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Abstract: The widespread use of fluazifop-p-butyl (FPB) contributes to its presence in the environment.
Considering the ecological risks of FPB residues in the environment, the anatase nanometer
titanium dioxide (nano-TiO2) mediated photocatalytic degradation of FPB was studied by smearing
FPB and nano-TiO2 together on a glass plane; illumination, trimethylsilane derivatization of
photolysis products, high performance liquid chromatography (HPLC) quantitative analysis and
gas chromatograph-mass spectrometer (GC-MS) identification were used. Results showed that the
first order dynamic model could describe the photodegradation of FPB by nano-TiO2 mediated, and
the photodegradation and photosensitization rates were found to be positively correlated with the
dose of nano-TiO2 at lower dose ranges. It is noticeable that a strong photosensitization effect was
exhibited on degradation of FPB, not only under high-pressure mercury lamps, but also simulated
sunlight (xenon lamp light). Ultimately, twelve main photolytic products were reasonably speculated,
whilst five photolysis pathways were proposed. These results together suggest that nano-TiO2 can be
used as an effective photosensitizer to accelerate FPB photolysis.

Keywords: FPB; nano-TiO2; photocatalytic degradation; derivatization; GC-MS

1. Introduction

The use of chemical pesticides in modern agriculture is vital to guarantee crop yield and quality
and, as such, it will continue to be widely applied. However, the intense use of pesticides will inevitably
lead to environmental contamination and ultimately constitute threats to human health. Based on their
toxic nature, there is considerable concern regarding their environmental risks.

FPB (Fluazifop-p-butyl) is a highly selective systemic, post-emergence aryloxyphenoxypropionate
(AOPP) herbicide that is registered for use in selectively controlling both annual and perennial grassy
weeds for many crops, but does little or no harm to non-graminaceous crops [1]. FPB is described
in the database PPDB (Pesticide Properties Database) as a straw color liquid with a melting point
of −46 ◦C and low water solubility (s = 0.93 mg/L, 20 ◦C) and volatile (v.p. = 0.12 mPa, 20 ◦C). It is
resistant to hydrolysis at pH 4 and pH 7, but hydrolyzes rapidly at pH 9. The octanol−water partition
coefficient (log P) of FPB is 4.5 (pH 7, 20 ◦C), and its Henry’s law constant is 4.9 × 10−2 Pa m3/moL
(25 ◦C). According to the literature [2–6], AOPPs can pass readily into fish tissue, and is thus highly
toxic to aquatic species, particularly fish, and can induce liver toxicity and injury. Furthermore, FPBs
may induce pathological changes in testes [7]. The widespread use of AOPPs contributes to their
presence in the environmental matrices [8,9]. Therefore, the accumulation of these herbicides may
potentially destroy fish populations or elevate the concentration of undesirable toxicants in natural
water systems and jeopardize the health of humans.
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In the environment, FPB is degraded primarily through hydrolysis with an estimated half-life
of one to two weeks. However, it is relatively stable to breakdown using ultraviolet or sunlight and
other chemical pathways [2]. In recent decades, there have been some reports on the metabolism of
FPB by microbial degradation [10–15]; however, this degradation approach is not always practical in
some cases, due to factors such as the inefficient efficiency of biodegradation, the greater impact of
environmental conditions on the activity of the screened microorganisms, the high cost of using these
microorganisms, and the long period required reach the degradation index of the herbicide residue.
Therefore, it is necessary to develop innovative approaches to prevent environmental contamination of
FPB from agricultural applications.

Photosensitizers refer to a class of molecules that transfer energy to the reactants via proton
absorption in photochemical reactions, thereby promoting the degradation of the reactants. Common
photosensitizers include inorganic compounds, metal ions, natural organic matters, surfactants, and
some pigments. TiO2 is one of the most appropriate semiconductor materials to be employed as a
photosensitizer. The photocatalytic properties of TiO2 are derived from the formation of photogenerated
charge carriers (the so-called electron-hole pairs) which occurs upon the absorption of ultraviolet
corresponding to the band gap [16]. Anatase-TiO2 is a wide band gap semiconductor with a band
gap energy (Ebg) of 3.2 eV, which is equivalent to the energy of a photon with a wavelength of
387.8 nm [17,18]. When anatase TiO2 was irradiated by the light source with a wavelength of less than
387.8 nm, the electrons of TiO2 could be excited into the conduction band from the valence band to
generate the electron-hole pairs. The hole has a greater reactivity and is the main component to carry
the light quantum. The photogenerated holes in the valence band diffuse to the TiO2 particle surface
and react with adsorbed water molecules to form hydroxyl radicals (•OH) with strong oxidability and
can directly decompose organic pollutants. Meanwhile, electrons in the conduction band typically
participate in reduction processes [19].

The nano-TiO2 was first employed to degrade organic pollutants in water [20]. Thereafter,
photocatalytic oxidation by nano-TiO2 has attracted substantial attention as a water pollution control
technology [21,22]. Currently, nano-TiO2 has become one of the most popular photocatalysts due to its
effective photodegradation of the refractory organic compounds, its commercial availability due to
being relatively inexpensive, its chemical stability under harsh conditions, the possibility of coating as
a thin film on solid support, ease of preparation, and its highly oxidizing photogenerated holes. There
is also abundant literature on the photocatalytic degradation of organic compounds [23–31].

Photocatalytic degradation is an important non-biodegradation pathway of pesticides in the
environment. The processes and products of photolysis have a great impact on the efficacy, metabolism,
toxicity and environmental fate of pesticides. The action of shortwave radiation may chemically alter
pesticides in the environment. The ultraviolet absorption spectrum of FPB shows the typical main
maximum absorption at about 225 nm and 270 nm, respectively (Figure 1).
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Derivatization of organic acids [32–34], phenol compounds [35,36] and alcohols [37–39], especially
hydroxy acids and alcohols, to volatile derivatives is necessary prior to GC or GC-MS analysis. In
addition, the solubility of these silicane derivatives in the low–polar solvents can be improved, thereby
making them easier to perform GC or GC-MS analysis.

Nano-TiO2 was one of the most popular and efficient photocatalysts for photodegradation of
organic pollutants. In order to rule out other interfering factors, an ingenious smear method was
adopted to find a low-cost and environmentally friendly method to accelerate photodegradation of
FPB in the environment.

2. Materials and Methods

2.1. Chemicals and Equipment

The following chemicals and reagents were used in this study: FPB (94.86% purity, Dr. Ehrenstorfer,
Augsburg, Germany); N, O-bis (trimethylsilyl) trifluoroacetamide (BSTFA), trimethylchlorosilane
(TMCS) and nano-TiO2 powder (anatase, <25 nm particle size, and 99.9% purity) (Sigma-Aldrich, Duen,
Germany); acetonitrile and n-hexane (HPLC grade) (Mreda Medical Technologies, Inc., Columbia,
SC., USA).

2.2. Analytical Instruments

The photocatalytic degradation experiments were conducted under a rotary photochemical reactor
(Nanjing xujiang electromechanical plant, China) equipped with a high-pressure mercury lamp (500 W,
main emission line spectrum at 365 nm) and a xenotest instruments (Shanghai guangpin test equipment
manufacturing Co., Ltd., China) equipped with a Xenon lamp (800 W/m2). The other instruments
used in this study were as follows: Biotage TurboVAP® LV Concentration Workstation (Zymark Corp.,
Boston, MA, USA), UV-2450 Spectrophotometer and UFLC system (Shimadzu Corporation, Kyoto,
Japan), Agilent 7890A-5975C Inert XL GC-MS (Agilent Technology Inc., Santa Clara, CA, USA).

2.3. Experimental Procedure

2.3.1. Optimization of Nano-TiO2 Dosage

The quartz slides (76 mm × 26 mm), which were smeared with 1 mL acetonitrile suspension of
nano-TiO2 (containing 0.1 mg FPB, and 0, 2.5, 5, 10, 15, 20, 25 mg nano-TiO2, respectively), were placed
under a xenon lamp and a high-pressure mercury lamp, respectively, for photocatalytic degradation
experiments. The distance of the slides from the light source was 10 cm, and the temperature of the
reaction system was maintained at 25 ± 1 ◦C. A control experiment for dark treatment was conducted
by wrapping the slides in aluminum foil under the same conditions. After 60 min of illumination, the
slides were ultrasonically eluted in 5 mL of acetonitrile for 2 min. Next, quantitative analysis of FPB
in the eluent was performed on UFLC on a thermo BDS C18 column (4.6 mm × 250 mm, 5 µm) at a
detection wavelength of 270 nm. FPB was eluted with acetonitrile/water (55:45, v/v) at a flow rate
of 1 mL/minute. The column temperature was 30 ◦C. The injection volume was 10 µL. The limit of
detection for FPB was 0.01 mg/L. The photodegradation rate was calculated with Equation (1):

photolysis rate (%) = [(a− b)/a] × 100 (1)

where a was the residual concentration of FPB in the dark control and b was the residual concentration
of FPB in the light treatment.

2.3.2. Photolytic Kinetics

The slides which were smeared with 1 mL acetonitrile suspension of nano-TiO2 (containing 0.1
mg FPB, and optimized dosage of nano-TiO2). After the organic solvent on the slides had evaporated,
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it received radiation of the xenon lamp and the high-pressure mercury lamp for 0, 20, 40, 60, 80, 100,
120, 150, 180, 240, 300 and 360 min, respectively. Afterwards, the samples were taken at different
times to measure the residual concentration of FPB as the Section 2.3.1. Based on the obtained results,
the first-order kinetic model (Equation (2)) was established and was used to depict the nano-TiO2

mediated photodegradation of FPB.
[Ct] = [C0] e−k t (2)

T1/2 = ln 2/k (3)

E f (%) = [(k1 − k0)/k0] × 100 (4)

where t was time, [C0] and [Ct] were residual concentration at time zero and time t of light treatment,
respectively. k was the photodegradation rate constant. T1/2 (half-life) of degradation was calculated
from the rate constants (k). Ef was photosensitization efficiency, k1 was the reaction rate constant of
FPB with nano-TiO2, and k0 was the reaction rate constant of FPB without nano-TiO2.

2.3.3. Identification of Photolysis Products

In order to obtain enough photolytic products for trimethylsilane derivatization and the subsequent
identification, the reaction system was scaled up based on the optimized dosage of nano-TiO2. After
illumination of high-pressure mercury lamp for 60 min, the residues on the slides were ultrasonically
eluted with 5 mL n-hexane. Next, 250 µL solution of the photolytic products was transferred into
a 20 mL headspace vial (containing 250 µL of BSTFA + TMCS (99:1, v/v)) and allowed to undergo
derivative reaction for 30 min at a constant temperature of 65 ◦C.

The trimethylsilane derivatives were identified by GC-MS on DB-642 fused silica capillary column
(30 m × 0.25 mm, 1.4 µm). The oven temperature was started at 40 ◦C (held for 3 min), ramped at
5 ◦C/minute to 260 ◦C (held for 8 min). The temperatures of injector, quadrupole, ion source and
the interface were set at 260, 150, 230 and 260 ◦C, respectively. Helium at a constant flow rate of 1
mL/minute and 50 mL/minute was used as carrier gas and make-up gas, respectively. Injections were
made in split mode with a split ratio of 1:10. The MS was operated in electron impact mode with
an ionization potential of 70 eV and the spectra were obtained at a scan range of m/z 50 to 500. The
injection volume was 1 µL.

3. Results and Discussion

3.1. Optimized Nano-TiO2 Dosage

Figure 2 showed that the photodegradation rate of FPB by the different dosage of nano-TiO2

mediated occurred in the following order: high-pressure mercury lamp > xenon lamp > dark.
Furthermore, the maximum absorption wavelength of FPB is in the ultraviolet region (Figure 1). These
facts indicated that the shortwave radiation of the high-pressure mercury lamp could easily facilitate
the photodegradation of FPB. By contrast, the radiation of xenon lamp consists mainly of visible light
with less shortwave. Consequently, the photodegradation of FPB may not occur as readily under
radiation of a xenon lamp than under the emission of a high-pressure mercury lamp.

In addition, from Figure 2, it is not difficult to see that the photodegradation rate of FPB in 60
min depends on the dosage of applied nano-TiO2, and nano-TiO2 exhibited a clear photosensitizing
effect on FPB photodegradation at lower dose range; however, the change of sensitization efficiency
has begun to become insignificant when the dosage of nano-TiO2 increases from 10 to 25 mg in
this photochemical reaction system. This may be due to the consequences of the light shielding by
excess nano-TiO2. This indicated that the production of •OH by 10 mg nano-TiO2 was higher than
less nano-TiO2. In general, nano-TiO2 was an effective photosensitizer in photodegradation of FPB.
Therefore, the dose of nano-TiO2 was optimized at the value which was 1 mL acetonitrile suspension
of nano-TiO2 (containing 0.1 mg FPB, 10 mg nano-TiO2) in the reaction system of nano-TiO2 mediated
photodegradation of FPB.
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3.2. Photolysis Kinetics and Photosesitization Efficiency

The residual concentration of FPB in the photocatalytic degradation system was accompanied by
the first-order kinetics. (Figure 3). The photodegradation rate constant (0.049 min−1) of FPB with 10
mg nano-TiO2 under high-pressure mercury lamp irradiation was circa 4-fold than that (0.012 min−1)
without nano-TiO2, and the constant (0.017 min−1) of FPB with 10 mg nano-TiO2 under xenon lamp
irradiation was 34-fold than that (0.0005 min−1) without nano-TiO2. Based on the result, on the one
hand we infer that the irradiation of high-pressure mercury lamp could be absorbed by FPB to accelerate
its photodegradation, and on the other hand we have to recognize the strongly photosensitized FPB
degradation by nano-TiO2 under both high-pressure mercury lamp and xenon lamp. However, the
calculated Ef values (3300) by Equation (4) under xenon lamp irradiation was 8.8-fold than that (308)
under high-pressure mercury lamp irradiation. Therefore, for nano-TiO2 mediated photosensitization
degradation of FPB, the efficiency of xenon lamp irradiation is relatively higher than high-pressure
mercury lamp.
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(A) and under xenon lamp (B) irradiation.

From Equation (2), the calculated T1/2 of FPB by nano-TiO2 mediated under high-pressure mercury
lamp and xenon lamp were 14.15 min and 40.77 min, respectively. However, in the absence of
nano-TiO2, the calculated T1/2 of FPB under the two light sources was 57.76 min and 1386.29 min
(theoretical calculation), respectively. These results also clearly indicated that nano-TiO2 exerts effective
photosensitization on the photodegradation of FPB, whether it is under high-pressure mercury lamp
or xenon lamp irradiation.

3.3. Identification of Photolysis Products

As mentioned above, the advanced oxidization process has been widely used in contaminant
treatment due to being highly active and non-selective to different target compounds. However,
it might encounter the recalcitrance from parent compounds. Thus, GC-MS measurements were
carried out to elucidate the photocatalysis degradation products and degradation pathways of FPB by
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nano-TiO2 mediated. It was not difficult to see from Figure 4, with neat FPB and nano-TiO2 exposed
to ultraviolet radiation for 1 h, and afforded at least twelve photolytic products. According to the
MS analysis of the photolysis products of FPB in the total ion chromatogram (TIC), the twelve main
photolytic products were identified and listed in Table 1.

Table 1. Speculative photolytic products of FPB by nano-TiO2 mediated.

Compound No. Retention Time
(Minute) Major Fragment Ion(m/z) Speculative Structure and Precise

Molecular Weight

1 7.25 57, 75, 130
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identified as compound 5 (m/z 283). Furthermore, the fragment (m/z 310) probably derived from 
silicane derivatives of butyl 2-(4-hydroxyphenoxy)propanoate (m/z 238) which was formed by the 
fracture of the ether bond between pyridine ring and benzene ring in structure of FPB. The product 
was speculated to be compound 13 (m/z 238). In addition, the fragment with m/z of 471 may 
correspond to the result of hydroxylation of the pyridine ring or benzene ring of the FPB. It was 
inferred as compound 11 (m/z 399). In addition, the fragment with m/z of 385 probably derived from 
FPB, combining other characteristic ion fragments, the product was presumed to be 2-(4-(5-
(trifluoromethyl) pyridine-2-yloxy)phenoxy)propan-1-ol (compound 12, m/z 313). The fragment 
holding m/z of 327 should be a trimethylsilyl derivative which formed from the trimethylsilylation 
of the structure which was losing the butyl propionate in FPB structure, and it was concluded to be 
FP (compound 8, m/z 255). Others, products with m/z of 254, 235, 147, 146, 130 and 93 were 
respectively assigned as hydroquinone (compound 7, m/z 110 = 254–73−73 + 1 + 1), 5-
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Compared with the MS of FPB (compound 10, m/z 383), there was a fragment with m/z of
399 found, which might be ascribed to the remove n-butyl group (m/z 57) from FPB molecular
and then the trimethylsilyl (m/z 73) connected with it by trimethylsilylation, and combining other
characteristic ion fragments, the product was considered to be FP (compound 9, m/z 327). Subsequently,
the fragment holding m/z of 283 was also detected, which was probably formed by the removing
butyl acetate group (m/z 101) from FPB or removing carboxyl (m/z 57) from FP, it was identified
as compound 5 (m/z 283). Furthermore, the fragment (m/z 310) probably derived from silicane
derivatives of butyl 2-(4-hydroxyphenoxy)propanoate (m/z 238) which was formed by the fracture
of the ether bond between pyridine ring and benzene ring in structure of FPB. The product was
speculated to be compound 13 (m/z 238). In addition, the fragment with m/z of 471 may correspond
to the result of hydroxylation of the pyridine ring or benzene ring of the FPB. It was inferred as
compound 11 (m/z 399). In addition, the fragment with m/z of 385 probably derived from FPB,
combining other characteristic ion fragments, the product was presumed to be 2-(4-(5-(trifluoromethyl)
pyridine-2-yloxy)phenoxy)propan-1-ol (compound 12, m/z 313). The fragment holding m/z of 327
should be a trimethylsilyl derivative which formed from the trimethylsilylation of the structure which
was losing the butyl propionate in FPB structure, and it was concluded to be FP (compound 8, m/z 255).
Others, products with m/z of 254, 235, 147, 146, 130 and 93 were respectively assigned as hydroquinone
(compound 7, m/z 110 = 254–73−73 + 1 + 1), 5-(trifluoromethyl)pyridin-2-ol (compound 3, m/z 163 =

235–73 + 1), 3-(trifluoromethyl)pyridine (compound 2, m/z 147), propionic acid (compound 6, m/z 74 =

146–73 + 1), butyl propionate (compound 1, m/z 130) and phenol (compound 4, m/z 93 = 165–73 + 1).

3.4. Photodegradation Pathway

From the analysis of the molecular structure formula of FPB (Figure 5), it can be seen that the FPB
molecular contains two ether bonds and one ester bond, all of which were relatively easy to break under
high-pressure mercury lamp or xenon lamp irradiation. Combined with the speculated photolysis
products (Table 1) of FPB by nano-TiO2 mediated, it was proposed that at least four degradation
pathways and one reaction involving hydroxyl radicals exist in this degradation process, as shown in
Figure 6.
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4. Conclusions

In the photocatalytic degradation, the photosensitizers performed by transferring irradiation
energy to some light-insensitive reactants to enhance their absorptive intensity or expand their spectra.
The photosensitizing effect of nano-TiO2 was induced by irradiation sources with wavelength less than
or equal to 387.8 nm. Therefore, nano-TiO2 can be used as an effective photosensitizer to accelerate
the FPB photodegradation not only under high-pressure mercury lamps, but also when stimulated
by the solar spectrum light source (xenon lamp light). From Figure 1, we can clearly see that the
absorption of FPB degradation in the presence of nano-TiO2 becomes more intense and the absorption
peak shifted toward long wavelength in the ultraviolet absorption spectra. Thus, the significantly
broader and continuous spectrum of xenon lamp may be more conducive to light adsorption by
nano-TiO2, which may explain why xenon lamp irradiation has a higher photosensitization efficiency
than high-pressure mercury lamp. Furthermore, the xenon lamp in this study has the higher intensity,
which also contributes to its enhanced photosensitization efficiency.

According to this study, it was considered that the ether bond and the ester bond of the FPB
molecule were easily cleavable sites of the photocatalytic degradation. In addition, based on the
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photocatalytic reaction mechanism of nano-TiO2 combined with the identified photolytic products,
it can be concluded that the nano-TiO2 mediated the photocatalytic degradation of FPB belongs to
redox reaction involving hydroxyl radicals. Through a radical reaction, FPB in the environment
can be effectively photosensitized degradation. The optimal dosage of nano-TiO2 was added in the
photodegradation reaction system of FPB, and over time, it was expected to reduce the presence of
FPB in the environment.

In the traditional photocatalytic reaction system, nano-TiO2 particles are too small to be particularly
prone to loss, and the suspended particles in the solution compete with the nano-TiO2 to absorb
the radiation energy, which affects the photocatalytic performance of the photocatalyst. In recent
years, nano-TiO2 loading technology has increasingly entered the field of researchers. In this study,
nano-TiO2 mediated the photocatalytic degradation of FPB was simulated by a coating method,
and the results obtained indicate that this method is a beneficial attempt to the effective application
of solid-phase nanocatalysis. This undoubtedly broadens the comprehension and recognition of
nano-TiO2 as a photosensitizer.

In particular, considering the crucial importance of exogenous compounds for the healthy
development of the ecological environment, the detailed ecotoxicological information of photolytic
products of FPB is still an open question which must be considered in further studies.
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