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Abstract: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a severe health
threat. The COVID-19 infections occurring in humans and animals render human-animal interfaces
hot spots for spreading the pandemic. Lessons from the past point towards the antiviral properties
of copper formulations; however, data showing the “contact-time limit” surface inhibitory efficacy
of copper formulations to contain SARS-CoV-2 are limited. Here, we show the rapid inhibition
of SARS-CoV-2 after only 1 and 5 min on two different surfaces containing copper-silver (Cu-Ag)
nanohybrids. We characterized the nanohybrids’ powder and surfaces using a series of sophisticated
microscopy tools, including transmission and scanning electron microscopes (TEM and SEM) and
energy-dispersive X-ray spectroscopy (EDX). We used culturing methods to demonstrate that Cu-Ag
nanohybrids with high amounts of Cu (~65 and 78 wt%) and lower amounts of Ag (~7 and 9 wt%)
inhibited SARS-CoV-2 efficiently. Collectively, the present work reveals the rapid SARS-CoV-2 surface
inhibition and the promising application of such surfaces to break the SARS-CoV-2 transmission chain.
For example, such applications could be invaluable within a hospital or live-stock settings, or any
public place with surfaces that people frequently touch (i.e., public transportation, shopping malls,
elevators, and door handles) after the precise control of different parameters and toxicity evaluations.
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1. Introduction

There are public and scientific demands to unravel where we currently stand in our
fight against COVID-19. Is the world prepared to combat another wave of the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2)? From a surface disinfection
point of view, how long can SARS-CoV-2 survive on surfaces, and how fast can SARS-
CoV-2 particles be disinfected from these surfaces to cut the chain of infection? Could
nanoparticles (NPs) constitute promising broad-spectrum antiviral (anti-SARS-CoV-2)
arsenals?

Let us answer the questions mentioned above in a narrative, starting from the current
situation of the COVID-19 pandemic. On 31 January 2021, the World Health Organization
(WHO) updated the total number of COVID-19 cases to over 102 million, and the number
of deaths to 2.2 million worldwide. The WHO also mentioned that Saturday, 30 January
2021, marked one-year since its declaration of COVID-19 being a Public Health Emergency
of International Concern [1]. When it comes to COVID-19 animal cases within 2021, several
species have been reported to be affected, including puma (in Argentina), lions (in Estonia),
dogs (in Bosnia and Herzegovina), minks (in Poland), and cats (in Latvia) [2]. Earlier in
the spring of 2020, mink farms were drastically hit with SARS-CoV-2 outbreaks in several
countries, and both human-to-mink and mink-to-human transmission [3]. What lay at the
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end of 2020 was the massive culling of over 2.7 million minks in the Netherlands after a
farm outbreak, amounting to more than 6.5 times the number of confirmed human cases [4].

On the vaccination side, the BioNtech/Pfizer and Moderna vaccines with mRNA-
based NP formulations are the forerunner vaccines. They use lipid NPs (spherical ionizable
lipid vesicles that are positively charged at a low pH, facilitating RNA complexation,
and neutral at a physiological pH, reducing side toxic effects [5]) as carriers, allowing
endosomal escape. This formulation allows the stable and efficient release of the genetic
cargo to the host cell cytosol, initiating the synthesis of SARS-CoV-2 spike proteins that
induce the production of neutralizing antibodies by the immune system [6]. We previously
recommended parallel vaccination strategies for humans and animals, mainly minks,
raccoon dogs, cats, and zoo animals, using the NP BNT162b2 (BioNtech/Pfizer) and mRNA-
1273 (Moderna) vaccine formulations [7]. Recent work by Hoffmann et al. [8] investigated
antibody-mediated neutralization based on the S protein using vesicular stomatitis virus
(VSV)-based vectors pseudotyped with several variant-specific SARS-CoV-2 S proteins. The
group used the following SARS-CoV-2 variants: (i) UK variant (B.1.1.7, namely the variant
of concern (VOC) 202012/01 or 20I/501Y.V1); (ii) South African variant (B.1.351, namely
20H/501Y.V2); and (iii) Brazilian variant (B.1.1.248, namely P.1.). The work indicated
that some of these variants might evade the antibody response, showing the reduced
neutralization of the South African and Brazilian variants compared to the neutralization
of SARS-CoV-2 WT (Wuhan-1 isolate), raising concerns that convalescent SARS-CoV-2 WT
patients may be only partially protected against the South African and Brazilian SARS-
CoV-2 variants. The work rang another alarm bell by showing inadequate protection
against these variants in sera from donors who had received two doses of the BNT162b2
(BioNtech/Pfizer) vaccine. This lack of protection occurs because, while the vaccination
completely inhibited viral entry by SARS-CoV-2 WT, the inhibition was reduced for the
UK variant and almost entirely absent for the South African and Brazilian variants [8].
Would the universal administration of NP-containing, self-disinfecting surfaces overcome
the SARS-CoV-2 vaccination challenges?

There are still knowledge gaps about the transmission routes of SARS-CoV-2, but
research indicates that airborne routes, direct contact, droplets, and fomites may all be
involved [9]. However, the significance of transmission through these routes remains
unclear, especially when it comes to surface-mediated transmission. SARS-CoV-2 RNA
has been detected from surfaces around patients in hospital rooms, but the challenges
in culturing the virus from the environment make it difficult to determine whether such
findings are clinically relevant [10,11]. In studies performed within laboratory settings, the
surface stability of SARS-CoV-2 was variable depending on the surface type and many
environmental factors. SARS-CoV-2 may remain infectious on surfaces for durations
ranging from several days (e.g., on plastic, steel, and fur) to as little as a few hours (e.g.,
on wood, paper, and cloth), and it is inactivated more rapidly at higher temperatures
and humidity [12,13]. For example, SARS-CoV-2 has demonstrated extreme stability in a
wide range of pH values (pH 3 to 10) at room temperature [14]. When comparing stability
on hard surfaces, SARS-CoV-2 is more stable on plastic and stainless steel (viable virus
detected for up to 72 h) than on cardboard and copper (viable virus detected for up to
24 h and 4 h, respectively) [15]. SARS-CoV-2 nano-inhibitory surfaces could then be a
tool (e.g., wearing masks that could reduce the amount of infectious virus, ventilation,
hand hygiene, reducing crowding and indoor gatherings, [9,11] and vaccination strategies)
within the game-changer toolbox, containing the indirect transmission of COVID-19 via
surfaces without pharmaceutical intervention.

Previous research has established the efficient role of copper ions Cu(I) and Cu(II)
on alloys with 60% Cu in the inactivation of murine norovirus-1 (MNV-1, a surrogate for
human noroviruses) [16]. Data from other research recognize the antiviral properties of
hybrid coatings containing silver (Ag), Cu, and zinc (Zn) cations against human immunod-
eficiency virus type-1 (HIV-1) with 99.5% titer reduction after 20 min of exposure, and the
potential application of the coatings for viral inhibition on surfaces [17]. An observational
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pilot study investigated copper’s antiviral efficacy against healthcare-related infections
in nursing homes (influenza A and norovirus, which cause influenza and gastroenteritis
outbreaks, respectively). The study compared facility wards equipped with copper surfaces
(i.e., 90% copper on door handles, handrails, and grab-bars) vs. those not equipped with
them. The study revealed copper’s ability to reduce hand-transmitted healthcare-associated
infections [18].

Turning now to the fascinating anti-SARS-CoV-2 NP solutions, recent research has
shown the potential of nano-based antiviral agents to inhibit SARS-CoV-2, specifically in
the air, on surfaces, and in personal protective equipment. However, such SARS-CoV-2
NP disinfectants’ practical use remains in the early stages due to the lengthy and strict
regulatory and toxicological assessments required for such applications [19]. The promising
antiviral capabilities of NPs stem from their ability to generate reactive oxygen species
(ROS) and their photodynamic and photothermal properties [19]. A group of researchers
showed in a preprint [20] that Luminore CopperTouchTM surfaces inactivated 99% of
SARS-CoV-2 particles after 2 h, and recommended administering such surfaces within
hospital and public transportation settings to reduce viral spread. Interestingly, Balagna
and colleagues [21] demonstrated the inhibition of SARS-CoV-2 (the absence of cytopathic
effects on cell culture and a complete SARS-CoV-2 titer reduction to zero) on a sputter-
coated FFP3 mask (3M™) by Ag nanocluster-silica composite coating (<200 nm with Ag
1.53 at%).

The complex mechanisms of SARS-CoV-2 transmission via droplets and small aerosols
landing on surfaces and remaining infectious for varying times make an assessment of
environmental transmission chains challenging. Here, we studied novel ways of inactivat-
ing SARS-CoV-2 on surfaces that could be deployed in public places, people’s homes, and
health care settings (as seen in Figure 1). We investigated the usefulness of Cu-Ag nanohy-
brid powders and plated surfaces in inactivating SARS-CoV-2 to evaluate the potential of
such products to contain the pandemic. We also examined the characteristic parameters
affecting the SARS-CoV-2 inactivation for future surface applications.
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Figure 1. Out-of-the-box surface administration of Cu-Ag nanohybrids rapidly inhibits SARS-CoV-2 (after 1 and 5 min),
breaking the SARS-CoV-2 transmission chains and containing the pandemic within the hospital and livestock settings, and
in public reservoirs. Nanohybrids A and B represent samples 2 and 3, containing ~65 and 78 wt% Cu and ~7 and 9 wt% Ag,
respectively.
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2. Results and Discussion
2.1. Characterization of Copper-Silver Nanohybrids’ Samples

Clean Touch Medical LTD is developing antimicrobial nanohybrid surfaces and deliv-
ered several samples to the University of Helsinki (details given in the Methods section
below) for testing their inhibitory effects against SARS-CoV-2. We also collected the raw
powder material from the Lainisalo Industrial Painting factory. We thoroughly character-
ized the powder material using microscopy tools to ensure the properties of the hybrid
samples. Afterward, we tested the provided samples for surface SARS-CoV-2 inhibition.
Only two surfaces showed viral inhibitions, and even the surface primarily formed from
the collected powder sample did not inhibit SARS-CoV-2. Consequently, we characterized
parallel samples of the tested surfaces by SEM to draw a concrete conclusion on the reasons
governing the inhibitory effects. The Cu-Ag nanohybrid powder collected (sample P)
and the plated surfaces (samples 2 and 3) were characterized by a series of microscopy
techniques, namely transmission electron microscope (TEM) for imaging and electron
diffraction ring pattern, high-resolution TEM (HRTEM), scanning electron microscope
(SEM), and energy-dispersive X-ray spectroscopy (EDX) in the scanning transmission
electron microscope (STEM) and SEM.

TEM imaging, analysis, and mapping (Figure 2 and Figure S3) show the different par-
ticle sizes, shapes (irregular rounded, rectangular, rectangular embracing smaller spherical
particles, and flakes), distribution, composition, and the crystalline structure of particles
within sample P. Regarding the particles’ size, the diameter of each particle has been mea-
sured five times from different angles, as they are not perfectly shaped. Figure 2A,B depicts
the size of ~26 ± 2 nm irregular rounded Ag NPs and ~212 ± 16 nm irregular rectangular
Cu NPs, respectively. Figure 2C,D demonstrates the large-sized (i.e., in the micrometer
range) irregular sharp-edged rectangular copper particles ~1.3 ± 0.2 µm containing the
smaller ~51 ± 2 nm spherical Ag NPs with their mapped blue (panel E) and orange colors
(panel F), respectively. The selected-area electron diffraction (SAED) ring pattern of sample
P is a mixture of two face-center cubic patterns. The d values calculated correspond to the
plane spacing of Ag and Cu NPs’ crystal structures reported in the International Center for
Diffraction Data (ICDD 01-087-0720 of Ag and ICDD 01-085-1326 of Cu) and are depicted
in Figure S3 (panel B).
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Figure 2. HRTEM (A) and TEM (B) images of the Cu-Ag nanohybrid sample P, depicting the wide differences in the size of
Ag NPs spanning from as small as 26 nm (A) to as large as 212 nm (B). HAADF images ((C,D) “as a close-up of panel C”)
and the corresponding maps of panel D, demonstrating the allocated Cu and Ag places with blue (E) and orange colors (F),
respectively.

SEM imaging and analysis reveal the surface morphology and the structure of the
plated surfaces, namely sample 2 and sample 3. Unfortunately, sample 1 suffered charging
effects and even burning under the SEM, making a hole in the sample even after decreasing
the accelerating voltage from 30 kV to 5 and 2 kV, rendering it difficult for imaging and
analysis. Based on information provided by the manufacturing company, sample 1 is a
mixture of sample P (which has been thoroughly characterized above by TEM) and paint,
(which could be organic based on the reported charging effects), combined and then plated
on the surface. Sample 2 (Figure 3A) shows the different morphologies spanning from
flakes to rounded particles, taking a moon shape (16 ± 0.6 µm size) or irregular spherical
shape (28 ± 1 µm size), with minor rounded details. The surface of sample 2 is also not flat,
displaying different levels or layers, and roughness. The mapping of panel 3A demonstrates
that the moon and irregular spherical particles are Cu NPs, displaying a fluorescent green
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color (Figure 3, panel B) and not Ag NPs (Figure S4). Sample 3 (Figure 3C,F) displays
mostly the same surface morphology (flakes and rounded moon-shape particles with the
top featuring minor rounded details) as sample 2 with some differences, including: (i) The
observed greater charging effects in sample 3 (Figure 3C) while using the in-lens detector.
Therefore, the detector has been changed to the secondary electron to eliminate these
charging effects (Figure 3D); (ii) The size of Cu NPs (19 ± 0.8 µm the moon-shaped and
31 ± 0.8 µm size, Figure 3C) is slightly larger than that of sample 2; (iii) The surface of
sample 3 is smoother than that of sample 2 (i.e., topologically, the surface of sample 3 can
be characterized as less rough). Such a smooth surface could theoretically hinder the rapid
surface contact interaction between Cu NPs and SARS-CoV-2 particles.

Interestingly, the quantitative chemical composition of surface samples 2 and 3 is
indicated by the EDX. Sample 2 EDX quantitative results infer that the highest concentration
was reserved for the Cu (~65 wt%), and the Ag constitutes a low concentration (~7 wt%)
as outlined in Table S1. Other elements were also detected in variable quantities (Si, Al,
Ti, Sn, Cl, and Na), with the lowest element detected having been Si (~1 wt%), and the
second-highest element detected was Na (~13 wt%). Sample 3 EDX results indicate that
the highest concentration was of Cu (~78 wt%), as outlined in Table S2. The Ag comprises
a concentration of only (~9 wt%) with both Cu and Ag sample 3 concentrations detected
being higher than that of sample 2. Besides, other elements were also detected within
the composition of sample 3 in minor amounts, including Fe, Ti, and Sn (which could be
considered impurities), and Si and Al (which could be elicited from the SEM detector and
the electron column, respectively). Moreover, the reader should keep in mind that Tables S1
and S2 do not include the light elements since EDX is not a reliable tool for quantifying
light elements.
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2.2. Anti-SARS-CoV-2 Effects at Surface Exposure

SARS-CoV-2 is an enveloped, positive-sense single-stranded RNA virus, sharing a
number of characteristics with other RNA respiratory viruses (SARS-CoV-1 and MERS-CoV
coronaviruses, and H1N1, H5N1, and H5N7 influenza viruses). These shared character-
istics include their zoonotic origins and later adaptations for better human-to-human
transmission by direct (via mouth, nose, and eyes) or indirect contact (via contaminated
surfaces or equipment) [22].

The EDX quantitative results (Tables S1 and S2) delineate that the principal chemical
element of the plated surfaces used in this study was Cu and its particulate form. Therefore,
any antiviral effects are primarily attributed to copper, especially in samples 2 and 3. In
this study, the surface inhibitory effects on SARS-CoV-2 were assessed by inoculating virus
stock onto surfaces coated with Cu-Ag nanohybrids using glass as a non-reactive control
surface (Figure 4, Table S3). These surfaces were sampled at three different time points (1,
5, and 10 min) by rubbing with a moistened cotton swab with cell culture media. The swab
samples were briefly vortexed in the media, and the supernatant inoculated on Vero E6
cells at two dilutions (1:1 and 1:10). After inoculation, the cells were incubated for four
days in +37C, fixed, stained, and assessed for cytopathic effect (CPE). With samples 1 and
glass, CPEs were detected at all sample time points and in both culture dilutions, while in
sample 3, CPEs were observed at 1 min but not at 5 or 10 min. No CPE was observed in
sample 2 at any of the time points tested.

There have been some previous studies on the effect of Cu on RNA respiratory viruses.
Fujimori et al. [23] demonstrated the antiviral effects of copper(I) iodide NPs of 160 nm
size against H1N1 influenza A virus, using plaque titration assay with a 1 h contact time.
They attributed the antiviral effects to the role played by both the produced hydroxyl
radicals, inactivating the viral hemagglutinin (HA) and neuraminidase proteins, and the
Cu+ oxidizing the lipids of the enveloped H1N1, inactivating it. Minoshima et al. [24]
indicated the superior inhibitory effect against H1N1 of solid-state cuprous oxide (Cu2O)
compared with Ag2S particles after 30 min. In the same vein, they assigned the H1N1
inhibitory effects to the denaturation of the viral HA protein interfering with host cell viral
recognition. More recently, Das Jana and colleagues [25] showed the inhibitory effects of
copper oxide (Cu2O) NPs in a composite with graphene sheets on influenza A virus after
30 min of contact. They ascribed the antiviral effects of Cu2O NPs to their interference with
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the structure and the function of viral HA, disrupting the viral structural integrity to enter
host cells, and consequently preventing viral replication and infection.

Across the SARS-CoV-2 surface stability literature, vast differences were detected in
the SARS-CoV-2 inactivation associated with different surfaces, environmental conditions,
and laboratory settings. Therefore, there is a pressing need for consensus on standard-
ized surface testing protocols in order to safeguard accurate SARS-CoV-2 surface data
comparability, so that an efficient intervention to break the transmission chains can be
achieved [12].
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Figure 4. A composite image showing inhibitory effects of Cu-Ag nanohybrid powder sample (sample 1) and plated
surfaces (samples 2 and 3) on the growth of SARS-CoV-2 after time points 1 min, 5 min, and 10 min, based on crystal
violet-stained Vero E6 cells. The blank color indicates virus growth and the violet color indicates an inhibitory effect.

To ensure that the CPE was elicited by SARS-CoV-2 and not by any cytotoxic sub-
stances dissolved from the test surfaces, culture media were tested with RT-PCR (Table 1
and Table S4). Samples were reported positive for viral growth if at least one of the parallel
reactions with either dilution had visible CPE and the Ct (cycle threshold)-value was below
20. Ct-values above 30 were considered to be caused by the original inoculum and not viral
growth (Figure S5). RT-PCR results confirmed that sample 3 inhibited the viral growth from
5 min onwards, and sample 2 already inhibited the growth at the one-minute time point.
No inhibitory effects were detected with sample 1 or the negative control. It is essential to
bear in mind that these results describe viral inhibition, preventing the SARS-CoV-2 from
infecting the cells. Furthermore, the most remarkable aspect of the results is the rapid onset
of inhibitory effects in samples 2 and 3. The inhibitory effect is detectable even when using
very high viral concentrations unlikely to occur in natural infection settings.

The efficient SARS-CoV-2 inhibition by the present Cu-Ag nanohybrids in less than
5 min is noteworthy because such rapid inhibition has not previously been described. Cu
formulations in other studies have shown the inhibition of influenza A after 30 min [24,25],
1 h [23], or even 6 h [26]. On 29 February 2008, the EPA registered five copper-containing al-
loy products, allowing them to state in their marketing that they “killed 99.9% of pathogenic
bacteria after 2 h” [27].
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Table 1. Mean Ct-values and standard deviations (SD) of RT-PCR performed from culture media after culture, and combined
results from culture and PCR (pos = viral growth, neg = no viral growth). Different culture dilutions have been combined,
and samples that were negative in RT-PCR have been excluded.

1 min 5 min 10 min

Mean SD Result Mean SD Result Mean SD Result

Sample 1 16.08 0.58 pos 16.95 0.10 pos 16.40 1.29 pos
Sample 2 38.07 1.79 neg NA NA neg 36.71 1.10 neg
Sample 3 16.60 0.45 pos 35.38 2.00 neg 36.03 2.76 neg

Glass 16.39 0.40 pos 21.06 9.36 pos 17.96 3.87 pos

NA indicates not applicable due to the absence of Ct value in the PCR in any replicates.

Hutasoit and colleagues [28] detected a 96% inactivation of SARS-CoV-2 on stainless
steel coated with Cu in 2 h. Other recent reports have shown Cu formulations inactivating
SARS-CoV-2 in less time, with the shortest inactivation times being 1 h (using Cu2O
particles bound with polyurethane [29]) to 30 min (by a spray-coated aqueous colloidal
dispersion of poly(ionic liquid)/Cu composite [30]). An implication of Cu-Ag nanohybrids’
fast surface inhibitory effect is that the administration of these substances on key surfaces
could potentially provide a practical, effective barrier to virus transmission.

Considering the efficient SARS-CoV-2 inhibition by the present Cu-Ag nanohybrids
in less than 5 min, it remains to be seen whether such compounds could be employed to
reduce the burden of disease caused by these devastating infections.

In the present study, the chemical composition of samples 2 and 3 indicates that
some impurities (e.g., Na, Cl, Sn, Fe, and Ti) remain and should be excluded after the
optimization of the synthesis procedure to minimize possible toxicity. Also, the size distri-
bution detected for the Cu NPs from sample P is considerable, ranging from the nanometer
range to the micrometer range after platting onto surfaces (samples 2 and 3). Most of the
previously reported anti-CoV NPs were within the nanometer range [31], including the
Ag2S nanoclusters (only 3 and 4 nm) that inhibited the porcine epidemic diarrhea virus
via inhibiting the viral negative-strand RNA synthesis and viral replication [32]. There are
many unanswered questions about the in vitro toxicity of such materials when in contact
with skin cells. In this regard, natural anti-SARS-CoV-2 products could limit the concerns
about in vivo usage, which remain to be thoroughly studied in all such surface inhibitory
applications. Selwyn and colleagues [33] showed SARS-CoV-2 inactivation after 5, 20, and
60 min using a combination of a natural citric acid with 3% thymol and 1297 quaternary
ammonium compound which was infused in surgical masks.

A key challenge in the toxicity assessment of SARS-CoV-2 inhibitory NPs are the
multiple chemical and physical parameters affecting the composition and the structure
of these particles [7]. Therefore, a precise manufacturing process to minimize the size
variations of Cu and Ag NPs that were seen in this study should be employed to investigate
the anti-SARS-CoV-2 activity further. Elucidating the precise mechanisms behind the
anti-SARS-CoV-2 inhibitory effects of Cu NPs, Ag NPs, and Cu-Ag nanohybrids, could
provide a better understanding of the SARS-CoV-2- metal interactions, and thorough
toxicity assessments are warranted. However, the nanohybrid materials already provide a
powerful candidate for effective and easy physical infection barriers.

3. Conclusions and Outlook

In the current work, we demonstrate the efficient, rapid inhibition of SARS-CoV-2 after
only 1 and 5 min on two different surfaces containing copper-silver (Cu-Ag) nanohybrids.
We attribute the role of primary SARS-CoV-2 inhibition to Cu, which constituted the highest
proportions in the two inhibitory surfaces tested. We propose coating such surfaces with
Cu-Ag nanohybrids to break the SARS-CoV-2 transmission chains within hospital and live-
stock settings and in public places, after thorough toxicological evaluation and optimizing
the synthesis procedure and parameters of the nanohybrids.
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Our future work is directed towards unveiling the molecular mechanisms governing
the inactivation of SARS-CoV-2 by such Cu-Ag nanohybrid surfaces, and their role in
fighting the new SARS-CoV-2 variants and other pathogens with the ability to spread
through contaminated surfaces, such as methicillin-resistant Staphylococcus aureus and
human noroviruses.

4. Methods
4.1. Copper-Silver Nanohybrid Powders and Plated Surfaces

The Cu-Ag nanohybrid powder sample (sample P) was collected from the Lainisalo
Industrial Painting factory (wet-painting factory, Tallinn, Estonia) on 24 October 2020. The
plated surfaces (samples 1, 2, and 3; Figure S1) were provided by the Clean Touch Medical
LTD to the University of Helsinki to be tested to inhibit SARS-CoV-2 on 8 December 2020
with information that the samples were metal hybrid combinations of copper and silver.
The surface coating of the samples was adopted using one of the two processes, namely
powder coating (the coating was applied electrostatically and melted in the oven at 200 ◦C
for 30 min) and wet painting (the coating was plated on the surface using a spray). The
surface coating was accomplished on stainless-steel substrates, forming an even thickness
of 40 µm.

4.2. Characterization of Copper-Silver Nanohybrids’ Samples

To assess how the powder sample and plated surfaces would inactivate the tested
SARS-CoV-2, the samples’ structure and composition were thoroughly investigated via
TEM and SEM.

For the powder sample (sample P) preparation, water was first used as a solvent.
However, the sample was hydrophobic, and the powder painted the vial wall (Figure S2).
Sample P was then dissolved in ethanol overnight. The shape and distribution of Cu and
Ag particles in sample 1 were detected by a TEM (FEI TALOS F200X, Thermo Scientific™,
Netherlands) operated at 200 kV accelerating voltage. The electron diffraction ring pattern
confirmed the Cu and Ag particles’ crystal structure, and the morphology was investigated
by the HRTEM. The chemical structure of sample 1 was detected by making two maps
(each lasted 1 h) from the same position containing the ring pattern diffraction, using the
EDX unit of the STEM.

For the plated surfaces samples preparation (samples 1, 2, and 3), the samples were
placed on aluminum stubs and air blown. Then the samples were analyzed for their
surface morphology and chemical composition with an SEM (Zeiss Crossbeam 540, Zeiss,
Germany) operated using 15 and 30 kV acceleration voltage for imaging and EDX (each
map lasted 1 h), respectively, using an in-lens detector. For sample 3, the in-lens and
secondary electron detectors were used. The size distributions of the Cu and Ag particles
on the obtained TEM and SEM images were analyzed using the ImageJ software (National
Institutes of Health, Bethesda, MD, USA).

4.3. Viral Strain, Cell Culture, Anti-SARS-CoV-2 Surface Exposure Tests

Vero E6 cells were cultured in minimal essential Eagle’s medium (MEM, Sigma-
Aldrich, Saint Louis, USA) supplemented with fetal bovine serum (FBS, Gibco; 10% for
maintenance and 2% for infection), L-glutamine, penicillin, and streptomycin. The cells
were infected with the SARS-CoV-2/Finland/1/2020 strain (passage 7) and incubated at
37 ± 2 ◦C with 5% CO2.

The aliquots of 25 µL SARS-CoV-2 viral suspension (50,000 PFU/mL) were spread on
different Cu-Ag nanohybrid plated surfaces for 1, 5, and 10 min. Glass surfaces were used
as a negative surface control. Afterward, surfaces were sampled with pre-wetted cotton
swabs and placed in 500 µL MEM media, from which viral dilutions were prepared.

Vero E6 cells were infected with two serial dilutions, namely 1:1 and 1:10, in the 96
well plates for 1 h at +37 ◦C. The media were then changed to fresh MEM, and the cells
were incubated for four days. Positive control viral dilutions and negative control MEM
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were included in the performed experiments. Two separate experiments were executed on
different days, and each experiment was performed in duplicate.

All the SARS-CoV-2 experiments were performed in a BSL-3 laboratory at the Faculty
of Veterinary Medicine, University of Helsinki. A video illustrating the execution of the anti-
SARS-CoV-2 surface exposure tests in the BSL-3 facility is displayed in the supplementary
material (Video S1).

4.3.1. Cytopathic Effects (CPE)

After the 5-day incubation of the infected cells, the plates were investigated under
an inverted microscope (CKX41, Olympus Life Science Corporation, Japan) to detect any
cytopathic effects induced by the viable SARS-CoV-2 viruses. Samples were reported as
positive for the infectious SARS-CoV-2 virus if CPE was observed. The visualization of the
CPE was performed via the following series of steps. The cells of all the tested plates were:
(i) Fixed (adding 100 µL of 37 wt% formaldehyde/well for 30 min); (ii) Washed with water
(100 µL/well); (iii) Stained with crystal violet (50 µL of 1:5 diluted crystal violet solution
for 10 min); (iv) Washed with water (100 µL/well). Violet stained cells indicated viral
inhibition. Clear wells indicated the presence of the viable virus, infecting cells that washed
away after the staining. The stained plates were then photographed by a digital camera.

4.3.2. Real-Time Reverse-Transcription Polymerase Chain Reaction (RT-PCR)

Following the 4-day incubation, all cell culture media with the tested inactivation time
points of 1, 5, and 10 min were transferred to new plates for RNA isolation and subsequent
RT-qPCR to confirm the exclusive induction of reported CPE by the SARS-CoV-2 or the
inactivation of SARS-CoV-2.

RNA was extracted from cell culture media with QIAcube HT (Qiagen, Germany)
using the QIAamp 96 Virus QIAcube HT kit (Qiagen, Germany), following the kit protocol
with off-board lysis. The protocol was as follows: 200 µL of the sample was added to
160 µL of ACL lysis buffer with carrier RNA and 20 µL of Proteinase K in BSL-3. After
30 min of incubation at room temperature, the surfaces of lysis blocks containing the lysed
samples were wiped and sprayed with 80% ethanol. They were transferred outside of
the BSL-3 for the rest of the isolation protocol. RT-qPCR targeting the SARS-CoV-2 N
gene was used according to the procedure of Corman et al. [34]. Samples were considered
positive for SARS-CoV-2 infections according to the cycle threshold (Ct) values. Reported
Ct values >30 indicated either the absence of viral particles or the inhibition of the growth
of infectious SARS-CoV-2 particles, with all viral RNA coming from the initial inoculation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/nano11071820/s1. Figure S1: Different plated surfaces with different colors as bronze (sample
1), dark brown (sample 2), and brown with surface imprinted COVIDSAFE making surface roughness
(sample 3) delivered to the University of Helsinki to be tested for SARS-CoV-2 inhibition. Figure
S2: Hydrophobic powder sample (sample 1) that painted the vial wall. Figure S3: TEM image
(A) of the Cu-Ag nanohybrid powder sample (sample P), showing clumps of a broad range of
different sizes, ranging from 26 nm Ag NPs to 1.3 ± 0.2 µm copper particles, and shapes (irregular
rounded, rectangular, and flakes) of particles, with some particles acting like a cave enclosing other
smaller particles inside them. Selected-area electron diffraction (SAED) ring pattern, depicting the
crystalline Ag NPs mixed with Cu NPs. Figure S4: Ag map of Sample 2 demonstrates that the
moon shaped particles are not Ag NPs (without the orange color used to identify the Ag). Video S1:
Demonstration of the performance of the anti-SARS-CoV-2 surface (copper-silver nanohybrid plated
surfaces) exposure tests in the BSL-3 laboratory. Table S1: EDX quantitative chemical composition
of sample 2 in a concentration ascending order. Table S2: EDX quantitative chemical composition
of sample 3 in a concentration ascending order. Table S3: Inhibitory effects of Cu-Ag nanohybrid
powder sample (sample 1) and plated surfaces (samples 2 and 3) on SARS-CoV-2 after three time
points based on the cytopathic effects. Two dilutions of each sample were cultured in two parallel
reactions, and glass surfaces were used as a control. Table S4: Ct-values of RT-PCR performed from
post-culture media of individual wells. Figure S5: Inhibitory effects of Cu-Ag nanohybrid plated

https://www.mdpi.com/article/10.3390/nano11071820/s1
https://www.mdpi.com/article/10.3390/nano11071820/s1
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surfaces (i.e., samples 1, 2, and 3) on the SARS-CoV-2 growth after time points of 1, 5, and 10 min
based on RT-PCR performed from culture media. The error bars represent the standard deviation of
the means from duplicates executed in BSL3. It is important to note the considerable error detected
for the non-reactive glass samples that might be elicited from an unnoticed pipetting error.
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