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A B S T R A C T

Background: Internet gaming disorder (IGD) is commonly comorbid with attention-deficit/hyperactivity dis-
order (ADHD). Although the addiction is more severe when comorbid with ADHD, little is known about the
neural correlates of the association. This study aimed to identify whether an ADHD-related structural brain
network exists in IGD patients with comorbid ADHD (IGDADHD+) by comparing them with those without co-
morbid ADHD (IGDADHD-) and elucidating how the sub-network is associated with addiction severity.
Methods: Brain structural networks were constructed based on streamline tractography with diffusion tensor
imaging in a cohort of 46 male IGDADHD+ patients, 48 male IGDADHD− patients, and 34 healthy controls (HC).
We used network-based statistics (NBS) to identify the sub-network differences between the two IGD groups.
Furthermore, the edges in the sub-network that significantly contributed to explaining the Young Internet
Addiction Scale (YIAS) score were delineated using partial least square (PLS) regression analyses in IGD patients.
Results: The YIAS score was higher in the IGDADHD+ group than in the IGDADHD- group and was correlated with
the Korean Dupaul's ADHD scale score (r=0.42, p <0.01). The NBS detected a sub-network with stronger
connectivity in the IGDADHD+ group than in the IGDADHD−group. The PLS regression model showed that the sub-
network is associated with the YIAS score in the IGDADHD+ group (q2= 0.019). Edges connecting the left pre-
and postcentral gyri, bilateral superior frontal gyri, medial orbital parts, and left fusiform to the inferior tem-
poral gyrus were most important predictors in the regression model.
Conclusion: Our results suggest that an aberrant increase in some structural connections within circuits related to
inhibitory function or sensory integration can indicate how comorbid ADHD is associated with addiction severity
in IGD.

1. Introduction

Internet gaming disorder (IGD), defined as the pathological use of
internet gaming, is a rapidly emerging addictive disorder because of the
increasing accessibility and use of digital technologies (Karaca et al.,
2017, Chou et al., 2005). IGD has been included in section III of the
Diagnostic and Statistical Manual of Mental Disorders, fifth edition
(DSM-5), as a condition that requires further studies. IGD has been
commonly associated with attention deficit/hyperactivity disorder
(ADHD) (Association, 2013, Carli et al., 2013). ADHD and IGD share
some core features such as impulsivity, seeking immediate reward,

motivation deficit, and hostility (Yen et al., 2017–Ko et al., 2012).
Moreover, significant associations have been found between the level of
ADHD symptoms and the severity of internet addiction in children (Yoo
et al., 2004). Previous studies indicated that the features of ADHD are
not only a significant predictor of comorbidity but also a mediating
factor for IGD (Yen et al., 2017). Thus, to prevent the possible med-
iating effect of ADHD on the severity of IGD, the underlying neuro-
biological mechanisms associated with the comorbidity itself and its
contribution to the aggravation of IGD severity should be investigated
(Ko et al., 2012).

In addition to the overlapping core symptoms, previous
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neuroimaging studies on IGD or ADHD have suggested the common
involvement of some neural circuits. In IGD, altered structural con-
nectivity in diffusion tensor imaging (DTI) studies revealed a broadly
increased fractional anisotropy (FA) in white matter (WM) tracts within
the forceps minor, anterior thalamic radiation, inferior fronto-occipital
fasciculus, and inferior longitudinal fasciculus, which are the tracts
linking the reward circuitry and the sensory and motor control systems
(Dong et al., 2012–Jeong et al., 2016). ADHD is increasingly viewed as
a disorder with disrupted wiring of large-scale brain networks during
the neurodevelopmental process (Konrad and Eickhoff, 2010–Whelan
et al., 2012). A recent meta-analysis found areas of increased FA in the
cingulum, posterior corpus callosum, and left inferior fronto-occipital
fasciculus, and decreased FA in the anterior cingulate, right orbito-
frontal area, and left orbitofrontal area (Aoki et al., 2018). Network-
based graph theoretical analysis also discovered that patients with both
disease entities share a reduced global efficiency and differences in
connectivity compared with healthy controls (Wen and Hsieh, 2016,
Zhai et al., 2017, Cao et al., 2013).

In sum, comorbid ADHD leads to increase in the severity of beha-
vioral addiction. Addictive behavior also leads to change in their brain
and it may promote the alteration of structural network due to ADHD.
Although previous neuroimaging studies have discovered sub-network
alterations in ADHD (Hong et al., 2014, Beare et al., 2017, Cao et al.,
2013) and the involved areas in ADHD overlap with the areas affected
by IGD, no neuroimaging study has addressed the neural correlates
regarding the ADHD-comorbidity and their association with the ad-
diction severity.

To investigate, we hypothesized that 1) ADHD comorbidity-related
network alteration may exist as a sub-network in the IGD patients with
comorbid ADHD (IGDADHD+) when compared to those without co-
morbid ADHD (IGDADHD-) and 2) the delineated sub-network, named
‘ADHD-related’ network in the present study, would include edges that
can explain variance of the addiction severity in IGD patient groups. In
detail, the network-based statistic (NBS) method (Zalesky et al., 2010)
was used to delineate the ‘ADHD-related’ network which is a cluster of
edges that are spatially interconnected. Then, PLS regression analyses
were performed to investigate the second hypothesis and determine
which edges are important contributors. Specifically, we expect to de-
termine whether the altered connections in the fronto-striatal area may
also relate to the severity of addiction, since the two conditions share a
common pathophysiology of reward processing and cue suppression
(Frodl, 2010). Another candidate besides the fronto-striatal circuit is
the sensory motor information processing area, because game-playing
involves the cooperation of multiple systems, aberrant connections in
these areas in ADHD may make patients more prone to develop internet
addiction.

2. Materials and methods

2.1. Participants

Individuals with problematic online game play who visited the On-
line Game Clinic Center at the Chung Ang University Hospital were
recruited. The study population consisted of 94 young male, right-
handed IGD patients of whom 46 had IGDADHD+ and 48 had IGDADHD−.
In addition, 34 game time-matched healthy controls were recruited for
validation purposes to determine if the sub-network is related to YIAS
and K-ARS-P scores in healthy control group (see supplementary results
section). Both IGDADHD+ and IGDADHD−groups were assessed for pre-
sence of ADHD and other psychiatric diagnoses using the Korean Kiddie
Schedule for Affective Disorders and Schizophrenia – Present and
Lifetime version (Kim et al., 2004). A child psychiatrist (D.H.H.) in-
terviewed all adolescents to confirm the diagnosis of comorbidities (Ha
et al., 2006). All participants completed the Young Internet Addiction
Scale (YIAS) (Young, 1996), a questionnaire used to assess the severity
of their addiction to online gaming. The parents or main caretakers

completed the Dupaul's ADHD scale-Korean version (K-ARS-P) to assess
the patients’ ADHD symptoms (So et al., 2002). Tobacco and alcohol
use were categorized as follows: no use, occasional use (less than 5
cigarettes a day or drinking less than 5 days per month on average), and
or regular/heavy use (more than 5 cigarettes per day or binge drinking
on 5 or more days per month) (Abuse, 2015, Kenford et al., 2005).

To classify a participant as having IGD, we used the criteria that
were employed in our previous studies (Jeong et al., 2016, Han et al.,
2011, Han et al., 2009, Kim et al., 2012). Patients who fulfilled the
criteria of: (Karaca et al., 2017) who spend excessive time playing on-
line games (more than 4 h per day/30 h per week as assessed by the
parents or the main caretakers); (Chou et al., 2005) with YIAS scores
>50; (Association, 2013) who exhibit irritable, anxious, and aggressive
behavior when asked to stop playing online games; and (Carli et al.,
2013) with impaired behaviors or distress, economic crisis, and mala-
daptive regular life patterns including disrupted diurnal rhythms, re-
fusal to attend school, and unemployment were included in the study.
Individuals (Karaca et al., 2017) with other axis I psychiatric diseases,
(Chou et al., 2005) taking psychiatric medications for online addiction,
(Association, 2013) full-scale intelligence quotient (IQ) <80, (Carli
et al., 2013) substance abuse history except for alcohol or tobacco use,
(Yen et al., 2017) with neurological or medical disorders, and (Kim
et al., 2017) with claustrophobia were excluded. The Chung Ang Uni-
versity Hospital Institutional Review Board approved this study. A
written informed consent was provided by each participant. In the case
of participants aged below 18 years, a written informed consent was
provided by the parents or the main caregivers and an assent was ob-
tained from the adolescents.

Independent t-tests were used to compare the demographic and
clinical variables, including age, IQ, intracranial volume (ICV), YIAS,
and K-ARS-P scores among the two groups. Since game playing time,
tobacco use, and alcohol consumption were recorded in categories, a
chi-square test was conducted to compare the groups. Analyses of
Pearson's correlations between K-ARS-P and YIAS scores were also
conducted. All statistical analyses were performed using IBM SPSS
Statistics version 25.0 (IBM Corp, Armonk, NY, USA) with the sig-
nificance level set at p < 0.05.

2.2. Magnetic Resonance Imaging Acquisition and Analysis

2.2.1. Data acquisition, Preprocessing, and Quality assurance
A sequence similar to that used previously was adopted in this study

(Jeong et al., 2016). Multiple diffusion-weighted images (DWI) with 32
encoding directions and an additional image without diffusion
weighting (i.e., b=0 s/mm2) were acquired using a Philips Achieva 3.0
Tesla TX magnetic resonance imaging (MRI) scanner (Philips, Eind-
hoven, the Netherlands), with a standard single-shot, spin echo, echo
planar acquisition sequence with eddy current balanced diffusion-
weighted gradient pulses (b=600 s/mm2, echo time (TE)/repetition
time (TR)=70ms/9214ms; matrix= 124×121 on
250mm×250mm field of view; slices 2mm without gap resulting in
voxels of 0.97× 0.97× 2.0mm). Volumetric T1-weighted anatomic
reference images were acquired using a three-dimensional T1-weighted
magnetization-prepared rapid gradient echo sequence (TE/
TR=3.8ms/2 s; 256× 256 matrix for 1.0× 1.0×1.0mm voxels; 180
slices). Preprocessing for DTI analysis, including eddy current correc-
tion and head motion, was performed using eddy_correct of FMRIB
Software Library (FSL; Oxford, UK; http://www.fmrib.ox.ac.uk/fsl), by
registering each diffusion-weighted image to the first b=0 image with
affine transformation. When correcting, the Euclidean distance for each
patient head motion was determined to compare between groups
(Tromp, 2016). There are several ways to preprocess the DWI images,
and we chose to use a protocol similar to that in the previous articles
reporting structural network alteration in ADHD (Hong et al., 2014,
Beare et al., 2017, Cao et al., 2013). Each of the participants also passed
both visual and automated quality-assessment protocols for DTI,
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temporal signal-to-noise ratio (tSNR) (Roalf et al., 2016), using a
quality control toolbox (DTIprep (Oguz et al., 2014)). With regard to
tSNR, which is a method used to quickly screen the overall data quality,
the participants’ lowest value was 9.0272, which is above the suggested
cutoff value (6.47) for poor data. DTIPrep quality control report for all
participants have passed default thresholds, assuring that our data
meets reasonable quality. In addition, participants had low in-scanner
head motion (<1.2mm mean Euclidean distance for each patient mo-
tion).

2.2.2. Whole Brain Tractography and Network Construction
DTI data were reconstructed in the DSI Studio (www.dsi-studio.

labsolver.org). Whole-brain tractography was performed using the
Fiber Assignment by Continuous Tracking algorithm (Yeh et al., 2013).
The complete procedure is described in the Supplementary Material.
Briefly, using the automated anatomical labeling (AAL) template
(Tzourio-Mazoyer et al., 2002) and every participant's diffusion
weighted image, a connectivity matrix populated with the number of
streamlines from the tractography connecting each pair of 116 nodes of
AAL atlas was mapped for each participant (node names are provided in
Table S1 in the Supplementary Material). We also acquired a con-
nectivity matrix filled with tract-averaged FA values, extracted from
streamline bundles by averaging the FA values over all voxels inter-
sected by at least one streamline. Since the gold standard for regional
parcellation is currently not available, we also acquired a connectivity
matrix using Destrieux atlas in FreeSurfer (Destrieux et al., 2010, Fischl
et al., 2004).

2.2.3. Network-based statistic using streamline count connectivity matrix
Network-based statistic (NBS) is an approach used for identifying

connected sub-networks showing significant differences between
groups. Since NBS identifies a cluster of edges that are spatially inter-
connected and forms a graph component, it offers greater power to
detect diffuse, but connected, differences (Zalesky et al., 2010). This
NBS method has popularly been used to identify abnormal brain con-
nectivity circuitry such as in ADHD and IGD (Hong et al., 2014, Beare
et al., 2017, Wen and Hsieh, 2016, Cao et al., 2013). We used the au-
tomated anatomical labeling (AAL) and additional Destrieux atlas
template as nodes for acquiring the connectivity matrix, which is in line
with previous research on network studies in IGD and ADHD (Hong
et al., 2014, Beare et al., 2017, Cao et al., 2013, Tzourio-Mazoyer et al.,
2002, Hong et al., 2013). A more specific description of the NBS pro-
cedure is provided in the Supplementary Material.

The two alternative hypotheses (IGDADHD+ having stronger inter-
connected sub-network than IGDADHD- and vice versa) were evaluated
independently. Analyses were also performed using addiction severity

(YIAS score) as an additional covariate since it differed significantly
between the groups. Since we wanted to isolate the network related to
comorbid ADHD, we chose to compare the two IGD groups rather than
compare IGDADHD+ with HC as we cannot discriminate the effect of IGD
and that of ADHD. All these steps were performed using the NBS soft-
ware package (http://www.nitrc.org/projects/nbs/) implemented on
MATLAB 2017b.

In addition, we checked whether the edges detected at the lower
threshold, P < 0.05, survived at a higher threshold level, P < 0.03 and
P< 0.01; to prevent confusion, we used an uppercase, italicized letter P
to indicate the threshold P values. If the edges persisted, the detected
sub-network was considered to be a network having robustness (Beare
et al., 2017). The BrainNet viewer (http://www.nitrc.org/projects/
bnv/) was used to visualize the significant sub-networks and to make
the figures (Xia et al., 2013).

2.2.4. Relationship between the FA values of the sub-network and symptom
severity

After detection of the existence of sub-network using NBS, we in-
vestigated whether it could predict the patient's symptom scores. We
used the mean edge FA values for further regression analysis. The FA
values were used since broad areas of white matter FA alteration in
ADHD and IGD have been repeatedly observed (Buchanan et al., 2014,
Jones et al., 2013, van Ewijk et al., 2012). Additionally, the FA value is
a normalized (between 0 and 1) and continuous measure (Abe et al.,
2010), whereas the streamline counts are integer values, and FA leads
were used to avoid potential binning artifacts associated with an integer
scale (Hong et al., 2014, Hong et al., 2015). The complete sample and
the within group (IGDADHD+ and IGDADHD−) relations were examined.

The partial least square (PLS) regression analysis, that linearly re-
presents the independent variables with fewer components, was con-
ducted to identify if the ADHD-related sub-networks can be used to
predict and account for the severity of the symptom of the patients. We
used the sub-networks identified at a threshold of P <0.05 as in-
dependent variables since they include all the edges identified at higher
thresholds. We used the mean-centered K-ARS-P and YIAS scores as
dependent variables and the tract-averaged FA values of every edge in
the sub-networks as independent variables. To assure generalizability
and avoid an over-fitted result of model performance, NBS and PLS
regression models were constructed and tested using leave-one-out
cross-validation (LOOCV) (Scheinost et al., 2019). A more detailed
explanation of the PLS regression process is included in the Supple-
mentary Material. The PLS regression analyses were also performed
using the sub-network detected after adding addiction severity (YIAS
score) as a covariate. We hypothesized that even though we controlled
for the effect of YIAS in the streamline counts, the development status

Fig. 1. Schematic of the model performance validation procedure. During
leave-one-out cross-validation (LOOCV), we first isolated the network of
difference between IGDADHD+and IGDADHD−groups using NBS to elucidate a
network related to comorbid ADHD. Next, FA values of each network edge
were extracted and defined as predictors of the regression model. The PLS
regression model was trained on data and tested with one left-out participant.
The test was performed iteratively for all subjects (YIAS, Young Internet
Addiction Scale; K-ARS-P, Dupaul's ADHD scale-Korean version).
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of the FA of the sub-network might still reflect the effect of addiction
severity. The schematic summarization of the analysis process is shown
in Fig. 1.

3. Results

3.1. Demographics and clinical variables

Comparisons of the demographic variables are presented in Table 1.
There was no significant difference in age, ICV, full-scale IQ, estimated
motion, tobacco and alcohol usage, and game playing time reported by
the participants. In accordance with a previous study (Yoo et al., 2004),
the YIAS scores and K-ARS-P scores in the IGDADHD+ group were higher
than those in the IGDADHD− group, and there was a significant corre-
lation between the two scores in the complete sample and in the IG-
DADHD+ group (Pearson's r=0.42, p <0.01 and Pearson's r=0.33,
p=0.03, respectively, Figure S2 in Supplementary Material). Daily
game playing time reported by the parents or the main caretakers was
also higher in the IGDADHD+ group.

3.2. Sub-networks resulting from NBS

NBS yielded a sub-network showing significantly higher streamline
counts in the IGDADHD+ than in the IGDADHD− group, namely, an
‘ADHD-related’ network. Summaries of the identified sub-networks
with three levels of significance (FWE corrected (permutation)
p=0.001, 0.001, 0.002, respectively) are shown in Fig. 2. The sub-
network at a threshold of P < 0.05 consisted of 88 edges, involving 62
different brain regions distributed in the frontal, parietal, and occipital
areas (Fig. 2A). The opposite contrast was also tested, but no clusters
reached a statistical significance after the FWE correction.

In additional NBS analyses with the YIAS score as a covariate, we
were still able to isolate a sub-network with a higher streamline count
in the IGDADHD+ group with three levels of significance (FWE corrected
(permutation) p=0.006, 0.001, 0.018, respectively). In this case, we
presume the ‘ADHD other than addiction’-related network (Figure S3 in
the Supplementary Material). The remaining edges were distributed
mostly in the parieto-occipital area, while most of the frontal and
fronto-striatal connections regressed with addiction severity (Figure
S3E and F).

For both the ‘ADHD-related’ network and the ‘ADHD other than
addiction’-related network, the sub-networks at the higher thresholds
were a subset of the edges detected at the lower P threshold; therefore,

Table 1
Demographic characteristics.

IGDADHD+ (Tamm et al., 2012) IGDADHD− (Li et al., 2010) Healthy control (Yeh et al., 2013) Statistics Post hoc Tukey

Age 19.4 ± 3.9 21.1 ± 5.1 20.6 ± 4.1 F=1.832, p=0.164
IQ 105.8 ± 15.8 105.4 ± 13.7 105.8 ± 15.8 F=0.009, p=0.991
ICV (mm3) 1,385,850.9 ± 189,823.4 1,458,027.5 ± 139,577.3 1,394,009.0 ± 149,343.1 F=2.661, p=0.074
YAIS 68.3 ± 11.8 60.3 ± 6.6 26.6 ± 5.8 F=180.2, p < 0.001* IGDADHD+> IGDADHD-> HC
K-ARS-P 25.0 ± 9.9 11.4 ± 6.6 5.5 ± 5.4 F=69.7, p < 0.001* IGDADHD+> IGDADHD-> HC
Euclidean distance 0.376± 0.22 0.314± 0.14 0.376± 0.22 F=1.879, p=0.157
Game time/day† χ2= 6.22, p=0.398
<2 h 11 9 5
2–4 h 16 22 17
4–8 h 15 12 12
>8 h 4 5 0
Game time/day ‡
4–8 h 12 24
>8 h 34 24
Alcohol χ2= 1.83, p=0.767
No use 35 31 24
Occasional use 9 9 14
Regular/heavy use 2 3 1
Tobacco χ2= 1.36, p=0.851
No use 31 34 26
Occasional use 11 11 7
Regular/heavy use 3 4 1

ICV: Intracranial volume; YIAS: Young Internet Addiction Scale; K-ARS-P: Korean Dupaul's ADHD scale, parents’ version, *next to the p-value indicates <0.05. †Game
time reported by patients. ‡Game time reported by parents or main caretakers.

Fig. 2. ‘ADHD-related’ network. Affected structural connections in the
IGDADHD+ group relative to the IGDADHD− participants under a series of
probability thresholds ((A) at P < 0.05, (B) at P < 0.03, and (C) at P < 0.01).
All clusters are a subset of the cluster identified at the previous threshold and
can therefore be considered to be robust clusters. The corresponding circular
plots of the network edges in (A) show that the edges are mainly connecting the
frontal, parietal, and occipital regions. L indicates the left hemisphere.
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they can be called a “robust cluster.” The left occipital, temporal, and
parietal connections were included in the relatively high threshold.

3.3. Relationship between the FA values of the sub-network and symptom
severity

PLS regression revealed a significant linear relationship between the
FA values of the edges in the sub-networks and the symptom scores. The
results showed a significant prediction performance of the K-ARS-P
score with the tract-averaged FA values of the ‘ADHD-related’ network
in the entire sample of 94 patients but not within the IGDADHD+ or the
IGDADHD−groups. With the FA values of the edges from NBS considered
as independent variables, the regression analysis using 1 latent com-
ponent explained 13.4% of the K-ARS-P score in a LOOCV (Table 2, first
row and Figure S5A). When testing the PLS regression models ex-
plaining the YIAS scores, we did not found a positive association in the
entire sample and within the IGDADHD− group. However, within the
IGDADHD+ group, the ‘ADHD-related’ network was able to construct a
model that significantly predicted the YIAS scores (Table 2, fifth row
and Fig. 3). The regression model within the IGDADHD+ group with
‘ADHD-related’ network could explain around 1.9% of YIAS score var-
iance in the IGDADHD+ group.

Significantly contributing edges were detected using bootstrap re-
sampling to estimate the coefficient p-values. When predicting YIAS
scores in the IGDADHD+ group with the ‘ADHD-related’ network, 15
edges distributed in both cerebral hemispheres were found to have

positive coefficients. The significant edges included the orbitofrontal,
temporal, parietal, and occipital nodes. One edge connecting the bi-
lateral cerebellar crus 1 was found to have a negative coefficient
(Fig. 3).

We tested the same PLS regression analysis using the ‘ADHD other
than addiction’-related network as a predictive variable and obtained
similar results. Detailed results are shown in the Supplementary
Material result section (Table S2 and Figure S5).

4. Discussion

4.1. ADHD-related network present in the IGDADHD+ group

This study examined the structural brain network differences be-
tween the IGDADHD+ group and IGDADHD−group and its association to
addiction severity. Following the previously reported method of NBS,
we isolated a particular sub-network of higher strength in the IGDADHD

+ group: an ‘ADHD-related’ network. The sub-network encompasses the
frontal, parietal and occipital area (Fig. 2). The PLS regression model
predicted the K-ARS-P score based on the sub-network (Table 2, first
row and Figure S5A). However, unlike previous studies comparing
ADHD patients with healthy controls (Hong et al., 2014, Beare et al.,
2017, Cao et al., 2013), wherein addiction was not a concern, we dis-
covered that the IGDADHD+ group showed a significantly higher YIAS
score. This may imply that the ‘ADHD-related’ network results not only
from the ADHD diagnosis per se, but also from the difference in the

Table 2
PLS regression modeling results with the K-ARS-P and YAIS scores as a function of the mean FA value of the ‘ADHD-related’ network edges.

Pearson's Correlation p-value Predictive coefficient (q2) permutation p
K-ARS-P score

Complete sample (94) 0.368 <0.001* 0.134 0.001*
IGDADHD+ (Tamm et al., 2012) −0.077 0.611 −0.203 0.674
IGDADHD- (Li et al., 2010) −0.043 0.768 −0.268 0.612
YIAS score
Complete sample (94) 0.213 0.039* −0.002 0.013*
IGDADHD+ (Tamm et al., 2012) 0.310 0.035* 0.019 0.018*
IGDADHD- (Li et al., 2010) 0.207 0.156 −0.224 0.077

⁎ p < 0.05.

Fig. 3. Network edges predicting the
YIAS score in the sub-network NBS
analysis of the ‘ADHD-related’ network.
The thickness of the edges corresponds
to their mean coefficient in bootstrap
resampling; the edges colored in red
are those with a positive coefficient,
while the blue edges have a negative
coefficient. The mean and two standard
errors for each edge are plotted in
Figure S4C, in the Supplementary
Material. L and R indicate the left and
right brain sides, respectively. The
scatter plots show a correlation be-
tween the mean-centered scores of real
and the predicted scores from PLS re-
gression and their fitted lines with 95%
confidence intervals. The histograms
show the performance of the PLSR
model tested by comparing the models
trained on the shuffled data with 1000
iterations. The red line represents the
root mean squared error of prediction
(RMSEP) of the original model. For
each iteration, the RMSEP between the
shuffled score and the predicted score

trained on the shuffled data was calculated. The median RMSEP plot obtained from bootstrap LOOCV process denotes the number of the component we chose for the
construction of the PLS model. PLS regression predicting the K-ARS-P score within the IGDADHD+ group did not yield a significant model.
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addiction symptoms. This led us to run additional NBS analyses with
the YIAS scores added as a covariate. We were still able to isolate a sub-
network of a higher streamline count in the IGDADHD+ group, namely,
an ‘ADHD other than addiction’-related network (Figure S3). In this
case, we detected a sub-network with a distribution connecting the
parieto-occipital regions, while the fronto-striatal connections covaried
with the YIAS score (Figure S3E and F). PLS regression used to predict
the K-ARS-P score from the ‘ADHD other than addiction’-related net-
work also yielded a significant PLS model (Table S2, first and second
rows).

Two studies have used this NBS approach to examine the alteration
in structural connectivity in male-only cohorts of ADHD patients
against healthy controls (Beare et al., 2017, Cao et al., 2013). Using
multiple tractography schemes, Beare et al. reported a constantly de-
tected sub-network of stronger connectivity in ADHD encompassing the
entire brain including the fronto-striatal connections as well as the left
occipital, temporal, and parietal regions (Beare et al., 2017). In addi-
tion, Cao et al. reported an increase in a sub-network primarily invol-
ving the orbitofrontal-striatal circuitry and the posterior regions of the
right hemisphere (Cao et al., 2013). Although there may be a subtle
discordance between these studies since ADHD is a heterogeneous
disorder with interpersonal differences, the distribution of the ‘ADHD-
related’ network more closely resembles that of previously reported
sub-networks than the ‘ADHD other than addiction’-related network.
This implies that previously reported sub-networks contain addictive
symptom domains of ADHD and that the fronto-striatal connections in
the ‘ADHD-related’ network are also reflective of addiction severity.
This is expected from our hypothesis discussed in the literature review
that the overlapping areas of increased connection between ADHD and
addiction include the fronto-striatal region, where both disorders
overlap with regard to impaired reward processing (Frodl, 2010, Tamm
et al., 2012).

4.2. ADHD-related networks predict addiction severity in the IGDADHD

+group

Similar to the reports of a previous study (Yoo et al., 2004), sig-
nificant positive correlations were observed between the K-ARS-P score
and YIAS score of our study population. After performing a within-
group analysis, the significant correlation was only observed between
the two scores of the IGDADHD+ group (Figure S2). This may imply that
there is a symptomatic association between IGD and ADHD and that the
association is more distinct in people diagnosed with ADHD. In the next
step, we identified that a patient's addiction severity can be explained
by the ‘ADHD-related’ network's edge-wise FA values. This was con-
ducted to determine whether and how FA alteration from ADHD con-
tributes to addiction severity.

The PLS regression result partially supported this idea. When we
used PLS regression to predict YIAS scores from the edge-wise FA value
of the ‘ADHD-related’ network, the regression was able to predict scores
only within the IGDADHD+group, implying an association between the
microstructural properties of the sub-networks and addiction severity in
the IGDADHD+group. Therefore, the FA value of the ‘ADHD-related’
network is useful only in predicting YIAS score within the IGDADHD

+group. This result suggests that the well-known close relationship
between ADHD and IGD is partly explained by the microstructural in-
tegrity of the ‘ADHD-related’ network. Further studies should in-
vestigate whether ADHD is related to other types of addiction, using
neuroimaging studies.

4.3. Anatomical distribution of edges with a significant PLS regression
coefficient

In the PLS regression analysis conducted to predict the YIAS score
from the ‘ADHD-related’ network, 16 edges with a significant con-
tribution were detected, that is, 15 with positive coefficient edges in

both cerebral hemispheres and one edge in the cerebellum with a ne-
gative coefficient (Fig. 3). The edges with the highest coefficients
connect the left precentral–postcentral gyri, left superior frontal gyrus,
medial orbital–right left superior frontal gyrus, medial orbital, left fu-
siform gyrus–inferior temporal gyrus, right inferior parietal lobule–-
right angular gyrus, and right supramarginal gyrus–right superior
temporal gyrus.

The edges connecting the bilateral frontal medial orbital nodes pass
through the anterior frontal white matter. Several studies reported an
increased white matter FA in these areas in ADHD patients compared
with healthy controls (Tamm et al., 2012–Li et al., 2010). Functional
MRI studies reported dysfunctional ventrolateral and medial prefrontal
activation and functional connectivity from the inferior and superior
frontal gyri, potentially related to a lack of inhibitory control and im-
pulsiveness in ADHD (Sebastian et al., 2014, van Rooij et al., 2015).
Deficits in inhibitory response control are also suggested to contribute
to the development of uncontrolled Internet game usage (Dong and
Potenza, 2014). As greater FA values observed in neurodevelopmental
disorders may represent inappropriate connections, such as abnormal
reduction in the degree of neuronal branching (Hoeft et al., 2007), al-
though direct evidence is lacking in this study, we carefully suggest that
the impaired appropriate networking status of the orbitofrontal cortices
may cause aberrant inhibitory function and contribute to addiction
severity. This should be further investigated in future studies using
tasks and graph theoretical analysis.

Somewhat unexpectedly, many significantly contributing edges
were in the bilateral temporal and parietal areas. The significant edges
including the fusiform gyrus and inferior temporal gyrus play a role in
visual information processing, and the angular gyrus is involved in
sensory integration (Seghier, 2013, Weiner and Zilles, 2016, Miyashita,
1993). Alteration of the FA in these areas may be related to the aberrant
processing of visual information in ADHD patients (Peterson et al.,
2011). Abnormally enhanced connection of tracts linking visual, audi-
tory, and working memory is also a repeatedly found phenotype in IGD
patients, since internet video game playing requires an active working
memory system, including visual and auditory attention (Dong et al.,
2018, Jeong et al., 2016). Although we should be aware of reverse
inference (Poldrack, 2006), our results suggest that the edges included
in this PLS regression model, in this respect, associate ADHD with ad-
diction severity by aberrant visual/spatial and motoric processing. One
edge presented a negative coefficient, which connects the bilateral
cerebellar crus 1. In a previous study comparing the functional con-
nectivity between IGD group with ADHD and IGD group without
ADHD, the comorbid group showed an expanded connectivity between
the posterior cingulate and cerebellum (Carpenter et al., 2017). Re-
peated detection of the cerebellum in connectivity studies implies that
we should pay attention to the role of the cerebellum in ADHD and
addiction.

5. Study Limitations

This study has several limitations. First, the set of patients included
in the present study was a single-center and male-only sample seeking
treatment for IGD; although IGD diagnosis in this study is stricter, it was
not solely based on the DSM-5 diagnostic criteria for IGD. This may
result in a generalization problem. Second, the cross-sectional design of
the study cannot fully differentiate the causes and effects of ADHD in
IGD. Since we did not include a cohort with ADHD without IGD
(ADHDIGD−), we cannot completely differentiate the connections in the
‘ADHD-related’ network that are fully caused by ADHD or by differ-
ences in addiction severity. Moreover, the IGDADHD+ and IGDADHD−

groups differ in IGD severity; thus, the networks identified as differ-
entiating groups maybe also differed due to the severity of IGD
(Kriegeskorte et al., 2009). We included a series of analyses in the
Supplementary Material to show that the ADHD-related network and
IGD severity are not associated by chance or circularity; however,
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further studies comparing the IGDADHD+ group with the ADHDIGD−

group is needed. Third, some patients were adolescents and therefore
the prematurity of the brain may cause inappropriate registration, even
though age and ICV were used as covariates. Fourth, since the K-ARS-P
questionnaire in this study is not significantly explained within groups
and had low effect size compared with the PLS regression analysis used
in previous studies (Meskaldji et al., 2016), it may suggest that the
ADHD symptoms observed by the patient's parents did not solely suc-
cessfully reflect the severity of addiction. Fifth, there is a need to use
another high-resolution atlas and other tracking methods such as
probabilistic tractography, since the graphic metrics of whole-brain
networks can be different with a spatial scale of nodes (Zalesky et al.,
2010). Sixth, quantified smoking and drinking history was not available
and could not be matched, which can affect tract FA values.

6. Conclusions

There are two main findings and a clinical implication of this study.
First, we identified the existence of a sub-network related to ADHD in
IGDADHD+ patients by comparing the IGDADHD+group with the
IGDADHD−group. The discovered sub-network is in line with that re-
ported in previous studies and thought to be a phenotype of comorbid
ADHD. Second, using edge-wise FA values in the ‘ADHD-related’ net-
work as predictor variables, we were able to partly explain the IGD
addiction severity of each patient in the IGDADHD+ group. The involved
edges connect brain areas whose FA values relate to the altered in-
hibitory function of ADHD, as well as the aberrant visual/spatial in-
tegration and motoric processing of IGD. The results give a neurobio-
logical underpinning that structural network alteration in comorbid
ADHD is associated with severity of behavioral addiction. This finding
serves as a basis for clinicians to understand and explain the importance
of comorbidity when treating or evaluating patients with internet
gaming addiction or ADHD. Although the effect size was small, our
result justifies that treating ADHD may simultaneously help improve
addiction.
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