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Biological systems often change their responsiveness when subject to persistent stimulation, a phenomenon termed
adaptation. In neural systems, this process is often selective, allowing the system to adapt to one stimulus while
preserving its sensitivity to another. In some studies, it has been shown that adaptation to a frequent stimulus
increases the system’s sensitivity to rare stimuli. These phenomena were explained in previous work as a result of
complex interactions between the various subpopulations of the network. A formal description and analysis of
neuronal systems, however, is hindered by the network’s heterogeneity and by the multitude of processes taking place
at different time-scales. Viewing neural networks as populations of interacting elements, we develop a framework that
facilitates a formal analysis of complex, structured, heterogeneous networks. The formulation developed is based on
an analysis of the availability of activity dependent resources, and their effects on network responsiveness. This
approach offers a simple mechanistic explanation for selective adaptation, and leads to several predictions that were
corroborated in both computer simulations and in cultures of cortical neurons developing in vitro. The framework is
sufficiently general to apply to different biological systems, and was demonstrated in two different cases.
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Introduction

Adaptation is a biologically ubiquitous process whereby
features of a system’s responsiveness change as a result of
previous input. In neural systems, the kinetics of the change
are most often monotonic and its direction (either increase
or decrease) depends on the information conveyed and on
the identity of the biological components observed (e.g., [1–
3]). It has been shown that neural adaptation is inherently
selective to the input characteristics; not only between
sensory modalities, but even within a given modality, the
system is capable of reducing its sensitivity to frequent input
while preserving its sensitivity to the rare (e.g., [3–8]). In its
most impressive form, the phenomenon of selective adapta-
tion also contains an increased sensitivity to the rare on the
background of frequent input. For instance, in the phenom-
enon of Mismatch Negativity (MMN), when a deviant sensory
stimulus is applied on the background of a standard one, an
evoked potential component which is absent in the presence
of a single stimulus (e.g., [6,9,10]) is generated. This
component’s magnitude was shown to depend on the scarcity
of the odd-ball stimulus and on the rate of stimulation.

To simplify matters, adaptation can be viewed as a result of
a dynamic interaction between exciting and restoring forces:
the monotonic nature of adaptation, be it facilitation or
depression, is explained in terms of net loss or gain of
exciting or restoring resources. For instance, one mechanism
for the monotonic decrease in excitability in a cortical
neuron under repetitive stimulation was shown to be an
increase in effective potassium membrane conductance [11].
The inverse effect, that is increased excitability, can result
from, e.g., the cumulative inactivation of potassium mem-
brane conductance [12]. Such an interplay between opponent
processes abounds in models of adaptation.

The selective nature of adaptation is usually interpreted in
terms of the spatial locality of the above processes. For
instance, [13] showed that constraining the monotonic
decrease to a unique subset of synapses allows for selective
adaptation of a single neuron to the wide range of inputs
received.
A neural correlate of increased sensitivity to the rare, a

phenomenon most commonly documented in auditory event
related potentials [6], was observed at the level of random
networks of cortical neurons in vitro[14,15], where the
mechanism underlying this complex phenomenon is acces-
sible. Using a combination of multi-site recordings, and
pharmacological and electrophysiological manipulations Ey-
tan at al. suggested the following possible mechanism (see
schematic illustration in Figure 1): It has been shown in
numerous studies that cortical inhibitory interneurons form
extended, gap-junction coupled sub-networks [16]. We can
hypothesize that such expansive electrically coupled networks
are relatively insensitive to the site of stimulation, thus acting
as a global component of the system. In contrast, the
excitatory population is uncoupled electrically (e.g., [17])
and therefore its activation is pathway specific and is affected
locally by stimulation. When one site in the network is
stimulated frequently, the local excitatory pathways stem-
ming from this source undergo depression which causes a
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decline in the network’s responsiveness to this stimulation.
The inhibitory sub-network is also affected by the frequent
stimulation, albeit globally, and undergoes depression. The net
result is less resistance to the activation pathways stemming
from other stimulation sites, hence the enhanced responsive-
ness to other, less frequently stimulated sites. To support this
explanation, Eytan et al. demonstrated that blocking the
inhibitory sub-network (by using the GABA antagonist
Bicuculline) abolished the increase in the sensitivity to rare
stimulation.

In what follows, we formulate a generic mathematical
model for the full range of adaptation phenomena, that is: (i)
Monotonic facilitation or depression of responsiveness; (ii)
Selectivity of adaptation, and (iii) Increased sensitivity to rare
stimuli. The model consists of two nonlinear differential
equations, describing the effect of stimulation on the system’s
exciting and restoring resources. These equations are
coupled via functions describing the activities of the two
components of the system. This approach enables us to
reduce the spatial structure of the system (i.e., globality versus
locality of its different components) into simple, input-
output relationships.

To demonstrate its generic nature, the model was applied
to two distinctly different systems. First, we develop the
equations for transiently responding neural networks. The
behavior of such networks is characterized by low tonic
activity with reverberating transient responses to stimulation.
After formalizing and analyzing this model, we proceed by
verifying it using computer simulations and multi-site
recordings of large random networks of cortical neurons
developing in vitro. Second, we analyze a generic system of
coupled populations that maintains a high level of tonic
activity in response to steady external stimulation.

Our main contributions in this work are the development
of a methodology that facilitates a formal analysis of
structurally complex and heterogeneous networks, and the
implementation of this methodology to investigate adapta-
tion processes in neural systems. We expect this framework to
be applicable to other biological systems as well.

Results

Activity-Dependent Resources Model
We consider a system consisting of two components, one

excitatory and one inhibitory. The availability of these
components is use-dependent, so that the activity of each
component results in a decline in its resources. The
replenishment process of each resource is assumed to follow
first order dynamics with a characteristic time constant.
Formally, this can be written

dxE
dt
¼ t� xE

sE
� xE ~EðxE ; x1; sÞ ;

dxI
dt
¼ 1� xI

sI
� xI~IðxE ; xI ; sÞ;

ð1Þ

where xE, xI are the relative availabilities of each resource, tE, tI
are the characteristic time constants and ~E and ~I are the
activity in each component of the system. We assume here
that the activity depends on the state of the system (i.e.,
resource availabilities) and on external stimulation.
Now let us assume that the activity in each component has

a multiplicative dependence on stimulation intensity, which
is a function of one or more parameters of the stimulus (e.g.,
amplitude, rate, density etc.), namely

~EðxE ; xI ; sÞ ¼ sEEðxE ; xIÞ ; ~IðxE ; xI ; sÞ ¼ sI IðxE ; xIÞ:

Here, sE, sI are the effective intensities of stimulation of
each component. By this we assume that each component
may be affected differently by each stimulation source, or
that it may be affected by a different number of sources.
Equation 1 can therefore be rewritten

dxE
dt
¼ 1� xE

sE
� xEsEEðxE ; xIÞ ;

dxI
dt
¼ 1� xI

sI
� xI sI IðxE ; xIÞ: ð2Þ

Figure 1. Diagram of Dual Site Stimulation Model

Stimulation effect on the excitatory populations is local, and therefore
there is stronger depression of that population at the frequent site. The
effect on the inhibitory resource, however, is global due to its
interconnectivity so it is affected by stimulation at all sites. Thus,
response to the rare site may be increased due to the global decline in
inhibition.
doi:10.1371/journal.pcbi.0040029.g001
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Author Summary

Our mind continuously adapts to background sensory events while
preserving and even enhancing its sensitivity to deviant objects. In
the visual modality, for instance, a target violating a surrounding
pattern is easily detected, a phenomenon termed ‘‘pop-out.’’
Indeed, the automatic attention we pay to the irregular or the
surprising, which developed as a valuable aid in our survival, is often
used to advantage nowadays in popular culture and advertisement.
Such phenomena have been investigated in many systems, from
psychophysics in behaving animals to experiments in neural
networks developing in vitro. In this work, we develop a mechanistic
model that demonstrates how a relatively simple system may
express such selective behavior. We apply our model first to the case
of transiently responding networks, and compare the results with
computer simulations and experimental data collected from neural
networks developing in vitro. We also demonstrate the application
of the model to other systems. Our approach provides insight as to
how complex, behavior-related phenomena may arise from simple
dynamic interactions between the system’s elementary compo-
nents.

Selective Adaptation in Heterogeneous Networks



We define the system’s responsiveness as the excitatory
activity, normalized to its non-adapted value

R,
EðxE ; xIÞ
Eð1; 1Þ : ð3Þ

By this we assume that most activity in experimental
recordings results from the excitatory cells. Since Equation 3
does not depend explicitly on input intensity (see the
examples below), the responsiveness can be viewed as the
site’s normalized input-output gain.

At this stage we do not specify the exact activity functions E
and I. However, we can make several reasonable assumptions:

Inhibitory activity is explicitly dependent on excitatory
activity:

IðxE ; xIÞ ¼ gðxE ; xIÞEðxE ; xIÞ: ð4Þ

This non-restrictive assumption holds whenever the inhib-
itory population is not driven directly by external stimulation
(see for example the tonic system discussed below).

Increasing the excitatory synaptic availability, xE, increases
the excitatory activity, i.e., the responsiveness is a monotoni-
cally non-decreasing function of xE,

@EðxE ; xIÞ
@xE

� 0: ð5Þ

Increasing the inhibitory synaptic availability, xI, decreases
the excitatory activity, i.e., the responsiveness is a monotoni-
cally non-increasing function of xI,

@EðxE ; xIÞ
@xI

� 0: ð6Þ

The assumptions in Equations 5 and 6 refer only to the
excitatory activity due to our definition of the system’s
responsiveness in Equation 3.
Inwhat followswe analyze the system inEquation 2, using the

above assumptions, in two qualitatively different instances.
First, we consider the case of a network with transient
responses, to which a periodic stimulation is applied. The
results are then comparedwith experiments inneural networks
developing in vitro. Second, we analyze a general network with
tonic activity, to which a constant stimulus is applied.

Model Network with Transient Response
The detailed derivation of Equation 2 for a transiently

responding network, which we used as a reference case, is
described in Materials and Methods. In that particular
application the stimulation is periodic with an intensity that
depends on its period. Thus, Equation 2 for such systems can
written

d�xE
dt
¼ 1� �xE

sE
� �xEUEfEEð�xE ; �xIÞ ;

d�xI
dt
¼ 1� �xI

sI
� �xIUI fI Ið�xE ; �xIÞ;

ð7Þ

where �xE ; �xI are the time-averaged synaptic availabilities, UE,
UI the synaptic vesicle release probabilities and fE¼1/TE and
fI¼1/TI are the stimulation rates (see Materials and Methods
for a derivation, including an explanation for the appearance
of the temporal averages). If there are several sources of
stimulation in the system, fE and fI can express the total or
effective rate of stimulation influencing each population.
The system described by Equation 2 converges to fixed

points in the �xE ; �xI plane (referred to as the phase plane), i.e.,
the loci at which both derivatives vanish. For simplicity, we
assume throughout the analysis of this system a linear
relationship between the activity functions

Ið�xE ; �xIÞ ¼ aEð�xE ; �xIÞ; a . 0: ð8Þ

In this case, all the fixed points are located along the curve

�x�I ¼
q�x�E

�x�Eðq� 1Þ þ 1
where q ,

UEsEfE
aUIsI fI

ð9Þ

(see Materials and Methods) as illustrated in Figure 2. The
parameter q expresses the ratio between the net effect of
stimulation on the excitatory population to its effect on the
inhibitory population; e.g., if q is larger than 1, the excitatory
population will suffer more resource depletion than the
inhibitory one. Alternatively, when q , 1, the fixed points are
all below the diagonal of the phase plane, where inhibition is
more depressed than excitation. Thus, q determines the
geometric curve upon which the fixed point is located. The
exact location of the fixed point along these curves is
determined by the specific parameter values and activity
functions.

Frequency-Dependent Adaptation in a Transiently
Responding Network
It was shown in [14] that periodic stimulation leads to a

decline in the response to each stimulus. Furthermore, this

Figure 2. Fixed Point Loci When the Activities are Proportional

Geometrical loci of the averaged system’s fixed points when the
excitatory and inhibitory activity function are proportional to each other,
as described in Equation 8. The locus depends on the parameter ratio q.
When q , 1 fixed points are located in the lower half of the plane
(�x�E.�x�I ) and vice versa. We can infer from the assumptions in Equations 5
and 6 that as fixed points approach the lower-right corner of the phase
plane, activity increases. Thus, decreasing q changes the overall behavior
from a depressing to a facilitating one.
doi:10.1371/journal.pcbi.0040029.g002
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adaptation process becomes more pronounced as the
stimulation frequency is increased. In our model, this
corresponds to

dR�

dfstim
, 0; ð10Þ

where fstim is the stimulation frequency and the asterisk
denotes the steady-state value. We will refer to this
phenomenon as ‘‘frequency dependent adaptation.’’ Describ-
ing this rather trivial phenomenon will serve as a simple case
study which will aid us in understanding the model’s
behavior.

For the purpose of analytic tractability, let us consider a
much simplified symmetric model in which

UE ¼ UI ; sE ¼ sI ; E [ I ; fE ¼ fI ¼ fstim: ð11Þ

In this case q ¼ 1 and all fixed points are on the diagonal
�x�E ¼ �x�I ¼ �x�. It is easy to see from Equation 7 that at
extremely low stimulation frequency the system converges
close to ð�xE ; �xIÞ ¼ (1,1) where synaptic availabilities are
maximal. As the frequency is increased the fixed point shifts
along the diagonal towards the origin ð�xE ; �xIÞ ¼ (0,0) where
synaptic depletion is maximal. Therefore, any activity
function E which monotonically increases on the diagonal
will satisfy Equation 10 and exhibit frequency dependent
adaptation. Furthermore, such a function also guarantees the
fixed point’s stability (see Material and Methods, Equation
27). This can be easily understood intuitively since an
increasing activity function creates a negative feedback loop
between activity and synaptic availability, which results in a
stable steady-state solution.

Consider an example of a two-variable sigmoidal function

Eð�xE ; �xIÞ ¼
1

1þ expð�a�xE þ b�xI þ hÞ : ð12Þ

It is easy to verify that if 0 , b , a then indeed on the
diagonal

d
d�x

Eð�x; �xÞ � 0 for all �x:

That is to say, when activity depends more strongly on the
availability of excitation than on that of inhibition, frequency
dependent adaptation will be manifested. This is illustrated in
Figure 3.

Selective Adaptation in Transiently Responding Networks
Next, we consider the two site stimulation protocol studied

in [14], where it was demonstrated experimentally that when
one site is stimulated frequently and another site is
stimulated rarely, the system reduces its response to the
frequent stimulus while enhancing its response to the rare
one. It was suggested in [14] that the topological differences
between the excitatory and inhibitory subnetworks, and
specifically the interconnections within the inhibitory pop-
ulation (e.g., [18]) underlie this phenomenon, whereby the
inhibitory population acts as a global common resource
affected by stimuli from all sites, while the excitatory network
is affected mainly by local stimuli.
Under these assumptions the excitatory populations

corresponding to the two sites do not influence each other
directly and function as two separate components. The
inhibitory population, however, is common (see diagram in
Figure 1) and therefore responds to both stimulation sites. In
our model, we can easily realize this mechanism by postulat-
ing the existence of two excitatory populations and writing
the state equations (Equation 7) for each stimulation site.
Thus, the response to the rarely stimulated site will be
according to

fE ¼ frare ; fI ¼ ff req þ frare ¼ fstim;

while at the frequent site

fE ¼ ff req ; fI ¼ ff req þ frare ¼ fstim;

where fstim is the total stimulation intensity applied to the
system. Thus the parameter ratio q of Equation 9 is different
at each site

qrare ¼
UEsEfrare

UIsIaðff req þ frareÞ
¼ q0b ;

qf req ¼
UEsEff req

UIsIaðff req þ frareÞ
¼ q0ð1� bÞ;

with

q0 ¼
UEsE
UIsIa

; b ¼ frare
fstim
¼ 1

1þ ff req=frare
:

q0 is the stimuli-independent parameter ratio and b is the
normalized intensity of the rare stimulation site (0 � b � 0.5).
Since qrare , qfreq, the adaptation behavior of the rare site will
differ from that of the frequent site.
We now define two functionality criteria for this paradigm.

‘‘Selectivity’’ is defined to be the ratio between the steady-

Figure 3. Frequency-Dependent Adaptation in the Theoretical Symmet-

ric System

State variables and responsiveness decrease monotonically as stimula-
tion frequency is increased. The curve was calculated for the symmetric
system satisfying Equation 11 where the system’s activity functions are
the sigmoidal activity function given in Equation 12 (a¼16.67; b¼10; h¼
5; U ¼ 0.5; s ¼ 10 s).
doi:10.1371/journal.pcbi.0040029.g003
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state responsiveness at the two sites,

S,
R�rare
R�f req

: ð13Þ

‘‘Amplification’’ is defined to be the steady-state increase in
the system’s sensitivity to the rare stimuli,

A,
E�rare

Eð1; 1Þ ¼ R�rare: ð14Þ

The dependence of S and A on both the relative intensity b
and on the total intensity fstim, for the sigmoidal activity
function in Equation 12 is displayed in Figure 4, demonstrat-
ing the phenomenon of selective adaptation. The model
predicts that selectivity increases with frequency, and that
this increase is more pronounced for smaller values of b, i.e.,
when there is a large difference between the stimulation
effect on the two subnetworks. The same holds for the
amplification criterion, only that for large values of b no
amplification occurs at all (i.e., A , 1).

Figure 4. Selective Adaptation in the Theoretical Model

(A) Selectivity as defined in Equation 13, for a selective adaptation paradigm using the sigmoidal activity function given in Equation 12 (parameter
values as in Figure 3). Here we also assume q0¼ 2. Selectivity is monotonically increasing in fstim and decreasing in b.
(B) Amplification as defined in Equation 14, for the same paradigm. For high values of b (here, for b¼ 0.5, 0.4, and 0.3) amplification is decreasing with
stimulation frequency and is below 1 (i.e., the response to the rare is in fact depressed). When b is further decreased (here, for b ¼ 0.2 and 0.1),
amplification becomes non-decreasing and above 1 so that the response is indeed amplified.
(C) phase plane loci of fixed points for the rare (green) and frequent (blue) sites for different values of b (marked on the curves). Note that for each value
of b, q0¼ qrareþ qfreq so that when the locus curve of the rare shifts towards the lower right corner (i.e., towards amplification) the locus curve of the
frequent shifts towards the upper left corner (i.e., towards stronger depression).
doi:10.1371/journal.pcbi.0040029.g004
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So far, we have developed an averaged model consisting of
a single equation for each synaptic population. Using the
linear relationship assumption in Equation 8 we located the
fixed point of this system on the geometric curves described
in Equation 9. At low stimulation rates, all these curves
converge to ð�xE ; �xIÞ ¼ (1,1). As the rates are increased, the
curves diverge and the equilibrium location depends more
strongly on the relative intensity b. Since the fixed point’s
location determines the system’s responsiveness, assuming
integrated activity to be monotonically dependent on
resource availability (Equations 5 and 6) leads to the above
predictions for dual site stimulation. Note that at high rates
of stimulation (;100 s�1) the curves converge towards the
origin, where the responsiveness to both sites is extremely
low. Since such high stimulation rates are not physiologically
possible in in vitro networks, this region does not appear in
our analysis. Although we used sigmoidal activity functions
for the visualization of these predictions (presented in Figure
4), any activity function obeying Equations 4–6 will exhibit
the same behavior.

In summary, the theoretical model we have presented so far
explains selective adaptation in terms of the change in the
availability of the activity dependent resources of the system.
The model predicts that selectivity (i.e., the ability of the
system to distinguish between different sources) and ampli-
fication (i.e., the system’s capability to increase its responsive-
ness to rare events) both depend on stimulation intensity and
on the difference between the stimulation sources.

Transiently Responding Networks: Simulation Results
A network of leaky integrate-and-fire (LIF) elements was

simulated in order to demonstrate the validity of our
approach and averaging procedures. It is not meant to
provide a comprehensive simulation study of the phenomena.
The simulation parameters and setup are detailed in
Materials and Methods. Note that all excitatory and inhib-
itory parameters, as well as the distribution of synapses for all
neurons are equal so that the network realizes the sym-
metrical case in Equation 11. Computing E and I for various
values of �xE ; �xI verified that they are indeed similar (data not
shown).

Figure 5 depicts the network dynamics for single site
stimulation. Panel A shows both excitatory and inhibitory
activity during a single transient response. Panel B shows the
decrease in normalized network responsiveness towards the
steady-state level. Panels C and D illustrate the dynamics of
the excitatory and inhibitory depression variables, respec-
tively, and compares their values with those predicted by the
averaged equations.

Single site stimulation was repeated for various stimulation
frequencies, as shown in Figure 6. Average steady-state values
of �x�E ; �x

�
I and their predicted values �x�pE ; �x

�p
I , calculated from the

network’s activity using Equation 7, were computed so that
the averaging procedure is validated for the entire frequency
range (A and B). These values, presented in the phase plane,
follow closely the fixed-point loci for q¼ 1 depicted in Figure
2 (C). The experimental phenomenon of reduced responsive-
ness is reconstructed in D.

Figure 7 depicts the dynamics for a dual site stimulation
paradigm. Stimuli were delivered either to site 1 (frequent) or
to site 2 (rare) every 2 s (fstim¼ 0.5 s�1), and the ratio between
the stimulation intervals of the two sites was set to be 4:1,

which corresponds to b ¼ 0.2. Panel A depicts the network’s
dynamics for both sites, while panels B, C and D display the
state variable dynamics for site 1 and site 2 local excitatory
populations and for the global inhibitory population respec-
tively.
Performing dual-site stimulation on different networks

with different values of fstim and b allowed us to measure the
selectivity and amplification variables, as defined in Equa-
tions 13 and 14 (Figure 8). The fixed point loci, as predicted
in Figure 2, were illustrated by computing the average state
variables.

Experimental Results
To finally corroborate our model, we performed adapta-

tion experiments in networks of cortical neurons cultured in
vitro. The results are presented in Figure 9. Panel A shows
frequency dependent adaptation results from 19 networks,
stimulated at a single site at various frequencies. Each marker
represents the steady-state responsiveness (i.e., the total
number of spikes observed in the network within 150 ms
after a stimulus), normalized to the initial response of each
network. A marked decline in responsiveness appears for
rates larger than 0.1 s�1, while the networks fail to respond
steadily when stimulated above 0.5 s�1.
Next, a network was stimulated at two sites (;1 mm apart)

following the paradigm in [14], using different stimulation
rates (1/3 s�1 and 1/5 s�1) and ratios (1:1, 1:4 and 1:9, b ¼ 0.5,
0.2 and 0.1, respectively). Thus we obtained 6 measurements
from which we computed selectivity (Figure 9B) and
amplification (Figure 9C) for each scenario according to
Equations 13 and 14. Comparing these results with those
presented in Figure 4 and Figure 8 we can conclude that for
high stimulation ratios (b ¼ 0.1), both selectivity and
amplification exhibit the expected frequency dependence.
At lower ratios, however, selectivity decreases as frequency is
increased, which means that the site chosen for rare
stimulation undergoes more pronounced depression. In
terms of our model, this means that when stimulation
frequencies are identical b . 0.5 for this choice of
stimulation sites.

A Network Model with Tonic Activity
So far we have applied our approach to systems with

transient, phasic response to external stimulation and a low
level of tonic activity. To demonstrate our approach in
another, qualitatively different system, we now consider a
Wilson-Cowan [19] type system, consisting of excitatory and
inhibitory components,

s1
de
dt
¼ �eþ ½Fe þ weee� weii�þ

s2
di
dt
¼ �iþ ½Fi þ wiee� wiii�þ;

ð15Þ

where s1 and s2 are the characteristic time constants, e and i
the activities and Fe and Fi the feedforward stimulation
intensities of the excitatory and inhibitory components. The
components’ interactions are mediated by the non-negative
synaptic weights wij. The ‘‘þ’’ subscripts indicate that negative
terms are clipped to zero. Such schematic systems have been
used in many theoretical studies (see, for example, [20]
section 7.5).
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To apply our model for selective adaptation to this system,
we assume that the external drive to the inhibitory
population is negligible (compared with the excitatory and
recurrent drive to this population), namely Fi ffi 0. The system
with this additional assumption is illustrated in Figure 10.

Now let us assume that the synaptic efficacies are subject to
depression processes,

wee ¼ xEWee ; wei ¼ xIWei ; wie ¼ xEWie ; wii ¼ xIWii; ð16Þ

whereWij are the maximal synaptic efficacies and xE and xI are
the relative resource availabilities, which follow the dynamics
of Equation 2. We also assume that the neural activity time
constants s1 and s2 are much shorter than the synaptic

availability time constants sE and sI, so that activities reach
their steady-state values instantaneously. Defining

EðxE ; xIÞ,
1þ xIWii

1þ xExIðWeiWie �WiiWeeÞ þ xIWii � xEWee

IðxE ; xIÞ,
xEWie

1þ xExIðWeiWie �WiiWeeÞ þ xIWii � xEWee
;

the steady-state solution of Equation 15 is given by

~E ¼ EðxE ; xIÞFe
~I ¼ IðxE ; xIÞFe ¼

xEWie

1þ xIWii

~E:
ð17Þ

As can be seen the steady-state activities have a multi-

Figure 5. Single Site Stimulation in a Simulated Network

The simulation model consisted of a network of leaky integrate and fire neurons with depressing synapses, as described in Materials and Methods.
(A) The network is stimulated every 3 s to produce a transient response of both the inhibitory and the excitatory subnetworks.
(B) The network adapts to the stimulus and the total responsiveness (as defined in Equation 3) declines.
(C, D) Comparing the slow depression variables, averaged over the populations, xE and xI, and the value predicted from the network’s activity, xp

E and xp
I

(using Equation 20), where ~E and ~I are the activities obtained from the simulation), validates our assumptions for averaging over neural ensembles.
Furthermore, the time-averaged variables �xE ; �xI and their predicted value �xp

E ; �x
p
I (calculated from the averaged network’s activity using Equation 7),

where E and I are the integrated activity obtained from the simulation) converge to a similar steady-state value, which validates our assumptions for
averaging over the stimulation period.
doi:10.1371/journal.pcbi.0040029.g005
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plicative dependency on external stimulation intensity, as
required by our model. Local stability of the solution given in
Equation 17, ensuring convergence to a fixed point, is
guaranteed for all xE, xI if Wee , 1 (see Materials and
Methods). Unstable solutions, where the system develops
oscillatory activity, will not be discussed here.

Next we check the system’s compliance with the assump-
tions in Equations 4–6. Assumption 4, namely the explicit
dependence of the inhibitory activity on the excitatory
activity is readily seen in Equation 17. Note that this
dependence differs from the proportionality assumed in
Equation 8, in that the ratio I/E (i.e., the function g(xE, xI) in

Equation 4) is no longer constant. This difference between
the two systems changes the phase plane structure but not the
qualitative behavior, as discussed below. Differentiating with
respect to the excitatory resource availability we have

@E
@xE
¼ Wee � ðWeiWie �WeeWiiÞxI

1þWiixI
E2;

and therefore the monotonicity condition in Equation 5 is
satisfied in this system when

Wee.
WeiWie

1þWii
:

Figure 6. Frequency-Dependent Adaptation in Simulated Networks

A total of 10 different networks were stimulated repeatedly at various frequencies (1/30 s�1, 1/20 s�1, 1/15 s�1, 1/10 s�1, 1/7 s�1, 1/5 s�1, 1/4 s�1, 1/3 s�1,
1/2 s�1), and the results were averaged.
(A, B) Steady-state values of the state variables �x�E ; �x

�
I and their predicted values �x�p

E ; �x
�p
I (see Figure 5) were computed from the last 8 cycles of each

simulation.
(C) The phase plane fixed points are indeed located close to the diagonal of q¼ 1 , as expected.
(D) The last 8 responses from all the networks were averaged to produce the steady-state responsiveness of the system.
doi:10.1371/journal.pcbi.0040029.g006
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Differentiating with respect to the inhibitory resource
availability we have

@E
@xI
¼ � xEWeiWie

ð1þ xIWiiÞ
E2 � 0:

And therefore the condition in Equation 6 is indeed
satisfied for all xE, xI.

The fixed points of the system are located on curves in the
phase plane,

x�E ¼ 1� ð1þWiix�I Þð1� x�I Þ
x�I

q where q,
UEsEFE
WieUIsIFI

: ð18Þ

Fi is the stimulation intensity affecting the inhibitory
population indirectly through the excitatory drive to it, and
may differ from Fe when two stimulation sources are present,
as explained below. The curves, presented for different values
of q in Figure 11, differ from those in the transient response
system due to the different dependence described above.
However, as x�E and x�I approach unity this difference vanishes.
Moreover, in what follows we demonstrate that the qualitative
nature of selective adaptation is maintained in this system.
Equation 18 can be simplified assumingWii� 1, in which case
we get

x�I ¼
q

1þ q� x�E
ð19Þ

with q defined as in Equation 18. In fact, the curves in

Equations 18 and 19 are similar even when Wii approaches
unity.

Selective Adaptation in Networks with Tonic Activity
We now consider the two site stimulation scenario for this

system. The model for this system is presented in Figure 12,
resembling our conceptual model in Figure 1. The inhibitory
population is global and therefore is driven by both
excitatory populations. In the tonic system, however, instead
of rare and frequent stimulation sites we have ‘‘strong’’ and
‘‘weak’’ sites. The responses at these two sites are

qweak ¼
UEsEFweak
UIsIWieFstim

¼ q0b

qstr ¼
UEsEFstr

UIsIWieFstim
¼ q0ð1� bÞ

q0 ¼
UEsE

UIsIWie
; Fstim ¼ Fweak þ Fstr; b ¼ Fweak

Fstim
¼ 1

1þ Fweak=Fweak

:

We define selectivity and amplification in this system using
Equations 3, 13, and 14. The dependence of these measures
on total and relative stimulation intensities, Fstim and b, is
presented in Figure 12. The figures are sketched in
logarithmic scale so two regions of behavior appear. At low
intensity of stimulation (low Fstim), where both sites are highly
responsive, selectivity is monotonically increasing with input
intensity. At high intensity of stimulation (high Fstim) the
system’s responsiveness becomes very low and therefore

Figure 7. Dual Site Stimulation Dynamics in Simulated Networks

(A) Network response to rare (circles) and frequent (squares) stimulation. Stimulation ratio was 4:1 (b¼ 0.2) at 0.5 s�1.
(B) The average excitatory synaptic availability at the frequent site.
(C) The average excitatory synaptic availability at the rare site.
(D) The average synaptic availability of the global inhibitory population.
doi:10.1371/journal.pcbi.0040029.g007
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selectivity and amplification decline. As mentioned above,
such behavior was also observed outside the physiological
bounds in the transiently responding network model (data
not shown).

Discussion

In this work we have formalized a model describing the
various adaptation phenomena in neural populations. In
many studies, adaptation was modeled in terms of cumulative
effects of stimulation on either the exciting or the restoring
resources of the system. These changes in resource availability

lead to either a decrease or an increase in the system’s
responsiveness. When spatial segregation between the stim-
ulation pathways is introduced, the effect of stimulation on
the resources is local. Such a system will exhibit selective
adaptation, the ability to adapt to one source while
preserving its sensitivity to another. Far less trivial is the
phenomenon we term ‘‘amplification,’’ which is an increased
sensitivity to rare stimulation on the background of frequent
stimulation. This phenomenon characterizes the MMN
evoked potential and was also observed in vitro.
The ability of a network to perform selective adaptation

has obvious functional implications. Applied as a filter in a

Figure 8. Selective Adaptation in Simulated Networks

Results are averaged from 10 different random networks.
(A,B) Dependence of selectivity (as defined in Equation 13) and amplification (as defined in Equation 14) on stimulation frequencies and relative
intensity. For frequent-rare ratios greater than 1, selectivity increases with stimulation frequency. However, amplifcation (increased sensitivity to the
rare) is pronounced only for high ratios. Both results agree with the theoretical predictions presented in Figure 4.
(C) Dependence of the fixed point loci for the frequent (squares) and rare (circles) sites on frequencies and ratios. For a 1:1 ratio (b¼ 0.5), both sites are
identically stimulated and so converge to the same fixed point in the phase plane. As b is decreased, qrare decreases while qfreq increases. The curves
were fitted according to Equation 9, values of q for each curve were found by trial and error: for b¼ 0.1, qrare¼ 0.2, and qfreq¼ 1.45 (solid lines); for b¼
0.2, qrare¼ 0.35 and qfreq¼ 1.1 (dashed lines); for b¼ 0.5, qrare¼qfreq¼ 0.75 (dotted line). Using the identity q0¼qrareþqfreq we can estimate that for this
system q0 ’ 1.5.
doi:10.1371/journal.pcbi.0040029.g008
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sensory information pathway, for instance, this system can
implement novelty detection, enhancing the propagation of
rare sensory events while attenuating frequent events.
Selective adaptation is one of the few phenomena observed
in neural networks developing in vitro that has a well
understood, non-trivial biological function. As such, it can
serve as a benchmark to assess the functional complexity of
such networks.

We developed a simple model describing the effect of
external stimulation on each component of the system. This
model was implemented on two types of neural systems, the
first characterized by a transient response and the second by
a tonic response. The model suggests that non-trivial
adaptation phenomena can arise in a system with a relatively
simple structure. The key requirement from the model is that

the restoring resource (i.e., the inhibitory component) is
affected globally from all stimulation pathways.
To test our model, we observed the dependence of both the

system’s selectivity and amplification on stimulation intensity,
and on the ratio between intensities at two stimulation sites.
For the transient responses network, the model predicts that
within the physiological bounds (i) selectivity increases as
stimulation frequency is increased, (ii) this sensitivity is more
pronounced as the ratio between frequencies of rare and
frequent stimuli increases and (iii) amplification is also
frequency dependent, but can only occur at high ratios, i.e.,
when the stimulation rates are very different. These pre-
dictions were compared with computer simulations and with
data from recordings in neural cultures developing in vitro.
In addition to predicting novel phenomena, our mathe-

Figure 9. Experimental Results from Neural Cultures Developing In Vitro

(A) Frequency dependent adaptation. A total of 19 networks were stimulated at different frequencies (0.02–0.5 s�1). At each frequency the networks
were stimulated for 900 s, long enough to reach steady state. Responsiveness is defined as the mean number of spikes detected in a network within 150
ms after a stimulus. Steady-state responsiveness was computed by averaging over the last 6 responses following repetitive stimulation at a given
frequency fstim. The result was normalized to the networks’ initial responsiveness to produce R as defined in Equation 3. Error bars mark 6SEM.
(B, C) Dual site stimulation. Stimuli were applied at two stimulation rates (once every 5 s and once every 3 s) and in three patterns: 1:4, 1:9, and 1:1 (sites
A and B, respectively; i.e., b ¼ 0.2, 0.1, and 0.5, respectively) in a paradigm similar to that described in [14] (total of 6 different stimulation epochs).
Responsiveness is defined as the total number of spikes in the network within 150 ms after a stimulus. The network was allowed 15 min of recovery
between epochs.
(B) Dependence of selectivity (as defined in Equation 13).
(C) Amplification (as defined in Equation 14) on stimulation frequencies and ratios. Steady-state responsiveness was computed by averaging over all
responses to a site in the last half of each epoch. These were normalized to the un-adapted response, defined as the maximal response in the first 30 s
of each epoch (this definition was used to overcome rapid transients in the initial response). Error bars in (B) mark Smin and Smax (see Materials and
Methods, Equation 28). Error bars in (C) mark 6SEM (normalized to the un-adapted response).
doi:10.1371/journal.pcbi.0040029.g009
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matical formalization provides further insight into adapta-
tion processes. One clear benefit of a mathematical formal-
ization involves the reduction of several variables to a single
variable, which suffices to fully describe the behavior of
interest, akin to an order parameter in physics. For instance,
it has been reported in several studies that synaptic
depression parameters differ between excitatory and inhib-
itory neurons [21]. This asymmetry in adaptive behavior
formed the basis of a recent theoretical study [22]. According
to our model, all the stimuli-independent physiological
constants are reduced to a single ratio q0 that determines
the system’s steady-state behavior. Finally, a distinct benefit of
our formal description is the ability it provides to generalize
from our specific experimental system to new systems,
sharing its basic characteristics, such as the tonic activity
system presented in this paper.

As mentioned above, one of our main assumptions is that
the inhibitory population serves as a global component in the
system. We implemented this assumption in our model by
separating the excitatory population into two segregated
networks, both connected to a common inhibitory popula-
tion. This was also the design we used for the leaky integrate-
and-fire neural network simulation. Admittedly, this struc-
ture is a limiting case for our assumptions on the sub-
networks’ topologies, as one might expect that a more
realistic network will include some interactions between the
two excitatory sites and some degree of locality in the
inhibitory one. In such a network the stimulation sites are not
as distinct and therefore are affected more similarly by the
stimuli. In other words, b will be closer to 0.5, where the
response to the two inputs is identical. In that sense, b, which
in our ‘‘extremist’’ model relates only to the difference

between the inputs, may also represent the differences in
component structure.
Another key assumption used in the development of our

model is that the system has separable time scales; a fast time
scale governing short term transients (e.g., membrane voltage,
fast depression and facilitation) and a slow time scale (e.g.,
slow synaptic depression). This separation enabled us to
extract the ‘‘slow evolution’’ of the system’s state variables,
either by using averaging methods (as was done in the
transiently responding network example) or by assuming
instantaneous response (as was done in the tonicly firing
network example). One must note that all information
conveyed in the fast dynamics of the system (e.g., latency,
pattern of firing, etc.) is ignored using this technique.
In this work we have dealt with systems receiving input from

one or two sources. An appealing possibility for future work is
to broaden the model to systems receiving input from a
continuum of input sources. For instance, an auditory cortical
column responds to a range of stimulation frequencies. We
hypothesize that the correlate of selective adaptation in such
systems, the so-called ‘‘repulsive shifts’’ in their tuning curves
(e.g., [8,22]), may arise from differences in the connectivity of
the inhibitory and excitatory populations composing these
systems. A model of such systems can also include more
realistic connectivity schemes, as discussed above.
It is noteworthy that an essential component of our model

is the globality of the inhibitory network, owing mostly to the
electrical interconnections of this population via gap
junctions (see [16–18]). This offers a compelling role to the
abundance of connexins in the inhibitory neurons of the
neocortex (e.g., [23]). A straightforward prediction of this

Figure 10. Model for Network with Tonic Activity

The model consists of two coupled populations, excitatory and
inhibitory. We assume the inhibitory population is not driven directly
by external stimulation. Each population responds via a threshold linear
response function, as described in Equation 15.
doi:10.1371/journal.pcbi.0040029.g010

Figure 11. Fixed Point Loci for Networks with Tonic Activity

Geometrical loci of fixed points for the system with activity functions
described in Equation 17. The locus depends on the parameter ratio q
following Equation 18. Note the difference between the phase plane
structure in this system and the phase plane presented in Figure 2. The
difference is due to the different relationships between inhibitory and
excitatory activity (compare Equations 17 and 8). (Wii ¼ 0.3).
doi:10.1371/journal.pcbi.0040029.g011
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hypothesis, then, is the abolishment of amplification in the
absence of functional gap-junctions. An experiment verifying
this prediction is yet to be performed.

To summarize, in this contribution we have developed a
methodology that enabled us to reduce complex, heteroge-
neous networks to a minimal set of state equations. This
procedure was implemented in order to investigate adapta-
tion processes, which are vital features of biological systems
in general, and neural networks in particular.

Materials and Methods

Derivation of state equations for transiently responding neural
networks. We consider a network composed of excitatory and
inhibitory neurons with a very low level of intrinsic (spontaneous)
activity. The network responds to a short (less than 1 ms) external
stimulus in a reverberating episode of increased activity (several tens
of ms), which we will refer to as the transient response (TR,
sometimes referred to as ‘‘Network Spikes’’ or ‘‘Bursts’’; see [24–
27]). Unlike a stereotypical action potential of single neurons,
however, this response is graded, namely the magnitude of each
response varies and depends on the current state of the system. When
stimulated repeatedly, the system’s response was shown to decrease
monotonically with stimulation frequency [14,15,28]. It was suggested
that this decrease depends heavily on a decline in synaptic availability
[29]. Based on these observations, we formulate below a model in
which synaptic resource availabilities play the role of state variables.

We consider two populations of synapses, where each synapse
(inhibitory or excitatory) is subject to short term plasticity modeled
by a differential equation [30]

dxj
dt
¼

1� xj
sj
� Ujxj

X
tsp

dðt� tspÞ;

where xj represents the relative availability of release-ready synaptic
vesicles, ftspg denotes the times of firing by the pre-synaptic neuron;

synaptic parameters are sj (recovery time constant) and Uj (the
fraction of vesicles released for each pre-synaptic action potential).
Between firing times tn and tnþ1, the synapse recovers exponentially
towards 1,

xjðtÞ ¼ ðxjðtnÞ � 1Þexp � t� tn
sj

� �
þ 1; tn � t, tnþ1;

while upon the arrival of a pre-synaptic spike at time tn, the synapse
utilizes a fraction of its resource (i.e., releases a fraction of the
available vesicles)

xjðtþn Þ ¼ ð1� UjÞxjðt�n Þ;

where t�n =t
þ
n denote the time immediately before/after the n-th spike.

We note that this equation guarantees that xj remains in the range
0–1.

Typically in mean field analysis of neural ensembles, one assumes
that individual neurons fire as non-homogeneous Poisson processes
and are sparsely connected to each other. Since the present analysis
focuses on synaptic ensembles rather than neural ensembles, and
since all synapses sharing the same pre-synaptic neuron receive the
same input, these assumptions do not hold. However, if we assume
that the total number of synapses in the network is much larger than
the number of synapses per neuron and that connectivity is
approximately uniform, we can neglect these inter-synaptic correla-
tions (similarly to [30]). We can then average over the ensemble of
synapses to get the mean population behavior

dxE
dt
¼ 1� xE

sE
� UExE ~EðtÞ ;

dxI
dt
¼ 1� xI

sI
� UIxI ~IðtÞ; ð20Þ

where xE, xI are the average available synaptic resources for the
excitatory and inhibitory populations, respectively. The average
activity rates in these populations, ~E and ~I , depend on the available
synaptic resources but vary with time as a result of ‘‘fast’’ processes
and external stimulation.

Now let us assume that each population (excitatory and inhibitory)
is stimulated periodically with period TE or TI and responds to each
stimulus with a short transient response (TR). Since we are interested

Figure 12. Selective Adaptation in Networks with Tonic Activity

(A) schematic diagram of the dual site stimulation scheme.
(B, C) Dependence of selectivity and amplification on total stimulation intensity Fstim (logarithmic scale) and relative intensity b. At low intensities
response at both sites is high and behavior is similar to the one described for networks with transient responses (see Figure 4). At high intesities
responsiveness is low and selectivity and amplification deteriorate. (Wee ¼ 0.9; Wei ¼ 0.75; Wie ¼ 0.75; Wii ¼ 0.3).
doi:10.1371/journal.pcbi.0040029.g012
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in the cumulative effect of stimulation on the network, we average
each equation over a single period of stimulation

�xE,
1
TE

Z
TE

xEðtÞdt ; �xI,
1
TI

Z
TI

xI ðtÞdt:

We can take the state variables to be relatively constant during a
single response, which simplifies the integration

d�xE
dt
¼ 1� �xE

sE
� UE�xE

1
TE

Z
TE

~EðtÞdt ;
d�xI
dt
¼ 1� �xI

sI
� UI�xI

1
TI

Z
TI

~IðtÞdt:

ð21Þ

When the duration of the transient response TTR is much shorter
than the stimulation periods TE and TI, the integration is independ-
ent of these periods. Furthermore, the outcome of this integration
depends only on the synaptic availabilities at the stimulus onset. We
define the populations’ integrated ‘‘activity functions’’ as

Eð�xE ; �xI Þ,
Z
TTR

~EðtÞdt ; Ið�xE ; �xI Þ,
Z
TTR

~IðtÞdt:

Substituting these definitions in Equation 21 we obtain the
averaged state equations

d�xE
dt
¼ 1� �xE

sE
� UEfE�xEEð�xE ; �xI Þ ;

d�xI
dt
¼ 1� �xI

sI
� UI fI�xI Ið�xE ; �xI Þ; ð22Þ

where fE¼1/TE and fI¼1/TI are the stimulation rates.
Fixed point location. The fixed points of the averaged system

(Equation 22) are located where both derivatives vanish, namely

1� �x�E
sE

¼ UEfE�x�EEð�x�E ; �x�I Þ ¼ 0 ;
1� �x�I

sI
� UI fI�x�I Ið�x�E ; �x�I Þ ¼ 0: ð23Þ

Dividing the first equation by the second one we get

1� �x�E
1� �x�I

¼ UEsEfE�x�EEð�x�E ; �x�I Þ
UIsI fI�x�I Ið�x�E ; �x�I Þ

:

We can reasonably assume that

Ið�xE ; �xI Þ ¼ gð�xE ; �xI ÞEð�xE ; �xI Þ; ð24Þ

where g is some function of the resource availabilities (this relation-
ship is plausible when the inhibitory population is not driven by
external sources, e.g., in the tonic system discussed above).

Let us consider the simple case where Ið�xE ; �xI Þ ¼ aEð�xE ; �xI Þ with a
. 0. The fixed point equation under this assumption reduces to

1� �x�E
1� �x�I

¼ q
�x�E
�x�I

�x�I ¼
q�x�E

�x�Eðq� 1Þ þ 1
; q ¼ UEsEfE

UIsI fIa
:

Therefore, the parameter ratio determines the geometric locus
(curve) of the system’s fixed points. The exact location of the fixed
point on this curve is governed by the specific parameter values and
activity functions E, I.

Stability analysis. The asymptotic stability of the system’s fixed
point is determined by the eigen values of the Jacobian matrix at
these points

Jð�x�E ; �x�I Þ ¼
@�xE _�x E @�xI _�xE

@�xE _�xI @�xI _�xI

 !j
ð�x�E ; �x�i Þ

¼ �1=sE � UEfEðE þ �xE@�xE EÞ �UEfE�xE@�xE E
�UI fI�xI@�xE I �1=sI � UI fI ðI þ �xI@�xI IÞ

� �j
ð�x�E ; �x�i Þ

;

where @x denotes partial derivation with respect to x. Necessary and
sufficient conditions for stability are (see [31], section 5.2):

i: T ¼ tracefJg, 0;
ii: D ¼ detfJg.0:

ð25Þ

We consider the simple case of a symmetric system in which
UE ¼ UI ; sE ¼ sI ; fE ¼ fI ;E [ I :

In this system, q¼ 1 so that the fixed points are at �x�E ¼ �x�I ¼ �x�.
Computing the stability criteria in Equation 25 for this system

yields

ð@�xE E þ @�xI EÞjð�x� ; �x�Þ.� Eð�x�; �x�Þ
�x�ð1� �x�Þ : ð26Þ

We note that the activity function’s directional derivative along the
diagonal �x�E ¼ �x�I ¼ �x� (i.e., the derivative along the fixed point loci) is

dE
d
�
l
¼ rE 	 lj

�
lj ¼

@�xE E þ @�xI Effiffiffi
2
p

�
l ¼ ð1; 1Þ:

Thus, the stability criterion in Equation 26 can be rewritten

dE
d
�
l
jð�x� ; �x�Þ.� Eð�x�; �x�Þffiffiffi

2
p

�x�ð1� �x�Þ
: ð27Þ

Specifically, if the system’s activity depends more strongly on the
availability of excitation than on that of inhibition, then its activity
increases along the diagonal,

dE
d
�
l
jð�x� ; �x�Þ � 0:

In this case response is non-increasing with stimulation frequency,
Equation 27 is always satisfied and the fixed point is stable. This is
easily explained intuitively as a negative feedback arising between the
state variables and the activity.

Stability analysis of the tonic system. Since we assume the neural
activity time constants, s1 and s2, are much shorter than the synaptic
availability time constants sE and sI, we can analyze the stability of
Equation 15 assuming xE and xI are fixed, since they change little,
while e and i change. The Jacobian matrix derived from the system in
Equation 15 is

J ¼ @ee @ie
@ei iii

� �
¼

xEWee � 1
s1

� xIWei

s1

xEWie

s2
� xIWii þ 1

s2

0
BBB@

1
CCCA

(see stability analysis of ð�xE ; �xI Þ, above). The trace of this matrix is
negative when

xEWee ,
s1
s2
ðxIWii þ 1Þ þ 1;

which is fulfilled for all (xE, xI) when Wee , s1
s2
þ 1. The determinant is

positive under the condition

xEWee , xExI ðWieWei �WeeWiiÞ þ xIWii þ 1;

which is fulfilled for all (xE, xI) when Wee , 1. We conclude that both
stability conditions are met when Wee , 1.

Simulation. The simulation included a network of leaky integrate
and fire equations

dvjðtÞ
dt
¼ �

vjðtÞ
sm
þ
X
i

wjiðtÞ
X
f

dðt� tðf Þi � DjiÞ þ IjðtÞ þ njðtÞ

if vjðtÞ ¼ vth set tðf Þj ¼ t and vjðtÞ ¼ vr:

Each synapse is characterized by its efficacy wji and delay Dji. Two
synaptic depression processes were modeled, based on [21] and [32]

dDjðtÞ
dt
¼

1� DjðtÞ
sDj

� UDjDjðtÞ
X
f

dðt� tðf Þj Þ

dxjðtÞ
dt
¼

1� xjðtÞ
sxj

� UxjDjðtÞ
X
f

dðt� tðf Þj Þ;

where Dj and xj are the fast and slow synaptic depression variables,
respectively. The synaptic efficacy of each neuron is determined by
the equation

wjiðtÞ ¼ WiDiðtÞxiðtÞ for all j:

In the single site stimulation paradigm, a network of 100 excitatory
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neurons and 40 inhibitory neurons was simulated, each driving 12
synapses (connectivity was uniformly random). In the dual site
stimulation paradigm, 200 excitatory neurons were separated into
two segregated populations, both connected to the ‘‘global’’
inhibitory population randomly.

Stimuli were applied periodically by injecting a current pulse
randomly into 10% of the stimulated neural populations

IjðtÞ ¼ I
X

n¼0;1;2:::
dðt� nTjÞ;

where Tj is the stimulation period.
Each neuron is also subject to random white Gaussian noise

njðtÞ;N ð0;rNÞ:

Table 1 summarizes the values used for each parameter mentioned
in the above description. These were chosen so that the system’s time-
scales resemble those in [14]. In particular, the system is non-
responsive to stimulation beyond 0.5 s�1, and adaptation is significant
beyond 0.1 s�1.

Cultured networks. Cortical neurons were obtained from newborn
rats within 24 h after birth, following standard procedures as
described previously [25,33]. The cortical tissue was enzymatically
digested and mechanically dissociated. The neurons were plated

directly onto substrate-integrated multi-electrode array (MEA) dishes
[34]. The cultures were bathed in MEM supplemented with heat
inactivated horse serum (5%), glutamine (0.5 mM), glucose (20 mM),
and gentamycin (10 lg/ml) and maintained in an atmosphere of 37 8C,
5% CO2 and 95% air in a tissue culture incubator as well as during
the recording phases. Experiments were performed during the third
week after plating, thus allowing functional and structural matura-
tion of the neurons [33].

Electrophysiology. We used arrays of 60 Ti/Au/TiN electrodes, 30
lm in diameter and spaced 200 lm from each other (Multi-
ChannelSystems, Reutlingen, Germany). The insulation layer (silicone
nitride) was pretreated with poly-D-lysine. A commercial 60-channel
amplifier (B-MEA-1060, MultiChannelSystems) with frequency limits
of 1–5,000 s�1 and a gain of 1,0243 was used. The B-MEA-1060 was
connected to MCPPlus variable gain filter amplifiers (Alpha-Omega,
Nazareth, Israel) for further amplification. Stimulation through the
MEA was performed using a dedicated eight-channel stimulus
generator (MultiChannelSystems). Data were digitized using two,
parallel 5200a/526 analog-to-digital boards (Microstar Laboratories).
Each channel was sampled at a frequency of 24 kilosample/s and
prepared for analysis using the AlphaMap interface (Alpha-Omega).
Thresholds (8X rms units, typically in the range of 10–20 lV) were
defined separately for each of the recording channels before the
beginning of the experiment. Before each experiment and between
stimulation epochs, the networks were monitored for at least 15 min
to ensure stability of the activity and to allow recovery.

Selectivity error bounds were defined as

Smin ¼
R�rare ��SEMrare

R�f req þ�SEMf req
; Smax ¼

R�rare ��SEMrare

R�f req þ�SEMf req
; ð28Þ

SEM�is the standard error of mean responsiveness, normalized to the
un-adapted response.
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