −0.0045 0.0206 0.0253 0.0400 −0.0023 0.0196 0.0247 −0.0041 0.0386

(3p−1
3/24f5/2)1 −0.0145 −0.0047 0.9987 −0.0003 −0.0146 −0.0048 0.0000 −0.9985 0.0210 −0.0123 0.0156 −0.9989 0.0220 −0.0143 −0.9985 −0.0315

(3p−1
1/24p1/2)1 −0.9929 0.0300 −0.0162 −0.0219 −0.9934 0.0251 −0.0226 0.0165 0.9983 −0.0062 −0.0285 0.0217 0.9983 −0.0064 0.0240 −0.0273

(3p−1
1/24p3/2)1 −0.0406 −0.9852 −0.0057 0.0633 −0.0351 −0.9863 0.0657 0.0058 −0.0012 −0.9835 0.1755 0.0152 −0.0012 −0.9813 0.0085 0.1884

(3s−1
1/24s1/2)1 0.0140 −0.0505 −0.0003 −0.9945 0.0149 −0.0533 −0.9942 0.0000 −0.0278 −0.1739 −0.9827 −0.0138 −0.0279 −0.1863 0.0330 −0.9800

(3s−1
1/24d3/2)1 −0.0265 −0.0087 0.0468 0.0000 −0.0270 −0.0090 0.0000 −0.0508 0.0247 −0.0101 0.0015 −0.0356 0.0245 −0.0101 −0.0342 0.0000

Table 5. Configuration mixing coefficients for the 8th, 9th, 10th, and 11th levels in the subspace with JP = 1e at Z = 74, 75, 80, 81, 85, and 86.

Z = 74 Z = 75 Z = 80 Z = 81 Z = 85 Z = 86
CSF 8th 9th 10th 11th 8th 9th 10th 11th 8th 9th 10th 11th 8th 9th 10th 11th 8th 9th 10th 11th 8th 9th 10th 11th

(3d−1
5/24d3/2)1 0.0001 −0.0057 0.0021 −0.0056 0.0001 −0.0055 0.0027 0.0054 0.0001 −0.0024 −0.0066 0.0026 0.0001 −0.0024 −0.0068 0.0016 0.0008 −0.0022 −0.0064 −0.0010 −0.0020 −0.0011 −0.0062 −0.0012

(3d−1
5/24d5/2)1 0.0036 0.0042 0.0028 0.0055 0.0035 0.0010 −0.0050 −0.0053 0.0033 −0.0023 0.0058 −0.0030 0.0033 −0.0022 0.0060 −0.0021 0.0036 −0.0012 0.0060 0.0003 −0.0034 0.0015 0.0059 0.0006

(3d−1
3/24s1/2)1 0.0139 −0.0043 0.0004 0.0007 0.0137 −0.0032 0.0027 −0.0009 0.0124 −0.0004 −0.0030 −0.0022 0.0122 −0.0003 −0.0026 −0.0025 0.0108 0.0030 −0.0013 −0.0030 −0.0059 0.0093 −0.0011 −0.0030

(3d−1
3/24d3/2)1 −0.0274 −0.0059 −0.0053 −0.0019 −0.0269 −0.0004 0.0078 0.0017 −0.0245 0.0042 −0.0057 −0.0007 −0.0240 0.0040 −0.0054 −0.0014 −0.0223 −0.0026 −0.0041 −0.0030 0.0145 −0.0165 −0.0039 −0.0031

(3d−1
3/24d5/2)1 −0.0001 0.0283 −0.0009 0.0014 −0.0001 0.0200 −0.0191 −0.0006 −0.0001 0.0029 0.0225 0.0088 −0.0001 0.0029 0.0205 0.0116 −0.0009 0.0026 0.0132 0.0166 0.0024 0.0013 0.0121 0.0167

(3p−1
3/24p1/2)1 −0.0004 −0.0186 0.0018 −0.0229 −0.0003 −0.0143 0.0121 0.0216 −0.0003 −0.0030 −0.0211 0.0109 −0.0002 −0.0029 −0.0217 0.0076 0.0006 −0.0026 −0.0200 −0.0009 −0.0022 −0.0015 −0.0192 −0.0017

(3p−1
3/24p3/2)1 0.0163 0.0235 0.0040 0.0332 0.0156 0.0138 −0.0197 −0.0316 0.0125 −0.0017 0.0292 −0.0174 0.0120 −0.0016 0.0304 −0.0128 0.0101 0.0014 0.0291 −0.0005 −0.0063 0.0074 0.0282 0.0008

(3p−1
3/24f5/2)1 0.0276 −0.0641 0.9971 −0.0042 0.0297 −0.7579 −0.6509 0.0040 0.0516 −0.9983 0.0093 0.0048 0.0617 −0.9978 0.0069 0.0050 0.3519 −0.9358 0.0023 0.0039 −0.8901 −0.4552 0.0019 0.0035

(3p−1
1/24p1/2)1 0.9983 −0.0071 −0.0291 −0.0274 0.9983 0.0168 0.0274 0.0270 0.9976 0.0522 −0.0201 0.0207 0.9970 0.0623 −0.0228 0.0177 0.9350 0.3521 −0.0276 0.0076 −0.4545 0.8897 −0.0279 0.0062

(3p−1
1/24p3/2)1 −0.0011 −0.9609 −0.0610 0.2677 −0.0011 −0.6217 0.7225 −0.3007 −0.0009 −0.0100 −0.7513 −0.6593 −0.0009 −0.0081 −0.6494 −0.7599 0.0004 −0.0043 −0.3011 −0.9532 −0.0028 −0.0027 −0.2537 −0.9670

(3s−1
1/24s1/2)1 −0.0281 −0.2655 −0.0204 −0.9622 −0.0282 −0.1928 0.2290 0.9525 −0.0282 −0.0040 −0.6581 0.7513 −0.0282 −0.0037 −0.7587 0.6495 −0.0261 −0.0109 −0.9524 0.3015 0.0121 −0.0256 −0.9661 0.2541

(3s−1
1/24d3/2)1 0.0235 −0.0112 0.0287 0.0018 0.0233 −0.0274 −0.0114 −0.0021 0.0223 −0.0228 −0.0071 −0.0055 0.0221 −0.0217 −0.0063 −0.0065 0.0253 −0.0115 −0.0032 −0.0083 −0.0257 0.0086 −0.0028 −0.0085
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In Figure 7, the entropies jump at Z = 32 and 73, and the 20th and 21st levels have maxima.
At Z = 32, the dominant components (3p−1

3/24f5/2)3 and (3p−1
3/24f5/2)2 exchange with each other.

At Z = 49, the dominant components (3p−1
3/24f5/2)3 and (3p−1

3/24f7/2)3 exchange. At Z = 73, (3p−1
3/24f5/2)2

and (3p−1
3/24f7/2)3 exchange.
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Figure 5. Shannon entropies for the 8th, 9th, 10th, 11th, and 12th levels labeled as (3d−1
3/24d3/2)3,

(3d−1
3/24d5/2)2, (3d−1

3/24d5/2)3, (3d−1
3/24d3/2)2, and (3p−1

3/24p1/2)2 in the mixed subspace with JP = 2e

and 3e for Ni-like isoelectronic sequence with Z = 31–92.
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Figure 6. Shannon entropies for the 15th, 16th, 17th, 18th, and 19th levels labeled as (3p−1
1/24p3/2)2,

(3p−1
3/24f7/2)2, (3p−1

3/24f7/2)3, (3p−1
3/24f5/2)2, and (3p−1

3/24f5/2)3 in the mixed subspace with JP = 2e and
3e for Ni-like isoelectronic sequence with Z = 31–92.



Entropy 2020, 22, 33 12 of 23

30 35 40 45 50 55 60 65 70 75 80 85 90

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

       Z=73-92
Level   CSF

   (3p-1
1/24f5/2)3

   (3p-1
1/24f5/2)2

   (3p-1
1/24f7/2)3

       Z=49-72
Level   CSF

   (3p-1
1/24f5/2)3

   (3p-1
1/24f7/2)3

   (3p-1
1/24f5/2)2

       Z=32-48
Level   CSF

   (3p-1
1/24f7/2)3

   (3p-1
1/24f5/2)3

   (3p-1
1/24f5/2)2

 

            Z=31
          Level   CSF

   20th   (3p-1
1/24f7/2)3

   21th   (3p-1
1/24f5/2)2

   22th   (3p-1
1/24f5/2)3

Sh
an

no
n 

en
tr

op
y

Atomic number Z

(3p-1
1/24f5/2)3

(3p-1
1/24f5/2)2

(3p-1
1/24f5/2)3

(3p-1
1/24f7/2)3

(3p-1
1/24f5/2)2

(3p-1
1/24f7/2)3

Figure 7. Shannon entropies for the 20th, 21st, and 22nd levels labeled as (3p−1
1/24f7/2)3, (3p−1

1/24f5/2)2,
and (3p−1

1/24f5/2)3 in the mixed subspace with JP = 2e and 3e for Ni-like isoelectronic sequence with
Z = 31–92.

Figures 8 and 9 give the Shannon entropies for the 1st, 2nd, 5th, and 6th levels in the mixed
subspace with JP = 4e and 5e. In Figure 8, the entropies jump at Z = 36, where the dominant
components (3d−1

5/24d5/2)5 and (3d−1
5/24d3/2)4 exchange. Figure 9 shows that the entropies jump at

Z = 62, where the dominant components (3p−1
3/24 f7/2)5 and (3p−1

3/24 f5/2)4 exchange with each other.
In fact, the 5th and 6th levels, respectively, with JP = 4e and 5e, anticross at Z = 61, as shown in
Figure 10. In other words, in combined subspace, the levels with the different J and the same P, which
do not have configuration interaction, can also anticross besides those levels with the same JP which
can interact with each other.
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Figure 8. Shannon entropies for the 1st and 2nd levels labeled as (3d−1
5/24d5/2)5 and (3d−1

5/24d3/2)4 in
the mixed subspace with JP = 4e and 5e for Ni-like isoelectronic sequence with Z = 31–92.
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Figure 9. Shannon entropies for the 5th and 6th levels labeled as (3p−1
3/24f7/2)5 and (3p−1

3/24f5/2)4 in
the mixed subspace with JP = 4e and 5e for Ni-like isoelectronic sequence with Z = 31–92.
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Figure 10. Energy diagrams for the 5th and 6th levels labeled as (3p−1
3/24f7/2)5 and (3p−1

3/24f5/2)4 in
the mixed subspace with JP = 4e and 5e for Ni-like isoelectronic sequence with Z = 59–63.

Figure 11 gives the Shannon entropies for the 3rd and 4th levels in subspace with JP = 0o. Both of
them have the maxima at Z = 78, where the dominant components (3p−1

1/24s1/2)0 and (3p−1
3/24d3/2)0

exchange.



Entropy 2020, 22, 33 14 of 23

30 35 40 45 50 55 60 65 70 75 80 85 90
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
        Z=78-92
Level   CSF

  (3p-1
3/24d3/2)0

  (3p-1
1/24s1/2)0

            Z=31-77
          Level   CSF

  3rd    (3p-1
1/24s1/2)0

  4th    (3p-1
3/24d3/2)0

(3p-1
1/24s1/2)0

(3p-1
3/24d3/2)0

Atomic number Z

Sh
an

no
n 

en
tr

op
y

Figure 11. Shannon entropies for the 3rd and 4th levels labeled as (3p−1
1/24s1/2)0 and (3p−1

3/24d3/2)0 in
the subspace with JP = 0o for Ni-like isoelectronic sequence with Z = 31–92.

Figures 12–14 give the Shannon entropies for the 4th, 5th, 6th, 7th, 8th, 9th, 10th, 11th, and 12th
levels in subspace with JP = 1o. In Figure 12, the entropies have two maxima at Z = 49 and 55 for
the 6th level, one maximum at Z = 50 for the 7th level, two maxima at Z = 55 and 59 for the 5th level,
and one maximum at Z = 58 for the 4th level. Meanwhile, the dominant components (3d−1

3/24f5/2)1,
(3d−1

5/24f7/2)1, and (3d−1
5/24f5/2)1 exchange with (3p−1

3/24s1/2)1, in turn, at Z = 50, 56, and 59. In Figure 13,
the entropies have one, two, and one maxima for 8th, 9th, and 10th levels at Z = 77 and 81, where
the dominant components (3p−1

1/24s1/2)1 exchange with (3p−1
3/24d3/2)1 and (3p−1

3/24d5/2)1. In Figure 14,
both the entropies of the 11th and 12th levels have maxima at Z = 71, where the dominant components
(3p−1

1/24d3/2)1 and (3s−1
1/24p1/2)1 exchange.
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Figure 12. Shannon entropies for the 4th, 5th, 6th, and 7th levels labeled as (3d−1
5/24f5/2)1, (3d−1

5/24f7/2)1,
(3d−1

3/24f5/2)1, and (3p−1
3/24s1/2)1 in the subspace with JP = 1o for Ni-like isoelectronic sequence with

Z = 31–92.
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Figure 13. Shannon entropies for the 8th, 9th, and 10th levels labeled as (3p−1
1/24s1/2)1, (3p−1

3/24d3/2)1,
and (3p−1

3/24d5/2)1 in the subspace with JP = 1o for Ni-like isoelectronic sequence with Z = 31–92.
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Figure 14. Shannon entropies for the 11th and 12th levels labeled as (3p−1
3/24d3/2)1 and (3s−1

1/24p1/2)1

in the subspace with JP = 1o for Ni-like isoelectronic sequence with Z = 31–92.

Figure 15 gives the Shannon entropies for the 5th, 6th, 7th, 8th, and 9th levels in subspace with
JP = 2o. In Figure 15, the entropies of the 9th level jump at Z = 53, where the entropies of the 7th and
8th have maxima. It is interesting that the dominant components (3d−1

5/24f7/2)2, (3p−1
3/24s1/2)2, and

(3d−1
3/24f5/2)2 form triangle exchange at Z = 53. There are maxima at Z = 57 for the 5th and 7th levels

and at Z = 58 for the 6th level. Meanwhile, the dominant components (3d−1
5/24f5/2)2 and (3d−1

5/24f7/2)2

exchange with (3p−1
3/24s1/2)2, in turn, at Z = 57 and 58.
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Figure 15. Shannon entropies for the 5th, 6th, 7th, 8th, and 9th levels labeled as (3d−1
5/24f7/2)2,

(3d−1
5/24f5/2)2, (3d−1

3/24f7/2)2, (3d−1
3/24f5/2)2, and (3p−1

3/24s1/2)2 in the subspace with JP = 2o for Ni-like
isoelectronic sequence with Z = 31–92.

Figures 16–18 give the Shannon entropies for the 10th, 11th, 12th, 13th, 14th, 17th, and 18th levels
in the mixed subspace with JP = 3o and 4o. In Figure 16, the entropies of the 11th and 12th levels jump
at Z = 57, where the dominant components (3d−1

3/24f7/2)4 and (3d−1
3/24f5/2)3 exchange. At Z = 64,

the entropies have maxima corresponding to the exchange between the dominant components
(3d−1

3/24f7/2)3 and (3d−1
3/24f5/2)3 for the 10th and 11th levels. Figure 17 shows that the entropies of the

13th and 14th levels jump at Z = 36, where the dominant components (3p−1
3/24d5/2)4 and (3p−1

3/24p3/2)3

exchange. Similarly, Figure 18 presents the entropies of the 17th and 18th levels jump at Z = 40, where
the dominant components (3s−1

1/24f7/2)4 and (3s−1
1/24f5/2)3 exchange.
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Figure 16. Shannon entropies for the 10th, 11th, and 12th levels labeled as (3d−1
3/24f7/2)3, (3d−1

3/24f7/2)4,
and (3d−1

3/24f5/2)3 in the mixed subspace with JP = 3o and 4o for Ni-like isoelectronic sequence with
Z = 31–92.
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Figure 17. Shannon entropies for the 13th and 14th levels labeled as (3p−1
3/24d5/2)4 and (3p−1

3/24p3/2)3

in the mixed subspace with JP = 3o and 4o for Ni-like isoelectronic sequence with Z = 31–92.
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Figure 18. Shannon entropies for the 17th and 18th levels labeled as (3s−1
1/24f7/2)4 and (3s−1

1/24f5/2)3 in
the mixed subspace with JP = 3o and 4o for Ni-like isoelectronic sequence with Z = 31–92.

In order to better show the connection between the sudden change of Shannon entropies,
information exchanges, eigenlevel anticrossings, and strong configuration interactions, all of them
have been collected in Tables 6–14. In these tables, the sudden change is labeled as ”Yes” or ”No” and
the eigenlevel anticrossings are described by the minima of the energy difference between the two
corresponding levels; otherwise, “No” is also used. In addition to the sudden change and the minima
of the energy differences, the associated levels are illustrated by the atomic state functions which
have at most three CSF components, and the coefficients are written in a bold font for the dominant
CSFs. It is found that, where there is a sudden change in Shannon entropy, there is an eigenlevel
anticrossing, and vice versa. Although there is a minimum ∆E19,16 = 1.62763 in the subspace with
JP = 2e and 3e at Z = 39, this minimum is not so obvious that we can think that it does not affect the
general law because the energy differences are ∆E19,16 = 1.62922 and ∆E19,16 = 1.62774 at Z = 38 and
40, respectively. At the same time, some sufficient conditions could be obtained. That is, if there is
a sudden change in Shannon entropy, then the information exchange can take place, and if there is
an eigenlevel anticrossing, there is an information exchange. Moreover, it is also clarified that there
is no necessary connection between strong configuration interaction and eigenlevel anticrossing and
information exchange. Because the eigenlevel anticrossing can be explained by the energy difference
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which should not depend on the configuration basis in different coupling schemes that, however,
the (strong) configuration interaction relies on.

Table 6. Types of sudden change of Shannon entropies, eigenlevel anticrossings (in a.u.), configuration
mixing coefficients, and information exchanges for the levels in the subspace with JP = 0e.

Z Sudden Change Eigenlevel Anticrossing Configuration Mixing Coefficients

48 No No |2〉 : −0.7060(3d−1
5/24d5/2)0+0.7071(3d−1

3/24d3/2)0, |3〉 : −0.7030(3d−1
5/24d5/2)0−0.7022(3d−1

3/24d3/2)0

49 No No |2〉 : −0.7102(3d−1
5/24d5/2)0+0.7029(3d−1

3/24d3/2)0, |3〉 : −0.6987(3d−1
5/24d5/2)0−0.7063(3d−1

3/24d3/2)0

Table 7. Sudden change of Shannon entropies, eigenlevel anticrossings (in a.u.), configuration mixing
coefficients, and information exchanges for the levels in the subspace with JP = 1e.

Z Sudden Change Eigenlevel Anticrossing Configuration Mixing Coefficients

37 No ∆E11,10 = 0.00615 |10〉 : 0.9987(3p−1
3/24f5/2)1, |11〉 : −0.9945(3s−1

1/24s1/2)1

38 Yes No |10〉 : −0.9942(3s−1
1/24s1/2)1, |11〉 : −0.9985(3p−1

3/24f5/2)1

41 No No |4〉 : −0.6570(3d−1
3/24d3/2)1+ 0.6796(3d−1

3/24d5/2)1, |5〉 : −0.7333(3d−1
3/24d3/2)1−0.6669(3d−1

3/24d5/2)1

42 No No |4〉 : −0.6829(3d−1
3/24d3/2)1+0.6609(3d−1

3/24d5/2)1, |5〉 : −0.7108(3d−1
3/24d3/2)1−0.6907(3d−1

3/24d5/2)1

43 No No |4〉 : −0.7092(3d−1
3/24d3/2)1+0.6399(3d−1

3/24d5/2)1, |5〉 : 0.6862(3d−1
3/24d3/2)1+0.7151(3d−1

3/24d5/2)1

69 No No |10〉 : −0.9827(3s−1
1/24s1/2)1, |11〉 : −0.9989(3p−1

3/24f5/2)1

70 Yes ∆E11,10 = 0.0792 |10〉 : −0.9985(3p−1
3/24f5/2)1, |11〉 : −0.9800(3s−1

1/24s1/2)1

74 No No |9〉 : −0.9609(3p−1
1/24p3/2)1, |10〉 : 0.9971(3p−1

3/24f5/2)1

75 Yes ∆E10,9 = 0.0613 |9〉 : −0.7579(3p−1
3/24f5/2)1−0.6217(3p−1

1/24p3/2)1, |10〉 : −0.6509(3p−1
3/24f5/2)1+0.7225(3p−1

1/24p3/2)1

80 Yes ∆E11,10 = 0.9544 |10〉 : −0.7513(3p−1
1/24p3/2)1−0.6581(3s−1

1/24s1/2)1, |11〉 : −0.6593(3p−1
1/24p3/2)1+0.7513(3s−1

1/24s1/2)1

81 No No |10〉 : −0.6494(3p−1
1/24p3/2)1−0.7587(3s−1

1/24s1/2)1, |11〉 : −0.7599(3p−1
1/24p3/2)1+0.6495(3s−1

1/24s1/2)1

85 No No |8〉 : 0.3519(3p−1
3/24f5/2)1+0.9350(3p−1

1/24p1/2)1, |9〉 : −0.9358(3p−1
3/24f5/2)1+0.3521(3p−1

1/24p1/2)1

86 Yes ∆E9,8 = 0.3714 |8〉 : −0.8901(3p−1
3/24f5/2)1−0.4545(3p−1

1/24p1/2)1, |9〉 : −0.4552(3p−1
3/24f5/2)1+0.8897(3p−1

1/24p1/2)1

87 Yes ∆E6,5 = 0.2609 |5〉 : −0.8161(3d−1
3/24d5/2)1+0.5638(3p−1

3/24p1/2)1, |6〉 : 0.5734(3d−1
3/24d5/2)1+0.8156(3p−1

3/24p1/2)1

88 No No |5〉 : −0.2570(3d−1
3/24d5/2)1+0.9534(3p−1

3/24p1/2)1, |6〉 : −0.9638(3d−1
3/24d5/2)1−0.2633(3p−1

3/24p1/2)1

91 Yes ∆E5,4 = 0.3299 |4〉 : 0.7755(3d−1
3/24d3/2)1+0.6212(3p−1

3/24p1/2)1, |5〉 : −0.6294(3d−1
3/24d3/2)1+0.7726(3p−1

3/24p1/2)1

92 No No |4〉 : 0.3029(3d−1
3/24d3/2)1+0.9436(3p−1

3/24p1/2)1, |5〉 : −0.9518(3d−1
3/24d3/2)1+0.3046(3p−1

3/24p1/2)1
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Table 8. Sudden change of Shannon entropies, eigenlevel anticrossings (in a.u.), configuration mixing
coefficients, and information exchanges for the levels in the mixed subspace with JP = 2e and 3e.

Z Sudden Change Eigenlevel Anticrossing Configuration Mixing Coefficients

31 No ∆E22,21 = 3.0E− 5 |21〉 : −0.9997(3p−1
1/24f5/2)2, |22〉 : −0.9915(3p−1

1/24f5/2)3

32 Yes No |21〉 : −0.9917(3p−1
1/24f5/2)3, |22〉 : −0.9994(3p−1

1/24f5/2)2

33 No No |5〉 : 0.6393(3d−1
5/24d3/2)3−0.7477(3d−1

5/24d5/2)3, |6〉 : −0.6056(3d−1
5/24d3/2)3−0.5745(3d−1

5/24d5/2)3

34 No No |5〉 : 0.6639(3d−1
5/24d3/2)3−0.7243(3d−1

5/24d5/2)3, |6〉 : −0.5823(3d−1
5/24d3/2)3−0.6009(3d−1

5/24d5/2)3

35 No No |5〉 : 0.6879(3d−1
5/24d3/2)3−0.7009(3d−1

5/24d5/2)3, |6〉 : −0.5671(3d−1
5/24d3/2)3−0.6296(3d−1

5/24d5/2)3

|10〉 : −0.9569(3d−1
3/24d5/2)3, |11〉 : 0.9791(3d−1

3/24d3/2)2

36 Yes ∆E11,10 = 0.00025 |5〉 : 0.7118(3d−1
5/24d3/2)3−0.6768(3d−1

5/24d5/2)3, |6〉 : −0.5557(3d−1
5/24d3/2)3−0.6598(3d−1

5/24d5/2)3

|10〉 : 0.9791(3d−1
3/24d3/2)2, |11〉 : −0.9590(3d−1

3/24d5/2)3

|18〉 : 0.7865(3p−1
3/24f5/2)2+0.6159(3p−1

3/24f7/2)2, |19〉 : 0.9585(3p−1
3/24f5/2)3

37 Yes ∆E19,18 = 0.00049 |18〉 : 0.9580(3p−1
3/24f5/2)3, |19〉 : 0.7641(3p−1

3/24f5/2)2+0.6434(3p−1
3/24f7/2)2

39 No ∆E19,16 = 1.62763 |16〉 : 0.6809(3p−1
3/24f5/2)2−0.7281(3p−1

3/24f7/2)2, |19〉 : −0.7294(3p−1
3/24f5/2)2−0.6824(3p−1

3/24f7/2)2

40 No No |16〉 : 0.6950(3p−1
3/24f5/2)2−0.7143(3p−1

3/24f7/2)2, |19〉 : −0.7159(3p−1
3/24f5/2)2−0.6965(3p−1

3/24f7/2)2

41 No No |16〉 : 0.7069(3p−1
3/24f5/2)2−0.7022(3p−1

3/24f7/2)2, |19〉 : −0.7042(3p−1
3/24f5/2)2−0.7083(3p−1

3/24f7/2)2

44 No No |9〉 : −0.9716(3d−1
3/24d5/2)2, |10〉 : 0.9904(3d−1

3/24d3/2)2

45 Yes ∆E10,9 = 0.00075 |9〉 : −0.9772(3d−1
3/24d3/2)2, |10〉 : −0.9647(3d−1

3/24d5/2)2

48 No ∆E21,20 = 0.0026 |20〉 : 0.5823(3p−1
1/24f5/2)3−0.8073(3p−1

1/24f7/2)3, |21〉 : −0.8116(3p−1
1/24f5/2)3−0.5808(3p−1

1/24f7/2)3

49 Yes No |20〉 : 0.7466(3p−1
1/24f5/2)3−0.6597(3p−1

1/24f7/2)3, |21〉 : −0.6637(3p−1
1/24f5/2)3−0.7442(3p−1

1/24f7/2)3

63 No No |17〉 : −0.6776(3p−1
3/24f5/2)3+0.7341(3p−1

3/24f7/2)3, |18〉 : 0.7349(3p−1
3/24f5/2)3+0.6775(3p−1

3/24f7/2)3

64 No No |17〉 : −0.7226(3p−1
3/24f5/2)3+0.6900(3p−1

3/24f7/2)3, |18〉 : 0.6907(3p−1
3/24f5/2)3+0.7225(3p−1

3/24f7/2)3

72 No No |21〉 : −0.9949(3p−1
1/24f7/2)3, |22〉 : 0.9925(3p−1

1/24f5/2)2

73 Yes ∆E22,21 = 0.0021 |21〉 : 0.9924(3p−1
1/24f5/2)2, |22〉 : 0.9950(3p−1

1/24f7/2)3

75 Yes ∆E16,15 = 0.1307 |15〉 : 0.5133(3p−1
3/24f5/2)2−0.7691(3p−1

1/24p3/2)2, |16〉 : −0.7428(3p−1
3/24f5/2)2−0.6198(3p−1

1/24p3/2)2

∆E17,16 = 0.1326 |17〉 : 0.9710(3p−1
3/24f5/2)3, |18〉 : 0.9708(3p−1

3/24f7/2)3

76 Yes ∆E18,17 = 0.1121 |15〉 : −0.8822(3p−1
3/24f5/2)2+0.4528(3p−1

3/24f7/2)2, |16〉 : 0.9759(3p−1
3/24f5/2)3

∆E19,18 = 0.2295 |17〉 : 0.9757(3p−1
3/24f7/2)3, |18〉 : 0.3981(3p−1

3/24f7/2)2+0.8566(3p−1
1/24p3/2)2,|19〉 : −0.7971(3p−1

3/24f7/2)2+0.4995(3p−1
1/24p3/2)2

77 No No |18〉 : 0.4395(3p−1
3/24f5/2)2+0.8704(3p−1

3/24f7/2)2, |19〉 : 0.9732(3p−1
1/24p3/2)2

86 Yes No |10〉 : −0.9807(3d−1
3/24d5/2)2, |11〉 : 0.9991(3d−1

3/24d5/2)3,|12〉 : −0.9768(3p−1
3/24p1/2)2

87 Yes ∆E12,11 = 0.0484 |10〉 : −0.4527(3d−1
3/24d5/2)2−0.8860(3p−1

3/24p1/2)2, |11〉 : −0.8911(3d−1
3/24d5/2)2+0.4505(3p−1

3/24p1/2)2,|12〉 : 0.9992(3d−1
3/24d5/2)3

90 No No |9〉 : −0.9260(3d−1
3/24d3/2)2−0.3756(3p−1

3/24p1/2)2, |10〉 : 0.3767(3d−1
3/24d3/2)2−0.9228(3p−1

3/24p1/2)2

91 Yes ∆E9,8 = 0.0073 |8〉 : 0.9994(3d−1
3/24d3/2)3, |9〉 : −0.4919(3d−1

3/24d3/2)2−0.8676(3p−1
3/24p1/2)2,|10〉 : −0.8704(3d−1

3/24d3/2)2+0.4903(3p−1
3/24p1/2)2

92 No No |8〉 : −0.9754(3p−1
3/24p1/2)2, |9〉 : 0.9994(3d−1

3/24d3/2)3

Table 9. Sudden change of Shannon entropies, eigenlevel anticrossings (in a.u.), configuration mixing
coefficients, and information exchanges for the levels in the mixed subspace with JP = 4e and 5e.

Z Sudden Change Eigenlevel Anticrossing Configuration Mixing Coefficients

35 No No |1〉 : 0.9999(3d−1
5/24d5/2)5, |2〉 : 0.9724(3d−1

5/24d3/2)4

36 Yes ∆E2,1 = 6.0E− 5 |1〉 : 0.9739(3d−1
5/24d3/2)4, |2〉 : 0.9999(3d−1

5/24d5/2)5

61 No ∆E6,5 = 3.0E− 5 |5〉 : 0.9998(3p−1
3/24f7/2)5, |6〉 : 0.9994(3p−1

3/24f5/2)4

62 Yes No |5〉 : 0.9994(3p−1
3/24f5/2)4, |6〉 : 0.9998(3p−1

3/24f7/2)5

Table 10. Sudden change of Shannon entropies, eigenlevel anticrossings (in a.u.), configuration mixing
coefficients, and information exchanges for the levels in the subspace with JP = 0o.

Z Sudden Change Eigenlevel Anticrossing Configuration Mixing Coefficients

77 No No |3〉 : 0.5125(3p−1
3/24d3/2)0+0.8556(3p−1

1/24s1/2)0, |4〉 : −0.8558(3p−1
3/24d3/2)0+0.5152(3p−1

1/24s1/2)0

78 Yes ∆E4,3 = 0.5284 |3〉 : −0.7783(3p−1
3/24d3/2)0−0.6230(3p−1

1/24s1/2)0, |4〉 : −0.6242(3p−1
3/24d3/2)0+0.7807(3p−1

1/24s1/2)0
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Table 11. Sudden change of Shannon entropies, eigenlevel anticrossings (in a.u.), configuration mixing
coefficients, and information exchanges for the levels in the subspace with JP = 1o.

Z Sudden Change Eigenlevel Anticrossing Configuration Mixing Coefficients

41 No No |1〉 : 0.6517(3d−1
5/24p3/2)1−0.6373(3d−1

3/24p1/2)1, |2〉 : 0.6511(3d−1
5/24p3/2)1+0.7477(3d−1

3/24p1/2)1

42 No No |1〉 : 0.6399(3d−1
5/24p3/2)1−0.6645(3d−1

3/24p1/2)1, |2〉 : 0.6739(3d−1
5/24p3/2)1+0.7261(3d−1

3/24p1/2)1

43 No No |1〉 : 0.6246(3d−1
5/24p3/2)1−0.6928(3d−1

3/24p1/2)1, |2〉 : 0.6983(3d−1
5/24p3/2)1+0.7016(3d−1

3/24p1/2)1

44 No No |1〉 : 0.6057(3d−1
5/24p3/2)1−0.7216(3d−1

3/24p1/2)1, |2〉 : 0.7239(3d−1
5/24p3/2)1+0.6741(3d−1

3/24p1/2)1

49 Yes ∆E7,6 = 0.11137 |6〉 : −0.5121(3d−1
5/24f7/2)1−0.7024(3d−1

3/24f5/2)1+0.4840(3p−1
3/24s1/2)1, |7〉 : 0.2768(3d−1

5/24f7/2)1+0.3914(3d−1
3/24f5/2)1+0.8727(3p−1

3/24s1/2)1

50 Yes No |6〉 : −0.2399(3d−1
5/24f7/2)1−0.3285(3d−1

3/24f5/2)1+0.9114(3p−1
3/24s1/2)1, |7〉 : 0.5245(3d−1

5/24f7/2)1+0.7383(3d−1
3/24f5/2)1+0.4063(3p−1

3/24s1/2)1

54 No No |5〉 : 0.7467(3d−1
5/24f7/2)1−0.5399(3d−1

3/24f5/2)1, |6〉 : 0.9920(3p−1
3/24s1/2)1

55 Yes ∆E6,5 = 0.01691 |5〉 : 0.6020(3d−1
5/24f7/2)1-0.6605(3p−1

3/24s1/2)1, |6〉 : 0.4550(3d−1
5/24f7/2)1+0.7432(3p−1

3/24s1/2)1

56 No No |5〉 : 0.9906(3p−1
3/24s1/2)1, |6〉 : 0.7531(3d−1

5/24f7/2)1−0.5327(3d−1
3/24f5/2)1

58 No No |4〉 : 0.9012(3d−1
5/24f5/2)1−0.3334(3d−1

5/24f7/2)1, |5〉 : 0.9662(3p−1
3/24s1/2)1

59 Yes ∆E5,4 = 0.05159 |4〉 : −0.4396(3d−1
5/24f5/2)1+0.8847(3p−1

3/24s1/2)1, |5〉 : 0.8176(3d−1
5/24f5/2)1+0.4599(3p−1

3/24s1/2)1

70 No No |11〉 : 0.7800(3p−1
1/24d3/2)1+0.6237(3s−1

1/24p1/2)1, |12〉 : 0.6248(3p−1
1/24d3/2)1−0.7794(3s−1

1/24p1/2)1

71 Yes ∆E12,11 = 0.6555 |11〉 : 0.7017(3p−1
1/24d3/2)1+0.7105(3s−1

1/24p1/2)1, |12〉 : 0.7116(3p−1
1/24d3/2)1−0.7013(3s−1

1/24p1/2)1

78 Yes ∆E9,8 = 0.3099 |8〉 : 0.6951(3p−1
3/24d3/2)1−0.6995(3p−1

1/24s1/2)1, |9〉 : −0.7083(3p−1
3/24d3/2)1−0.7049(3p−1

1/24s1/2)1

79 No No |8〉 : 0.9353(3p−1
3/24d3/2)1−0.3173(3p−1

1/24s1/2)1, |9〉 : 0.3352(3p−1
3/24d3/2)1+0.9346(3p−1

1/24s1/2)1

81 Yes ∆E10,9 = 0.2760 |9〉 : 0.6276(3p−1
3/24d5/2)1+0.7589(3p−1

1/24s1/2)1, |10〉 : 0.7684(3p−1
3/24d5/2)1−0.6393(3p−1

1/24s1/2)1

82 No No |9〉 : 0.9396(3p−1
3/24d5/2)1+0.3119(3p−1

1/24s1/2)1, |10〉 : −0.3212(3p−1
3/24d5/2)1+0.9453(3p−1

1/24s1/2)1

Table 12. Sudden change of Shannon entropies, eigenlevel anticrossings (in a.u.), configuration mixing
coefficients, and information exchanges for the levels in the subspace with JP = 2o.

Z Sudden Change Eigenlevel Anticrossing Configuration Mixing Coefficients

44 No No |10〉 : 0.6811(3p−1
3/24d3/2)2−0.7233(3p−1

3/24d5/2)2, |11〉 : −0.7291(3p−1
3/24d3/2)2−0.6813(3p−1

3/24d5/2)2

45 No No |10〉 : 0.7152(3p−1
3/24d3/2)2−0.6903(3p−1

3/24d5/2)2, |11〉 : −0.6958(3p−1
3/24d3/2)2−0.7151(3p−1

3/24d5/2)2

52 Yes ∆E9,8 = 0.02944 |7〉 : 0.3340(3d−1
3/24f5/2)2−0.8993(3d−1

3/24f7/2)2, |8〉 : 0.9396(3d−1
3/24f5/2)2+0.3376(3d−1

3/24f7/2)2, |9〉 : −0.2008(3d−1
3/24f7/2)2-0.9773(3p−1

3/24s1/2)2

53 Yes ∆E8,7 = 0.05352 |7〉 : 0.4179(3d−1
3/24f7/2)2−0.8822(3p−1

3/24s1/2)2, |8〉 : −0.8135(3d−1
3/24f7/2)2−0.4619(3p−1

3/24s1/2)2, |9〉 : 0.9320(3d−1
3/24f5/2)2+0.3604(3d−1

3/24f7/2)2

56 No No |5〉 : 0.5801(3d−1
5/24f5/2)2−0.7726(3d−1

5/24f7/2)2, |6〉 : −0.8089(3d−1
5/24f5/2)2−0.5804(3d−1

5/24f7/2)2, |7〉 : −0.2122(3d−1
5/24f7/2)2−0.9739(3p−1

3/24s1/2)2

57 Yes ∆E6,5 = 0.0630 |5〉 : 0.5041(3d−1
5/24f5/2)2−0.6690(3d−1

5/24f7/2)2+0.5234(3p−1
3/24s1/2)2, |6〉 : 0.3939(3d−1

5/24f5/2)2−0.3566(3d−1
5/24f7/2)2−0.8445(3p−1

3/24s1/2)2, |7〉 : 0.7646(3d−1
5/24f5/2)2+0.6371(3d−1

5/24f7/2)2
∆E7,6 = 0.0486

58 Yes No |5〉 : 0.2407(3d−1
5/24f7/2)2−0.9516(3p−1

3/24s1/2)2, |6〉 : 0.6200(3d−1
5/24f5/2)2−0.7145(3d−1

5/24f7/2)2, |7〉 : 0.7635(3d−1
5/24f5/2)2+0.6432(3d−1

5/24f7/2)2

61 No No |6〉 : 0.6937(3d−1
5/24f5/2)2−0.7067(3d−1

5/24f7/2)2, |7〉 : 0.7165(3d−1
5/24f5/2)2+0.6957(3d−1

5/24f7/2)2

62 No No |6〉 : 0.7143(3d−1
5/24f5/2)2−0.6881(3d−1

5/24f7/2)2, |7〉 : 0.6964(3d−1
5/24f5/2)2+0.7157(3d−1

5/24f7/2)2

69 No No |8〉 : −0.6806(3d−1
3/24f5/2)2+0.7281(3d−1

3/24f7/2)2, |9〉 : −0.7318(3d−1
3/24f5/2)2−0.6801(3d−1

3/24f7/2)2

70 No No |8〉 : −0.7142(3d−1
3/24f5/2)2+0.6957(3d−1

3/24f7/2)2, |9〉 : −0.6991(3d−1
3/24f5/2)2−0.7136(3d−1

3/24f7/2)2

Table 13. Sudden change of Shannon entropies, eigenlevel anticrossings (in a.u.), configuration mixing
coefficients, and information exchanges for the levels in the mixed subspace with JP = 3o and 4o.

Z Sudden Change Eigenlevel Anticrossing Configuration Mixing Coefficients

35 No No |13〉 : 0.9995(3p−1
3/24d5/2)4, |14〉 : 0.9917(3p−1

3/24d3/2)3

36 Yes ∆E14,13 = 0.00023 |13〉 : 0.9918(3p−1
3/24d3/2)3, |14〉 : 0.9995(3p−1

3/24d5/2)4

39 No ∆E18,17 = 4.0E− 5 |17〉 : −0.9997(3s−1
1/24f7/2)4, |18〉 : −0.7589(3s−1

1/24f5/2)3+0.6508(3s−1
1/24f7/2)3

40 Yes No |17〉 : −0.7618(3s−1
1/24f5/2)3+0.6473(3s−1

1/24f7/2)3, |18〉 : −0.9997(3s−1
1/24f7/2)4

41 No No |5〉 : −0.6937(3d−1
5/24f5/2)3+0.7150(3d−1

5/24f7/2)3, |8〉 : 0.7158(3d−1
5/24f5/2)3+0.6776(3d−1

5/24f7/2)3

42 No No |5〉 : −0.7048(3d−1
5/24f5/2)3+0.7045(3d−1

5/24f7/2)3, |8〉 : 0.7048(3d−1
5/24f5/2)3+0.6891(3d−1

5/24f7/2)3

43 No No |5〉 : −0.7156(3d−1
5/24f5/2)3+0.6941(3d−1

5/24f7/2)3, |8〉 : 0.6940(3d−1
5/24f5/2)3+0.7005(3d−1

5/24f7/2)3

52 No No |6〉 : −0.6863(3d−1
5/24f5/2)4+0.7233(3d−1

5/24f7/2)4, |7〉 : −0.7156(3d−1
5/24f5/2)4−0.6860(3d−1

5/24f7/2)4

53 No No |6〉 : −0.7282(3d−1
5/24f5/2)4+0.6811(3d−1

5/24f7/2)4, |7〉 : −0.6744(3d−1
5/24f5/2)4−0.7283(3d−1

5/24f7/2)4

56 No ∆E12,11 = 2.0E− 5 |11〉 : −0.9836(3d−1
3/24f7/2)4, |12〉 : −0.9577(3d−1

3/24f5/2)3

57 Yes No |11〉 : −0.9497(3d−1
3/24f5/2)3, |12〉 : −0.9843(3d−1

3/24f7/2)4

63 No ∆E11,10 = 0.0274 |10〉 : 0.6411(3d−1
3/24f5/2)3+0.7667(3d−1

3/24f7/2)3, |11〉 : −0.7662(3d−1
3/24f5/2)3+0.6385(3d−1

3/24f7/2)3

64 Yes No |10〉 : 0.7250(3d−1
3/24f5/2)3+0.6882(3d−1

3/24f7/2)3, |11〉 : −0.6875(3d−1
3/24f5/2)3+0.7227(3d−1

3/24f7/2)3
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Table 14. Sudden change of Shannon entropies, eigenlevel anticrossings (in a.u.), configuration mixing
coefficients, and information exchanges for the levels in the mixed subspace with JP = 5o and 6o.

Z Sudden Change Eigenlevel Anticrossing Configuration Mixing Coefficients

56 Yes ∆E2,1 = 0.00028 |1〉 :(3d−1
5/24f7/2)6, |2〉 : 0.9922(3d−1

5/24f5/2)5

57 No No |1〉 : 0.9926(3d−1
5/24f5/2)5, |2〉 :(3d−1

5/24f7/2)6

4. Summary and Outlook

Based on the wavefunctions calculated by using the multiconfiguration Dirac–Hartree–Fock
(MCDHF) and relativistic configuration interaction (RCI) methods, the Shannon entropies have been
obtained for the ground and excited states of Ni-like isoelectronic sequence. The role of Shannon
entropy can be considered as an information measurement of atomic state in configuration space.
The larger the entropy, the more ambiguous the information of the energy level and the less meaningful
the configuration is. In the present work, a relationship was found among the sudden change of
Shannon entropy, information exchange, eigenlevel anticrossing, and strong configuration interaction.

Firstly, the sudden change of Shannon entropy is a sufficient and necessary condition for the
eigenlevel anticrossing in a given configuration space, which means that the sudden change of Shannon
entropy can be considered as the effective indicator of the eigenlevel anticrossing, likely in the study
on the one-electron atom in an external field [2,3]. In fact, the eigenlevel anticrossing always occurs
near the sudden change of entropy, rather than at the exact location of the sudden change, because the
discreteness in the isoelectronic sequence. Secondly, if there are sudden changes of Shannon entropy
and eigenlevel anticrossings, information exchange must take place, which is very much the same in
the study on one-electron atom in an external field. However, there is no sudden change of entropy
and eigenlevel anticrossing for individual information exchanges. So, the sudden change in Shannon
entropy and eigenlevel anticrossings could be considered as a sufficient condition for information
exchanges. Certainly, not only the levels with the same JP but also those with different symmetry
can anticross and exchange their information in a given configuration space, along with isoelectronic
sequence. The levels with same JP exchanging their information in a configuration space could be
reflected by the sharp peak and jump in Shannon entropy as the increasing of nuclear charge Z, while
eigenlevel anticrossings and information exchanges between those with different JP can only be shown
by the jump in Shannon entropy, along with the isoelectronic sequence.

In addition, it was previously thought that there was an inevitable relationship between the
eigenlevel anticrossing and strong configuration interaction in isoelectronic sequences. However,
according to the present analysis, there is no necessary causal relationship between them. In theory,
the calculated results of energy levels should be the same regardless of the coupling basis set used,
but the strength of configuration interaction is related to the coupling mechanism. In fact, the strength
of configuration interaction is usually reflected by configuration mixing coefficients. When each
configuration mixing coefficient approaches the average n−1

c in a large enough configuration space,
which means the entropy of the corresponding level approaches the maximum lnnc, configuration
interaction is the strongest. On the contrary, if the configuration mixing coefficients nearly form a unit
coordinate vector, then the configuration interaction becomes the weakest. Very commonly for simple
level structure in atomic systems, the configuration interaction is strong in the jj coupling scheme but
weak in the LS coupling scheme, and vice versa. Of course, configuration interaction, all of which
are strong in the jj and LS coupling scheme, may be very weak in other coupling schemes as is more
common in the description of doubly excited states [32,33], especially for the doubly Rydberg states [34]
similar to the quantum chaotic system mentioned by [4,5]. Therefore, we have the opportunity to
rethink the relationship between strong configuration interaction and eigenlevel anticrossing; that is,
strong configuration interaction and eigenlevel anticrossing do not always occur at the same time.
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Of course, it is hoped that a rigorous theory about Shannon entropy in configuration space is
required in order to help us to better understand the traditional atomic physics in various isoelectronic
sequences. However, there is no analytical expression in the study of isoelectronic sequences,
unlike in the calculation of the entropy of one-electron atom in an external field [2,3]; therefore,
a number of numerical calculations should be indispensable even if the quantum chaotic systems
have been successfully analyzed by using the combination of the perturbation theory and statistical
theory [4,5]. In addition, inspired by nuclear physics [5,35], we also hope to give a new expression to
the uncertainty relation.
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32. Herrick, D.R.; Sinanoǧlu, O. Comparison of doubly-excited helium energy levels, isoelectronic

series, autoionization lifetimes, and group-theoretical configuration-mixing predictions with
large-configuration-interaction calculations and experimental spectra. Phys. Rev. A 1975, 11, 97–110.
[CrossRef]

33. Lin, C.D. Doubly excited states, including new classification schemes. Adv. At. Mol. Phys. 1986, 22, 77–142.
34. Schlachter, A.S. The search for quantum chaos: From celestial mechanics to the helium atom. Radiat. Phys.

Chem. 2006, 75, 2159–2164. [CrossRef]
35. Blatt, J.M.; Weisskopf, V.F. Theoretical Nuclear Physics; Springer: New York, NY, USA, 1979.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/atoms5020015
http://dx.doi.org/10.1016/j.physa.2017.02.003
http://dx.doi.org/10.1039/b916509f
http://dx.doi.org/10.1016/0375-9601(95)00867-5
http://dx.doi.org/10.1103/PhysRevE.66.011102
http://www.ncbi.nlm.nih.gov/pubmed/12241336
http://dx.doi.org/10.1103/PhysRevA.76.032502
http://dx.doi.org/10.1016/j.physleta.2007.07.077
http://dx.doi.org/10.1016/j.physleta.2008.06.012
http://dx.doi.org/10.1016/j.cplett.2007.07.003
http://dx.doi.org/10.1016/0010-4655(91)90133-6
http://dx.doi.org/10.1088/0256-307X/32/2/023102
http://dx.doi.org/10.1088/0031-8949/43/2/006
http://dx.doi.org/10.1103/PhysRevA.62.052505
http://dx.doi.org/10.1103/PhysRevA.11.97
http://dx.doi.org/10.1016/j.radphyschem.2006.05.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Theoretical Considerations
	Results and Discussion
	Summary and Outlook
	References

