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Abstract: Mineral ions (mainly calcium ions) from sugarcane juice can be trapped inside the heating
tubes of evaporators and vacuum boiling pans, and calcium ions are precipitated. Consequently,
sugar productivity and yield are negatively affected. Calcium ions can be removed from sugarcane
juice using adsorption. This paper described the experimental condition for the batch adsorption
performance of rosin-based macroporous cationic resins (RMCRs) for calcium ions. The kinetics of
adsorption was defined by the pseudo-first-order model, and the isotherms of calcium ions followed
the Freundlich isotherm model. The maximal monolayer adsorption capacity of calcium ions was
37.05 mg·g−1 at a resin dosage of 4 g·L−1, pH of 7.0, temperature of 75 ◦C, and contact time of 10 h.
It appeared that the adsorption was spontaneous and endothermic based on the thermodynamic
parameters. The removal rate of calcium ions in remelt syrup by RMCRs was 90.71%. Calcium ions
were effectively removed from loaded RMCRs by 0.1 mol·L−1 of HCl, and the RMCRs could be
recycled. The dynamic saturated adsorption capacity of RMCRs for calcium ions in remelt syrup was
37.90 mg·g−1. These results suggest that RMCRs are inexpensive and efficient adsorbents and have
potential applications for removing calcium ions in remelt syrup.

Keywords: rosin-based macroporous cationic resin; calcium ions; remelt syrup

1. Introduction

Desalination of carbonated and filtered remelt syrup is an indispensable step in the
sugar industry. The inorganic minerals include calcium ions (mainly), magnesium ions,
iron ions, silicic acid, phosphate, and carbonate ions in sugar juice [1]. More than 90%
of the inorganic matter in the syrup relates to calcium [2]. As the concentration of sugar
juice increases in the evaporators, calcium ions are precipitated as their solubilities are
exceeded [3], which directly affects the productivity and achievable yield of sugar [4].
Helmut et al. [1] claimed that calcium ions in a beet juice evaporator could be reduced
by 80–90% using KEBO DS (a scale inhibitor). Typically, anionic polymers, such as poly-
acrylics and poly (amino polyether tetra-methylene phosphonic acid), are used in the sugar
industry to inhibit calcium salts [1]. The use of scale inhibitors in the sugar industry is also
limited by health concerns. These inhibitors need to be approved by relevant agencies (for
example, the United States Food and Drug Administration) before they can be used in the
sugar process [1]. The desalination process has been explored by many eco-friendly and
green technologies, including membrane separation [5], ozonation [6], coagulation [3], and
adsorption [7]. Researchers prefer adsorption because it is inexpensive, widely available,
and easy to use; additionally, it has the potential to handle large-scale production [8]. The
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preparation and functionalization of new decalcification adsorbents for remelt syrup with
high adsorption performance, environmental friendliness, and low cost has become the
research focuses.

The macroporous cationic resins (MCRs) used in the syrup are mainly synthesized
based on styrene and divinylbenzene [9]. Styrene and divinylbenzene have been classified
as class 2B carcinogens, which are limited by health concerns, by the International Agency
for Research on Cancer of the World Health Organization (IARCWHO) [10]. With the
improvement of people’s living standards, requirements for food quality and safety also
increase. Thus, it requires us to investigate green biomass-based decalcification adsorbents
that are highly adsorption-efficient, low-cost, and recyclable.

About 90% of crude rosin is rosin acid, which is derived from the exudation of conifer
trees [11]. Resin acid (rosin) can be modified by an esterification and (or) addition reaction
based on the conjugated double bonds and carboxyl group [12]. In the prior study, we
successfully prepared a novel ethylenediamine rosin-based resin (EDAR) for the removal
of phenolic compounds from water. The interaction model and adsorption mechanism of
EDAR-adsorbed phenolic compounds in water were studied, which provided the basis
for its application [13]. Similarly, Li et al. prepared a new rosin-based sugarcane juice
decolorization agent, where the crosslinking agent was modified rosin, silica was the
carrier, and the quaternary ammonium cation was the functional group [8]. The excellent
mechanical properties and thermal stability of the adsorbent are due to the specific three-
membered phenanthrene ring structure of rosin [14]. Thus, modified rosin has the potential
to produce green, economical, and eco-friendly adsorbents in the sugar industry. However,
as far as we know, rosin-based resins have not been prepared and used for removing
calcium ions from remelt syrup.

In this study, rosin-based macroporous cationic resins (RMCRs) were prepared us-
ing modified rosin ethylene glycol maleic rosinate acrylate (EGMRA) as a cross-linking
skeleton. The potential use of the RMCRs in removing calcium ions from remelt syrup
was described. Furthermore, the mechanisms of the RMCRs adsorption of the calcium
ions were elucidated by using an adsorptive isotherm and kinetic models and calculating
thermodynamic parameters.

2. Materials and Methods
2.1. Materials

Hydrochloric acid (HCl, 37–39%), calcium chloride (AR), and sodium hydroxide
(AR) were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).
EGMRA was provided by the Guangxi Key Laboratory of Forest Products Chemistry and
Engineering (Nanning, China) [15]. The remelt syrup after carbonation and decoloration
by anion resin was kindly provided by Fangcheng Sugar Refinery (Fangchenggang, China).
Commercial resins, including four derivatives of the styrene-divinylbenzene copolymer
(types: FPA51, FPC22 Na, FPA40 Cl, FPA90 Cl, FPC14 Na, FPC23 H, and FPC22 H),
and one polymethacrylic acid (type: FPA98 Cl) were purchased from Dow Chemical
(Shanghai, China).

2.2. Preparation and Characterization of RMCRS

The RMCRs used in this study were all self-prepared, and followed a previous prepa-
ration process with some modifications [16]. The functional monomers MAA (6.32 g), the
porogen polypropylene glycol (1.39 g), the cross-linker EGMEA (20.25 g), and AIBN (0.2 g)
were dissolved in ethyl acetate (60 mL) by sonication to obtain an organic phase. SDS
(0.02 g) and PVA (0.02 g) were dissolved in deionized water in a 250 mL three-necked
flask, and then the organic phase was added at 60 ◦C. The mixture was thermally polymer-
ized at 80 ◦C for 8 h and stirred at 200 rpm. The resins were extracted with ethanol and
deionized water, then immersed in 3.0% NaOH solution to ionize the COOH groups to
COO− groups, and ultimately washed continuously with deionized water until the pH
was approximately 7.0.
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2.3. Static Adsorption and Regeneration of the Resins

The optimum adsorbent dosage, temperature, pH value, and time for calcium ions
adsorption by RMCRs were determined by preliminary experiments. The adsorption of
calcium ions onto the RMCRs was carried out in a conical bottle containing 50 mL of
calcium ions solution and 0.200 g of RMCRs. The adsorption isotherms of calcium ions
with different initial concentrations (30, 60, 90, 120, and 150 mg·L−1) were obtained at
temperatures of 328, 338, and 348 K. Kinetic experiments were conducted in glass flasks
that contained 500 mL of calcium ions solutions at a pH of 7.0 with a calcium ions’ initial
concentration of 150 mg·L−1 and 2 g of RMCRs. The conical bottles were oscillated at
100 rpm at 348 K and sampled at regular time intervals. The concentration was determined
by ICP-OES (iCAP 600 Seris, Thermo Fisher Scientific, Waltham, MA, USA). The pH value
was adjusted by HCl and NaOH solutions with concentrations of 0.1 mol·L−1, and the
effect of pH value on calcium ion adsorption was investigated. The resins after adsorption
were shaken with 0.1 mol·L−1 of HCl for 12 h at 298 K for regeneration. RMCRs were tested
for reusability through adsorption regeneration cycles.

2.4. Fixed-Bed Column Experiments

The fixed-bed on calcium ions adsorption was conducted in silica sand glass columns
(Ø1.5 × 20 cm2) filled to depths of 4 cm with RMCRs. Under the drive of the pressure
provided by a peristaltic pump, the syrup (45 ◦Bx, pH = 7.0) was passed through the
column at a rate of 2.0 mL·min−1, and the effusive calcium ions solutions were determined
at various intervals.

2.5. Analysis

The RMCRs before and after the adsorption of calcium ions were characterized by
Fourier-transform infrared spectroscopy (FTIR) (Nicolet 5700, Thermo Fisher Scientific,
Waltham, MA, USA), X-ray diffraction (XRD) (Siemens D5000 diffractometer, Bruker, Ger-
many), X-ray photoelectron spectroscopy (XPS) (ESCALAB 250Xi, Thermo Fisher Scientific,
Waltham, MA, USA), and field emission scanning electron microscopy (FE-SEM) (JSM-
7500F, JEOL, Tokyo, Japan) with energy-dispersive spectrometry (EDS). The zeta potentials
of RMCRs were measured with a Zeta Potential Analyzer (Zetasizer 2000 Analyzer, Malvern,
UK) at an initial pH ranging from 2.0 to 12.0.

After each experiment, the solution was filtered through 0.45 µm filters and the con-
centration of calcium ions was analyzed by inductively coupled plasma–atomic emission
spectroscopy. All the adsorption/regeneration experiments were performed at 100 rpm
with triplicates and the results were averaged from all replicates. The adsorption efficiency
(qt) and removal rate (R) were calculated as follows:

qt =
(C0 − Ct)× V

m
(1)

R(%) =
C0 − Ct

C0
× 100 (2)

where qt represents the amount (mg·g−1) of calcium ions adsorbed at time t (min);
C0 (mg·L−1) and Ct (mg·L−1) are the initial concentration and t (min) concentration of
calcium ions, respectively; V (L) is the volume of the calcium ions solution; and W is the
weight of the RMCRs.

3. Results and Discussion
3.1. Characterization of the RMCRs
3.1.1. N2 Adsorption–Desorption Isotherm Analysis

The pore structures and specific surface areas of the RMCRs were determined by using
adsorption–desorption experiments, as shown in Figure 1a. The RMCRs’ isothermal curves
also showed type II curves with well-defined H1 hysteresis-type loops, thus inferring
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cylindrical pores with a uniform macroporous structure [17]. The pore structures of the
RMCRs had an average pore diameter of 42.40 nm (Figure 1b), Brunauer–Emmett–Teller
(BET) surface area of 10.24 m2·g−1, and cumulative pore volume of 22.20 mm3·g−1. Thus,
the RMCRs could exhibit excellent adsorption abilities on account of their high interconnect
pores and high permeability, which facilitates the diffusion of adsorbents.

Polymers 2022, 14, x FOR PEER REVIEW 4 of 15 
 

3.1. Characterization of the RMCRs 
3.1.1. N2 Adsorption–Desorption Isotherm Analysis 

The pore structures and specific surface areas of the RMCRs were determined by 
using adsorption–desorption experiments, as shown in Figure 1a. The RMCRs’ isother-
mal curves also showed type II curves with well-defined H1 hysteresis-type loops, thus 
inferring cylindrical pores with a uniform macroporous structure [17]. The pore struc-
tures of the RMCRs had an average pore diameter of 42.40 nm (Figure 1b), Brunauer–
Emmett–Teller (BET) surface area of 10.24 m2·g−1, and cumulative pore volume of 22.20 
mm3·g−1. Thus, the RMCRs could exhibit excellent adsorption abilities on account of their 
high interconnect pores and high permeability, which facilitates the diffusion of adsor-
bents. 

 
Figure 1. Characterization of the RMCRs by N2 adsorption–desorption isotherms (a), pore size dis-
tributions (b), TGA (c), and SEM (d,e). 

3.1.2. TGA Analysis 
The thermal stability of the RMCRs was characterized by thermogravimetric analy-

sis (STA449F3, Netzsch-Gerätebau GmbH, Selb, Germany). The results are presented in 
Figure 1c. RMCRs began to decompose at 220 °C due to the decomposition of rosin [18]. 
The onset temperature for RMCRs decomposition was approximately 220 [19]. The ap-
parent weight loss of RMCR mainly occurred at temperatures ranging from 300 to 450 
°C. The temperature of desalination in the sugar industry is commonly under 100 °C. 
Therefore, the RMCRs have high thermal and chemical stability and are appropriate for 
removing calcium ions from remelt syrup. 

3.1.3. FE-SEM Analyses 
The morphology and size of RMCRs were characterized by FE-SEM, and repre-

sentative images are shown in Figure 1d,e. In the panoramic image, RMCRs were regu-
lar spheres with smooth, porous surfaces. The internal holes of the RMCR were inter-
connected. The rich porous structures of the RMCRs not only promoted the liquid mass 
transfer but also better access to the interaction sites [20]. Thus, it is beneficial to elevate 
the adsorption of calcium ions from remelt syrup [14]. 

Figure 1. Characterization of the RMCRs by N2 adsorption–desorption isotherms (a), pore size
distributions (b), TGA (c), and SEM (d,e).

3.1.2. TGA Analysis

The thermal stability of the RMCRs was characterized by thermogravimetric analysis
(STA449F3, Netzsch-Gerätebau GmbH, Selb, Germany). The results are presented in
Figure 1c. RMCRs began to decompose at 220 ◦C due to the decomposition of rosin [18]. The
onset temperature for RMCRs decomposition was approximately 220 [19]. The apparent
weight loss of RMCR mainly occurred at temperatures ranging from 300 to 450 ◦C. The
temperature of desalination in the sugar industry is commonly under 100 ◦C. Therefore,
the RMCRs have high thermal and chemical stability and are appropriate for removing
calcium ions from remelt syrup.

3.1.3. FE-SEM Analyses

The morphology and size of RMCRs were characterized by FE-SEM, and representative
images are shown in Figure 1d,e. In the panoramic image, RMCRs were regular spheres
with smooth, porous surfaces. The internal holes of the RMCR were interconnected. The
rich porous structures of the RMCRs not only promoted the liquid mass transfer but also
better access to the interaction sites [20]. Thus, it is beneficial to elevate the adsorption of
calcium ions from remelt syrup [14].

3.2. Static Adsorption Experiments
3.2.1. Effect of RMCRs Dosage

The influences of RMCRs dosage on the adsorption capacity of calcium ions are
presented in Figure 2a. With the increase in RMCRs dosage, the effective adsorption
area increased, hence the removal efficiency promotion. However, the increase in the
resin dosage increased the unsaturated loca on the adsorbent surface, thereby decreasing
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adsorption efficiency. In all the subsequent experiments, the solid-to-liquid ratio of 4.0 g·L−1

was selected as the optimal RMCRs dosage for calcium ions adsorption in consideration of
efficiency and economy. Hence, RMCRs have great potential use in the removal of calcium
ions from remelt syrup.
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3.2.2. Effect of Temperature

As scanned in Figure 2b, the temperature rose from 308 K to 348 K, and the qe increased
from 27.4 mg·g−1 to 37.5 mg·g−1 under other equal conditions. The increase in temperature
enhanced the binding of calcium ions to RMCR adsorption sites, due to the movement of
calcium ions in the solution being accelerated. Hence, 348 K was selected as the optimal
temperature for calcium ions adsorption. The adsorption of calcium ions by RMCRs is an
endothermic process.

3.2.3. Effect of Contact Time

According to Figure 2c, the calcium ions absorption capacity over RMCRs gradually
increased in the beginning, and then steadily reached equilibrium after 600 min, which
indicates a large number of active sites on the surface of the adsorbent in the initial stage.
However, the adsorption sites were occupied, and the adsorption rate slowly decreased
until equilibrium was reached. Adsorption equilibrium was reached in approximately 10 h,
the qe of RMCR was 37.05 mg·g−1, and the corresponding removal rate was 90%. Thus, the
contact time was set to 10 h in subsequent experiments.

3.2.4. Effect of pH

The pH plays a vital role in the adsorption of calcium ions by RMCRs. The effects of
initial pH (2.0–8.0) on the calcium ions adsorption by the RMCRs are shown in Figure 2d.
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The zeta potential value was correlated with the charge of the RMCRs and reflected their
adsorption characteristics. Here, we focused on the main functional group of RMCRs
involved in calcium ions adsorption, namely, the −COONa groups. This group could be
very easily ionized to form −COO− groups. The zeta potentials of RMCRs are shown in
Figure 3, with pHpzc values of 2.7. At pH = 2 (pH < pHpzc), the removal rate of calcium ions
was lower, due to the positive charge on the surface of RMCRs; thus, the electrostatic repul-
sion interrupted the adsorption of calcium ions. When the solution pH = 3 (pH > pHpzc),
the surfaces of the RMCRs acquired negative charges. Thus, calcium ions and resins are
attracted by electrostatic forces. Therefore, in the range of pH 2.0 to 3.0, the removal per-
centages sharply rose from 60.87% to 84.08%. When the pH > 4.0, the adsorption capacity
was basically constant, as confirmed by the pHpzc (zero charge points) and zeta potential of
RMCRs. At pH 8.0, the adsorption capacity of RMCRs decreased because the system could
present molecular agglomeration due to the number of intermolecular interactions and
induced precipitation processes or an increase in viscosity [21]. The supreme adsorptivity
for calcium ions was obtained at pH 7.0. Therefore, pH 7.0 is considered the optimum
condition and used hereafter.
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3.3. Adsorption Kinetics

The absorption data were investigated by the pseudo-first-order kinetic, pseudo-
second-order kinetic, and intraparticle diffusion equations to explore the calcium ions
capacity of RMCRs. Linear forms of equations of these models can be written as follows:

Pseudo-first-order kinetic equation [22]:

log(qe − qt) = log qe −
K1

2.303
· t (3)

Pseudo-second-order kinetic equation [23]:

t
qt

=
1

K2 · q2
e
+

t
qe

(4)

Intraparticle diffusion equation [8]:

qt = K3 · t0.5 + C (5)

In the above equations, qt and qe are the calcium ions adsorption capacity (mg·g−1)
at time t and equilibrium time, respectively; K1 (min−1), K2 (g·mg−1·min−1), and K3
(mg·g−1·min0.5) are the rate constants of the pseudo-first-order kinetic, pseudo-second-
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order kinetic, and intraparticle diffusion equations, respectively; t 0.5 (min0.5) is the square
root of the contact time; and C represents the boundary layer thickness.

The fitting results are shown in Figure 4a–c, respectively. The pseudo-first-order
equation explains the experimental data well compared with the other two equations,
and the adsorbed quantities calculated (35.60 mg·g−1) by this model are closer to those
determined experimentally (37.05 mg·g−1); thus, the main rate-limiting step of adsorption is
physical adsorption. However, Figure 4c illustrates the separation of the adsorption process
into two stages, namely fast adsorption and slow adsorption. Initially, calcium ions are
adsorbed onto the surfaces of the RMCRs; after the surfaces are saturated, they gradually
filter into the pore and inner surfaces of RMCRs by intraparticle diffusion until sorption
decreases to equilibrium. Therefore, the calcium ions in aqueous solutions adsorbed onto
RMCRs is a complicated procedure that involves boundary layer and intraparticle diffusion.
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3.4. Adsorption Isotherms and Thermodynamics

Adsorption isotherms facilitate the description of the interaction between calcium ions
and RMCRs’ surfaces at equilibrium. The adsorption isotherms at 328, 338, and 348 K are
shown in Figure 5. The qe of RMCRs increased with the concentration of calcium ions and
initial temperature.
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The isotherm data were fitted by the Freundlich and Langmuir models to investigate
the adsorption behavior. The experimental data of isotherm models are generally employed
to delineate by adsorption equations and can be written as follows:

Freundlich model [22]:

qe = kF · C
1
n
e (6)
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Langmuir model [24]:

qe =
qm · kL · Ce

1 + kL · Ce
(7)

where KF (mg·L−1) represents the Freundlich constant; 1/n is the strength of adsorption;
and KL (L·mg−1) and qm (mg·g−1) are constants correlated with the affinity of the adsorption
sites for RMCRs, respectively.

Table 1 summarizes the fitting results, in which the Freundlich and Langmuir models
depict the isotherm data adequately. N is related to the adsorption driving force and the
energy distribution of the adsorption sites. As shown in Table 1, the values of 1/n are
between 0.1 and 0.5, which indicate that the adsorption of calcium ions on RMCRs is
facile. As a result, the Freundlich model performed better (R2 > 0.99) for describing the
adsorption system in the range of concentrations and temperature ranges studied. Hence,
calcium ions are adsorbed as a heterogeneous surface of an adsorbent and multilayer. Some
heterogeneities on the surface of the RMCRs will take effect in calcium ions adsorption
because of the existence of carboxyl and the abundant pore structures of RMCRs. These
results further demonstrate the excellent promise in the removal of calcium ions by RMCRs
in the sugar industry.

Table 1. Adsorption isotherm parameters of calcium ions onto RMCRs.

Temperature (K)
Freundlich Constants Langmuir Constants

1/n KF
(mg·g−1) R2 qm

(mg·g−1)
KL

(L·mg−1) R2

328 0.4353 3.586 0.9974 25.75 0.05989 0.9088

338 0.4056 4.735 0.9957 28.79 0.1158 0.9313

348 0.4280 5.716 0.9954 30.13 0.2768 0.9282

At 348 K, the adsorption capacity of calcium ions increases, illustrating the endother-
mic nature of the adsorption process.

Equations (8) and (9) were applied to the experimental results and Kd values of
different temperatures to calculate the thermodynamic parameters (∆H, ∆S, and ∆G) [25]:

∆G = −RT ln Kd (8)

ln Kd =
∆S
R

− ∆H
RT

(9)

where R is the universal gas constant (8.314 J·mol−1·K−1). lnKd is plotted with 1/T, the
slope and intercept are acquired, and ∆H and ∆S are calculated; and the thermodynamic
parameters are listed in Table 2. ∆G values (−1.729 to −3.133 kJ·mol−1) were negative
at various temperatures, proving that the process was feasible and spontaneous. In gen-
eral, ∆G values between −20 and 0 kJ·mol−1 represent physisorption. The ∆H value
(21.29 kJ·mol−1) indicated that the process was endothermic. During calcium ions ad-
sorption on RMCRs, the positive value of ∆S indicated that the randomness between the
solid/solution interfaces increased.

Table 2. Thermodynamic parameters of the calcium ions adsorption onto RMCRs.

∆H
(kJ·mol−1)

∆S
(J·mol−1·K−1)

∆G
(kJ·mol−1)

328 K 338 K 348 K

21.29 70.18 −1.729 −2.431 −3.133
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3.5. Effect of Remelt Syrup Brix

The calcium ions removal at different Brix values of the remelt syrup was investigated.
As shown in Figure 6a, the removal rate of calcium ions decreased at 55 ◦Bx. Brix values of
the remelt syrup decreasing in remelt syrup can decrease the mass concentration gradient
pressure and viscosity. Brix values of the remelt syrup provide a power to overcome the
bulky transfer resistance of calcium ions between solution and RMCRs [26]. Hence, the
reduction in the initial remelt syrup Brix can enhance the interaction strength between
calcium ions and RMCRs. The reduction in the initial remelted syrup sugar content can gain
the interaction of calcium ions with the sugar content of the remelted syrup. Considering
adsorption efficiency, we selected 45 ◦Bx of remelt syrup in the subsequent experiment. On
the other hand, it also shows that RMCRs can adapt to the viscosity and pressure of syrup
and is suitable for the sugar industry.
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3.6. Comparison with Various Commercial Adsorbents

The removal rate of calcium ions on the RMCRs was compared with those on other
commercial resins (i.e., FPA 51, FPA 98 Cl, FPC 22 Na, FPA 40 Cl, FPA 90 Cl, FPC 14 Na, FPC
23 H, and FPC 22 H) (Figure 6b). The main physicochemical properties of the commercial
resins are presented in Table 3. The removal rates of calcium ions by FPA 51, FPA 98 Cl,
FPC 22 Na, FPA 40 Cl, FPA 90 Cl, FPC 14 Na, FPC 23 H, FPC 22 H, and RMCR were
12.54%, 27.26%, 33.25%, 34.61%, 25.15%, 90.82%, 91.65%, 91.48%, and 90.71%, respectively.
FPC 14Na, FPC23 H, FPC22 H, and RMCRs revealed the superior adsorption abilities for
calcium ions, suggesting that they would be excellent adsorbents for removing calcium
ions from remelt syrup.

Table 3. Physicochemical properties of the commercial resins used.

Commercial
Resins Particle Size (mm) Exchange Capacity

(eq·L−1) Matrix Structure Functional Group

FPA51 0.49–0.69 ≥1.3 Styrene-divinylbenzene copolymer −NR2
FPA98 Cl 0.63–0.85 ≥0.8 polymethacrylic acid R4NOH
FPC22 Na 0.60–0.80 ≥1.7 Styrene-divinylbenzene copolymer −SO3Na
FPA40 Cl 0.50–0.75 ≥1.0 Styrene-divinylbenzene copolymer R4NOH
FPA90 Cl 0.65–0.82 ≥1.0 Styrene-divinylbenzene copolymer R4NOH
FPC14 Na 0.60–0.80 ≥2.0 Styrene-divinylbenzene copolymer −SO3Na
FPC23 H 0.58–0.80 ≥2.2 Styrene-divinylbenzene copolymer −SO3H
FPC22 H 0.60–0.80 ≥1.7 Styrene-divinylbenzene copolymer −SO3H
RMCR 0.35–0.83 ≥0.3 polymethacrylic acid −COONa

Lead adsorption capacities vary depending on adsorbent properties such as structure,
surface area, porosity, and adsorbent polarity. Compared with FPA 51, FPA 98 Cl, FPA
40 Cl, and FPA 90 Cl are all anion exchange resins, and FPC 14 Na, FPC 23 H, FPC 22 H,
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and RMCRs are all cation exchange resins with superior adsorption abilities for calcium
ions, thereby showing that the polarity of the adsorbent is a key element determining the
adsorption capacity. Therefore, RMCRs with carboxyl functional groups are a potential
adsorbent in the sugar industry.

3.7. Regeneration

One of the important factors in evaluating adsorbent performance is reusability. After
the adsorption, RMCRs were regenerated with HCl (0.1 mol·L−1) solutions, washed with
deionized water until neutral, and used for the next adsorption experiments. The findings
are shown in Figure 6c, and the regeneration efficiency was successively regenerated eight
times. Even after eight regenerations, the RMCRs still contain a remarkable removal rate
(80.87%). Hence RMCRs can be repeatedly used for the removal of calcium ions from
remelt syrup.

3.8. Column Adsorption Performance and Models

Beyond the experiments already described, calcium ions from remelt syrup adsorption
on RMCRs was estimated on fixed-bed columns. Figure 7 shows the relationship between
Ct/C0 and throughput volume when the bed depth is 4.0 cm. The breakthrough point is
defined as the time when the effluent concentration reaches a percentage of the influent
concentration (C0), which is considered unacceptable, e.g., 10% (C/C0 = 0:1). For C/C0 = 0.1,
the number of bed volumes that pass through the adsorbent was 480 BV. The Thomas [27],
Yoon–Nelson [28], and Adams–Bohart models [29] are devoted to estimate the sorption
adsorption behavior.
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The Thomas, Yoon–Nelson, and Adams–Bohart model equations can be written as
follows, respectively:

Thomas model [27]:

Ct

C0
=

1

1 + exp(KThq0m
Q − KThC0t)

(10)

Yoon–Nelson model [28]:

Ct

C0
=

exp(KYNt − τKYN)

1 + exp(KYNt − τKYN)
(11)
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Adams–Bohart model [29]:

Ct

C0
= exp(kABC0t − kABN0

Z
F
) (12)

In the above equations, KTh, KYN, and kAB are the Thomas rate constant (mL·min−1·mg−1),
Yoon–Nelson rate constant (min−1), and the Adams–Bohart rate constant (min−1), re-
spectively; q0 represents the column adsorption ability (mg·g−1), Q is the flow velocity
(mL·min−1), and m is the mass of the RMCR (g). C0 and Ct are the calcium ion concen-
trations at the inlet and outlet, respectively (mg·L−1). τ is the time (min) required for
the adsorbate to breakthrough 50%. t (min) is the filtering time. N0 is the saturation
concentration of the bed (mg·L−1), and tb is the service time at breakthrough (h).

From Table 4, the breakthrough is more fitted with the Thomas model (R2 = 0.966).
According to Thomas model calculation, the dynamic saturated adsorption capacity of
RMCRs for calcium ions from remelt syrup was 37.90 mg·g−1. The calculated value was
close to the actual experimental results (37.05 mg·g−1). It was found that the Thomas model
could be used to describe the dynamic adsorption characteristics of calcium ions adsorbed
by RMCRs and predict the dynamic adsorption amount in industrial application.

Table 4. Model parameters for RMCR fixed-bed columns calcium ions.

Thomas Model Yoon-Nelson Model Adams-Bohart Model

q0
(mg·g−1)

KTh × 10−5

(L·mg−1·min−1) R2 KYN × 10−2

(min−1)
τ

(min) R2 Z
(cm)

N0
(mg·L−1)

kAB × 10−5

(L·mg−1·min−1) R2

37.90 6.440 0.9666 1.165 314.3 0.9666 4 484313 4.616 0.9638

3.9. Characterization of RMCRs before and after Adsorption of Calcium Ions
3.9.1. FTIR Analysis

The FTIR spectra of RMCRs and RMCRs with adsorbed calcium ions are shown in
Figure 8. The spectra show wide absorption peaks at 3410 and 3391.52 cm−1, which assign
to the O−H bond stretching vibration in the hydroxyl function groups [30]. The bands
at 2987 and 2937.93 cm−1 originate from the symmetry flex vibration of C−H bonds in
−CH2−, which are derived from the concatenation of carbonaceous species in RMCRs and
remelt syrup. Wavenumbers indicate the adsorption of organic ingredients deposited on the
RMCRs [31]. After calcium ions adsorption, the asymmetric −CH2− stretching vibration
shifts from 2987 cm−1 to 2937 cm−1, thus indicating interactions with alkyl chains of RMCRs.
The bands of calcium ions adsorbed on RMCRs at 1716.37 cm−1 (C=O), 1558.22 cm−1

(COO−), and 911.26 cm−1 (C−O−C) are assigned to the C=O in ester carboxyl or carboxyl
groups, which are attributed to the carboxyl group on RMCRs. This proved the interaction
of calcium ions and the –COO– of RMCRs. The wavenumbers at 1457.5 cm−1 (C−OH),
1418.3 cm−1 (COO−), and 1345.25 cm−1 (C−N) are due to the existence of proteins in the
remelt syrup [32–35]. The sucrose compounds and phenols characteristic bands include
1052.26 (C−O) and 3391.52 cm−1 (O−H). These peaks are due to polysaccharides from
remelt syrup [36]. The above results demonstrate that polysaccharides, protein, phenols,
and sucrose can also be adsorbed on RMCRs [36].
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peaks before and after adsorption of calcium ions, respectively, and XPS spectra of calcium ions (c)
for RMCRs with adsorbed calcium ions, XPS fully scanned spectra (f), EDS spectra of RMCRs (g) and
RMCRs with adsorbed calcium ions (h), and FTIR spectra (i) of RMCRs (black solid line) and RMCRs
with adsorbed calcium ions (red solid line).

3.9.2. XPS Analysis

XPS analysis was enforced to evaluate the elemental composites and chemical states
RMCRs and RMCRs with adsorbed calcium ions, which are shown in Figure 8. The
deconvolution of C 1s and O 1s peaks is also presented in Figure 8. The C 1s peaks of
RMCRs (a) yield three contributions, which are 284.8 eV (C−C), 286.6 eV (C=O), and
288.1 eV (COO−) [37]. The shift in the carbon signal at 286.6 eV to lower BE after calcium
ions adsorption is probably caused by the interaction of calcium ions with C−OH [38].
The peaks at 285.9 eV (C−C) and 287.4 eV (C=O) are related to sucrose compounds and
phenols from remelt syrup. For the O 1s of RMCRs (b), the peak at 531.3 eV is attributable
to C=O, that at 532.1 eV is attributable to C−O, and that at 535.8 eV is attributable to COO−.
However, after calcium ions adsorption, the peak at 532.1 eV shifts to higher BE, which is
caused by the interaction of calcium ions with oxygen atoms.

In Figure 8c, calcium ions are adsorbed through ionic bonding, thereby forming –
(COO)2Ca. The peaks of Ca 2p3/2 at 347.2 and 346.9 eV represent the bonds between
calcium ions and −COO−. The peak of Ca 2p1/2 at 350.6 eV is attributable to CaCO3 on
the surfaces of the RMCRs. In Figure 8f, the Na 1s peak height of RMCRs with adsorbed
calcium ions is lower than that of RMCRs; instead, the binding energy of Ca 2p at 346.6 eV
is identified, which indicates that the ion exchange between −COONa and calcium ions
contributes to calcium ions removal [39]. At the same time, it also shows that RMCRs have
a certain ion exchange effect on the removal of calcium ions.
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3.9.3. EDS Analysis

The energy-dispersive X-ray spectroscopy (EDS) analysis (Figure 8g) of RMCRs sug-
gests that the RMCRs contain carbon, oxygen, and a mass of sodium. EDS analysis
(Figure 8h) implies that RMCRs with adsorbed calcium ions contains a spot of sodium,
calcium, and potassium. Carbon, oxygen, and sodium come from RMCRs; potassium and
calcium are from remelt syrup. The EDS spectra of RMCRs and RMCRs with adsorbed
calcium ions suggest that the ion exchange may drive the uptake process of calcium ions.

The comprehensive analysis of FTIR, XPS, and EDS showed that the calcium ions from
remelt syrup were adsorbed on RMCRs in this work. RMCRs have a superior adsorption
effect on calcium ions and have great potential for application in the sugar industry.

4. Conclusions

This work investigates the potential of RMCRs for calcium ions removal from remelt
syrup. The results show that the maximum monolayer adsorption capacity of calcium ions
is 37.05 mg·g−1 at a resin dosage of 4 g·L−1, pH of 7.0, temperature of 75 ◦C, and contact
time of 10 h. The removal rate of calcium ions from remelt syrup by RMCRs is 90.71%. The
adsorption of calcium ions on RMCRs is pseudo-first-order in proportion and conforms
to the Freundlich isotherm model. The adsorption process is endothermic, the adsorption
process is physical adsorption and involves weak chemical bonds, and the analyses of FTIR,
XPS, and EDS prove that ion exchange occurs during the adsorption process. The Thomas
model describes the dynamic adsorption well. Compared with commercial resins, RMCRs
have a superior removal rate for calcium ions from remelt syrup. In summary, RMCRs
can be used as adsorbents for removal of calcium ions from remelt syrup, and potentially
useful in improving the quality of remelt syrup and reducing or eliminating the use of
chemicals in the sugar industry.
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