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Abstract

Background. Depression is a debilitating mental disorder that often coexists with anxiety. The
genetic mechanisms of depression and anxiety have considerable overlap, and studying depres-
sion in non-anxiety samples could help to discover novel gene.We assess the genetic variation of
depression in non-anxiety samples, using genome-wide association studies (GWAS) and linkage
disequilibrium score regression (LDSC).
Methods. The GWAS of depression score and self-reported depression were conducted using
the UK Biobank samples, comprising 99,178 non-anxiety participants with anxiety score <5 and
86,503 non-anxiety participants without self-reported anxiety, respectively. Replication analysis
was then performed using two large-scale GWAS summary data of depression from Psychiatric
Genomics Consortium (PGC). LDSC was finally used to evaluate genetic correlations with
855 health-related traits based on the primary GWAS.
Results. Two genome-wide significant loci for non-anxiety depression were identified:
rs139702470 (p = 1.54 � 10�8, OR = 0.29) locate in PIEZO2, and rs6046722
(p = 2.52 � 10�8, OR = 1.09) locate in CFAP61. These associated genes were replicated in
two GWAS of depression from PGC, such as rs1040582 (preplication GWAS1 = 0.02, preplication
GWAS2 = 2.71 � 10�3) in CFAP61, and rs11661122 (preplication GWAS1 = 8.16 � 10�3, preplication
GWAS2 = 8.08 � 10�3) in PIEZO2. LDSC identified 19 traits genetically associated with non-
anxiety depression (p < 0.001), such as marital separation/divorce (rg = 0.45, SE = 0.15).
Conclusions. Our findings provide novel clues for understanding of the complex genetic
architecture of depression.

Introduction

Depression is one of the complex and common neuropsychiatric disorders affecting approxi-
mately 4.4% of the population worldwide, which often presents with low self-esteem, low
mood, anhedonia, feeling of worthlessness, fatigue, sense of rejection and guilt, suicidal
thoughts, among others [1, 2]. The lifetime prevalence of major depression around the world
is between 1.0 and 16.9% [3]. Scientists have identified a familial tendency for depression
through two decade of family studies [4]. However, a study sponsored by the Psychiatric
Genomics Consortium (PGC) in 2013 did not find any associated loci of genetic variation in
depression [5], and a subsequent meta-analysis conducted by Hek et al. was similarly incon-
clusive [6]. Like other common diseases or traits, depression is thus presumed to be controlled
by many genes with minor effects.

Due to the wide range of depression phenotypes, previous studies could not achieve the
statistical power required to test these minor effect variations. Therefore, PGC again combined
the cohort data from PGC, UK BioBank, FinnGen and 23andMe to find some genetic
associations for depression [7]. In the latest study, Levey et al. performed genome-wide
association study (GWAS) andmeta-analysis using depression data frommore than 1.2million
participants in multiple population cohorts, and identified 17 pathogenic genes by fine-
mapping GWAS signals combined with transcriptome association analysis [8]. Nevertheless,
the existing studies seem to be not account for the influence of comorbidities to the patho-
genesis of depression, and lack of further analysis and support of accurate phenotypic cohort
data. Despite the previous family studies have shown that about 40% of depression suscepti-
bility is due to genetic effects, little is known about the specific genetic variants involved in
depression [4].

There is evidence that some mental disorders are typically heritable and share common
genetic components [9, 10]. Anxiety and depression have been demonstrated to be bidirec-
tional risk factors for one another [11]. Previous studies also found considerable overlapped
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genetic factors between anxiety and depression [12, 13]. A recent
genetic correlation analysis found approximately 80% genetic
correlation between depression and generalized anxiety
[14]. However, there is a considerable pathogenesis difference
between depression and anxiety [15]. For example, the release of
some peptides or hormones on the hypothalamic–pituitary–
adrenal (HPA) axis is regulated differently in anxiety and depres-
sion [16]. Besides, there are gender differences between the two
diseases. Gao et al. found that anxiety was one of the most serious
problems among female college students, while depression was
relatively more serious among male [17]. Therefore, it is reason-
able to explore depression specific genetic risk factors without the
influence of anxiety. Our aim is to explore depression in the non-
anxiety samples, and to eliminate common overlapping risk genes
for anxiety and depression.

In this study, four genome-wide association studies were con-
ducted using two depression phenotypes in two non-anxiety
cohorts from the UK Biobank, respectively. Then, two GWAS
summary statistics from PGC were used to verify the genes corres-
ponding to the candidate loci in our GWAS. Finally, linkage
disequilibrium score regression (LDSC) was performed to analyze
the genetic correlation between non-anxiety depression and
855 health-related traits.

Methods

Non-anxiety depression samples in the UK Biobank cohort

The phenotypic and genotypic data of this study were derived
fromUKBiobank health resource (Application 46478), which had
recruited 502,656 participants aged between 40 and 69 years
[18]. The present study accessed health-related records of each
participant, including age, sex, tobacco and alcohol consumption,
and Townsend deprivation index (TDI) from screenshot question
or verbal interview within Assessment Center. Anxiety
(UK Biobank data fields: 20421 and 20420) and depression
(UK Biobank data fields: 20002, 20126 and 20544) were defined
based on the general anxiety disorder (GAD-7) and Patient Health
Questionnaire (PHQ-9), respectively [19]. We used self-reported
and mental illness scores to define the phenotype of depression
and anxiety, respectively. Ethical approval of UK Biobank was
granted by the National Health Service National Research Ethics
Service (reference 11/NW/0382). Anxiety and depression score
were mean-centered and normalized to one standard deviation
(SD) before further analysis. The detailed definitions of mental
phenotypes are shown in Supplementary File S1. In this study,
individuals with an anxiety score <5 or non-self-reported anxiety
were defined as non-anxiety individuals. The samples with anxiety
score <5 included 59,334 depression cases (mean � SD age,
57.22 � 7.46) and 19,805 controls (mean � SD age,
55.77 � 7.40), while the samples with non-self-reported anxiety
included 56,603 depression cases (mean � SD age, 57.21 � 7.48)
and 13,123controls (mean � SD age, 55.90 � 7.45). The descrip-
tive characteristics of participants with anxiety score <5 and non-
self-reported anxiety are presented in Supplementary Files S2 and
S3, respectively.

UK Biobank genotyping, imputation, and quality control

In the UK Biobank, 488,377 participants have genome-wide geno-
type data. Genome-wide genotypingwas conducted using either the
Affymetrix UK BiLEVE Axiom or Affymetrix UK Biobank Axiom

array. Details of the array design, genotyping, and quality control
procedures have been descripted in the published study
[18]. Imputation was conducted by IMPUTE2 against the reference
panel of the Haplotype Reference Consortium, 1,000 Genomes and
UK10K projects [18]. Detailed information about these data have
been described elsewhere [20]. The SNPs with high linkage dis-
equilibrium (r2 > 0.5) were removed. The participants were
restricted to only “White British” according to self-reported ethni-
city. The participants who reported inconsistencies between self-
reported gender or genetic gender, and were genotyped but not
imputed were finally excluded in this study.

Genome-wide association studies of non-anxiety depression

PLINK 2.0 was used to conduct the GWAS of two depression traits
in two non-anxiety cohorts, respectively [21]. For quality control,
we removed the SNPs with call rates <90%, Hardy–Weinberg
equilibrium (HWE) <0.001, or minor allele frequencies (MAF)
<0.01. The kinship coefficients were estimated by KING software
(http://people.virginia.edu/~wc9c/KING/) to remove the genetic-
ally related subjects [18]. The GWAS of depression score and self-
reported depression were conducted in two non-anxiety cohorts
using linear regression and logistic regression assuming an addi-
tive model for allelic effects, respectively. The age, sex, TDI,
alcohol use frequency/week, smoking frequency/day, and top
three principle components of population structure (calculated
by UK Biobank) were used as covariates. The SNPs with
p < 5.0 � 10�8 were considered to be genome-wide susceptibility
significance.

Replication of primary GWAS results

Two large-scale GWAS summary data of depression from the PGC
were recruited to verify the accuracy of non-anxiety depression
GWAS [7, 22]. Briefly, in replication GWAS 1, a genome-wide
association meta-analysis was conducted based on 135,458 depres-
sion cases and 344,901 controls using logistic regression [7]. In
replication GWAS 2, 807,553 discovery individuals (246,363
depression cases and 561,190 controls) were analyzed using logistic
regression [22]. Detailed descriptions of genotyping, quality control
and statistical analysis of these two data sets are available in the
published studies [7, 22].

Generating genetic correlations between non-anxiety
depression and human traits

We used LDSC to estimate rg for non-anxiety depression with a
range of other diseases and health-related traits [23]. The purpose
of these comparisons was to assess the extent of shared common
genetic variants in order to suggest hypotheses about the under-
lying genetic basis of non-anxiety depression. The overlap of the
subjects themselves does not bias rg. These rg are mostly based on
independent subject studies and are expected to be unbiased by
confounding of genetic and nongenetic effects. rg remains unbiased
when GWAS include overlapping samples, but the intercept of
LDSC regression is an estimated correlation between association
statistics attributable to overlapping samples. In this study, we used
the cross-trait LDSCmethod through the LDHub v1.9.3 to identify
the genetic correlations between non-anxiety depression phenotype
and 855 human diseases/traits, including physical and mental
diseases, anthropometric markers, living habits and other health-
related traits [24].
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Results

Primary analysis of non-anxiety depression

An overview for the GWAS of non-anxiety depression is shown in
Figure 1. In the analysis of self-reported depression in anxiety score
<5 samples, one SNP reached genome-wide significance:
rs6046722, p = 2.52 � 10�8, OR = 1.09 (Supplementary File S4).
This SNP is located in an exon of the CFAP61 (cilia and flagella
associated protein 61) gene. In the GWAS of depression score in
anxiety score <5 samples, rs139702470 reached genome-wide sig-
nificance: p= 1.54� 10�8, OR= 0.29 (Supplementary File S4). This
is an intronic variant in the PIEZO2 (piezo type mechanosensitive
ion channel component 2) gene. In the analysis of depression score
in non-self-reported anxiety samples, one SNP reached genome-
wide significance: rs139702470, p = 3.66 � 10�8, OR = 0.29
(Supplementary File S4). This SNP is located in an exon of the
PIEZO2 gene. Figure 2 shows the LocusZoom plot with data
coming directly from our GWAS summary data by querying the
corresponding region on chromosomes between 500 and 500 kb
region, respectively.

Replication of primary analysis results

The genes corresponding to genome-wide significant loci for non-
anxiety depression in the primary analysis were tested in two depres-
sion cohorts from thePGC.BothCFAP61 andPIEZO2were associated
with depression in the two replication studies. We observed 9 and
14 candidate SNPs corresponding to CFAP61 and PIEZO2 in two
replication datasets (p < 0.05), respectively. For example, rs1040582
(preplication GWAS1 = 0.02, preplication GWAS2 = 2.71 � 10�3) and
rs13038510 (preplication GWAS1= 0.02, preplication GWAS2= 9.83� 10�3)
were replicated in CFAP61 region (Supplementary File S5), while
rs11661122 (preplication GWAS1 = 8.16 � 10�3, preplication
GWAS2=8.08�10�3)andrs11664237(preplicationGWAS1=8.58�10�4,
preplication GWAS2 = 3.46 � 10�3) were replicated in PIEZO2 region
(Supplementary File S6).

Linkage disequilibrium score regression

Non-anxiety depression is comorbid with a wide range of other
diseases and disorders. To assess the shared genetic architecture

Figure 1. Manhattan plot for the GWAS of depression without anxiety in the UK Biobank cohorts. (A) Linear regression of depression score in anxiety score <5 samples. (B) Linear
regression of depression score in non-self-reported anxiety samples. (C) Logistic regression of self-reported depression in anxiety score <5 samples. (D) Logistic regression of self-
reported depression in non-self-reported anxiety samples. The red line indicates the p-value threshold for genome-wide significance (p < 5 � 10�8).
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between non-anxiety depression and many other traits, genetic
correlations (rg) were calculated between our GWAS summary
statistics and 855 behavioral and disease traits available via LD
Hub. We first focused on the genetic correlations between non-
anxiety depression and 12 common mental disorders (Figure 3).
Suggestive significant genetic associations were detected for non-
anxiety depression with major depressive disorder (rg = 0.27,
SE= 0.13) and schizophrenia (rg= 0.15, SE= 0.06). Besides, several
weak genetic correlations were observed between non-anxiety
depression and many depression-related phenotypes, such as
depression (rg = �0.001, SE = 0.09) and number of depression
episodes (rg =�0.02, SE = 0.20). Notably, there was no significant
genetic correlations between non-anxiety depression and other
psychiatric phenotypes such as anxiety (rg = 0.14, SE = 0.18).

Of the other behavioral and disease traits, 19 phenotypes were
significantly correlated (p < 0.001) with non-anxiety depression
(Figure 4), such as overall health rating (rg = 0.21, SE = 0.06),
hayfever/allergic rhinitis (rg = �0.30, SE = 0.09), high cholesterol
(rg = 0.30, SE = 0.09), current tobacco smoking (rg = 0.21,
SE = 0.07), disability or infirmity (rg= 0.18, SE = 0.06), impedance

of arm (rg = �0.13, SE = 0.04), and overweight (rg = 0.18,
SE = 0.07). Additionally, a novel genetic correlation was observed
between non-anxiety depression and marital separation/divorce
(rg = 0.45, SE = 0.15) (Figure 4). Detailed results for genetic
correlations between non-anxiety depression and other behavioral
and disease related traits are summarized in Supplementary File S7.

Discussion

In this study, we selected approximately 100,000 non-anxiety indi-
viduals from the UK Biobank, and conducted GWASs for depres-
sion scores and self-reported depression using the two non-anxiety
cohorts, respectively. Our GWASs identified two independent
SNPs associated with non-anxiety depression. Both of the genes
corresponding to the two SNPs were verified by significant associ-
ation signals across the two replication studies.

The genetic correlations between non-anxiety depression and
the general depression phenotype were relatively weak in our study.
A recent study using the UK Biobank cohort has found significant

Figure 2. LocusZoom plots of depression without anxiety genome-wide significance loci. Association results for SNPs as a function of genomic distance for PIEZO2 and CFAP61
(C20orf26). The top line in each subfigure shows genomic coverage at the locus, with each vertical tick representing the imputed SNPs. Purple diamond indicate SNP at the locuswith
the strongest association evidence. Each point represents a SNP. Bottom panel shows genes at each locus as annotated in the UCSC Genome Browser Annotation Database.
(A) display PIEZO2 in chr18 for GWAS summary of depression score in anxiety score <5 samples. (B) display PIEZO2 in chr18 for GWAS summary of depression score in non-self-
reported anxiety samples. (C) display CFAP61 in chr20 for GWAS summary of self-reported depression in anxiety score <5 samples. (D) display CFAP61 in chr20 for GWAS summary of
self-reported depression in non-self-reported anxiety samples.
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overlapping variants between depression and other mental dis-
orders [25]. In contrast, our LDSC results did not find any strong
genetic correlation between non-anxiety depression with neuroti-
cism, anorexia nervosa, and anxiety/panic attacks. This supports
our hypothesis that the analysis of non-anxiety depression may
exclude the effects of comorbidities such as anxiety disorders.
Interestingly, a significant genetic correlation was observed
between schizophrenia and non-anxiety depression, indicating that
schizophrenia may have a strong similarity to the genetic patho-
genesis of depression.

Previous studies found that generalized anxiety and depression
had a substantial genetic overlap, approximately 80–96% [14,
26]. Our study aimed to explore the depression specific genetic
factors by excluding all anxiety individuals from the depression
samples. In our LDSC analysis, the GWAS summary data of non-
anxiety depression was generated from samples excluded anxiety
individuals. On the contrary, the GWAS summary data of depres-
sion and number of depression episodes in LD Hub were not
excluded anxiety individuals [24]. In this case, the rg correlation
values between non-anxiety depression and depression traits (such
as depression [�0.001] and number of depression episodes
[�0.02]) were lower than that with anxiety [0.14], illustrating the
potentially strong correlation between depression and anxiety.
Thus, after the exclusion of the effect of anxiety individuals, we
hypothesized that the genetic correlation was inevitably reduced
between non-anxiety depression and depressive traits (including
anxiety samples).

Examining significant genes that overlap between the current
GWAS of non-anxiety depression and the depression studies
revealed putative associations with PIEZO2 and CFAP61 [5, 7,
22]. PIEZO2, as the main biological force conduction medium,
affects the release of neurotransmitter serotonin (5-HT) [27]. The
5-HT plays a central role in brain development, mood regulation,
stress response, and the risk of psychiatric disorders, and changes of
5-HT have important implications for behavior and mental health
[28]. PIEZO2 is also associated with sensory nerve distribution in
the central nervous system of the brainstem and cationic channels
activated by brain metastatic cells [29, 30]. PIEZO2 usually
expressed in the cortical and hippocampal pyramidal neurons of
the brain and in cerebellar Purkinje cells [31]. A whole-exome
sequencing analysis in two patients who had unique neuromuscular
and skeletal symptoms showed that PIEZO2 was a determinant of
mechanosensation in humans [32]. Lanier et al. conducted a study
of brain injury caused by repeated blast exposure, and indicated
that blast may cause PIEZO2 change in sensitivity to mechanical
stimuli in the brain and may contribute to cellular injury [33].

In our study, CFAP61 was found to be significantly associated
with non-anxiety depression and had been identified to play a vital
role in primary cilia affecting cerebral cortical development and
dysfunction [34]. It was highly expressed in preamygdala, striatum,
and hippocampal structures [35]. However, the role of CFAP61 in
depression has not been well studied, and the role of CFAP61 in the
brain or nervous system is also limited. CFAP61 gene identified by
our GWAS is a remarkable finding for non-anxiety depression with

Figure 3. Genetic correlations and mental disorders related traits using LD score regression implemented in LD Hub software. The negative rg indicates that an earlier or lower
value of a continuous trait was associated with depressionwithout anxiety. The positive rg indicates that a later or higher value of a continuous trait was associated with depression
without anxiety.
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respect to known biology and points to the potential value of other
novel findings from this kind of research. Improving our under-
standing of the SNPs in non-anxiety depression may help identify
the biological differences between depression and anxiety. These
results also provide potential evidence for future phenotypic strati-
fication research.

To date, neither PIEZO2 nor CFAP61 has been reported to
cause a phenotype related to depression. It is important to note
that the closest gene to the GWAS top signal is usually not the
causal gene [36]. Besides, studies have shown that many genetic
variants can affect phenotype through distal regulation such as
long range enhancer–promoter interactions [37], and looping
chromatin interactions [38]. Therefore, the SNPs identified in
this study may affect the expression of other depression-related
genes nearby. Several genes that are nearly adjacent to PIEZO2
and CFAP61 have been implicated in depression. For example,
Dóra et al. carried out whole-exome ultra-high throughput
sequencing in brain samples between depression and control
subjects, and identified GNAL (near PIEZO2) as one of the gen-
omic region-dependent accumulation of rare variants in depres-
sion [39]. Moreover, a polymorphism study in the alpha subunit
found that GNAL gene was associated with major depression
[40]. As a potassium-dependent Naþ/Ca2þ exchanger, NCKX3
(near CFAP61) is mostly abundant in the brain [41]. Behavioral
examination in NCKX3 knock-out mice found that depression-
related behaviors in Nckx�/� mice were more higher than that in

wild type mice [41]. Thus, combined with our findings, the SNPs
involved in this study may affect the pathogenesis of depression
through regulating these adjacent genes.

The potential links between depression and obesity or smoking
have been well speculated and repeatedly examined [42,
43]. Depression and obesity are commondiseases withmajor public
health implications, often cooccurring within individuals [44]. The
current study also demonstrated that there existed significant gen-
etic correlation between non-anxiety depression and obesity-
related traits, including overweight, obesity class 2 and impedance
of arm.Obesity can be seen as an inflammatory state because weight
gain has been shown to activate inflammatory pathways, which in
turn has been linked to depression [45–47]. In addition, smoking
has been found to phenotypically and genetically correlate with
depression [43, 48]. The current study also identified significant
genetic correlations between non-anxiety depression and smoking-
related traits, including current tobacco smoking and current
smoking status. There have been many studies using different
methods to demonstrate the complex causal relationship between
depression and smoking, such as smoking increasing the risk of
depression [49], a bidirectional effect [50] and no effect reported
[51]. Our results largely support the previous association between
depression and obesity or smoking.

Many epidemiological studies convey the same message:
divorce threatens mental and physical health [52, 53]. There
was a high genetic correlation between non-anxiety depression

Figure 4. Significant genetic correlations and other behavioral and disease related traits using LD score regression implemented in LD Hub software. The negative rg indicates that
an earlier or lower value of a continuous trait was associated with depression without anxiety. The positive rg indicates that a later or higher value of a continuous trait was
associated with depression without anxiety.
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and marital separation/divorce (rg = 0.45) in our LDSC. It could
be valuable to assess depressive phenotypes from a large cohort
associated with access to marital status records. Separated and
divorced people have a higher risk of mental illness than married
people [54]. An earlier cross-sectional study focused on immune
changes and found that separated/divorced men had poorer
immune function and more recent illnesses [55]. In fact, the
norepinephrine data for newlyweds matched the evidence linking
divorce with increased inflammation [56]. In addition, those who
had symptoms of depression before their divorce were more
likely to develop depression after their divorce [57]. Future
research should focus on how marriage and divorce can provoke
health-relevant immune alterations, especially on immune and
hormone-related non-anxiety depression.

Overall health rating is a common self-assessment score in
epidemiological studies, and has been widely used as a powerful
indicator in public health studies [58–60]. We observed moderate
genetic correlation between non-anxiety depression and overall
health rating (rg = 0.21), which was consistent with a similar
research assessing the relationship between overall health rating
score and major depressive disorder [61]. This genetic correlation
for overall health rating may offer important new insights into the
interrelationship between self-assessment health and depression.
Future studies need to assess the pleiotropic confounding factors
that could further explain genetic correlation between non-anxiety
depression and overall health rating. In these studies, phenotypes
should ideally be investigated without composite compositions and
based on multiple phenotype indicators.

The principal strength of this study is to conduct a more
accurate study on the premise of excluding the influence of anxiety
comorbidities of depression in two large cohorts. This has allowed
the validation of the effects of variants that have been identified
previously to determine whether theymaintain an effect on depres-
sion. We also recognize limitations in our study. In contrast to
Europeans, other ancestors are still less well studied. We hope that
the initial results of the UK sample reported here can help to
advance the field by encouraging more collaborative research on
other ethnic groups. Besides, there are some non-UK ethnic sam-
ples in LD Hub, which may have a slight bias on the accuracy of
genetic correlation analysis, and future studies could further refine
the phenotype.

Conclusion

In summary, we identified two novel loci that should prioritize their
further study in the pathology of non-anxiety depression. We
examined genetic correlations between non-anxiety depression
and 855 health-related phenotypes, largely confirming and
strengthening previous observations. This study sheds light on
the genetic architecture of depression and provides novel insights
for future research of complex comorbid psychiatric traits.
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