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Genomic adaptation to agricultural
environments: cabbage white butterflies
(Pieris rapae) as a case study
Kristin L. Sikkink* , Megan E. Kobiela and Emilie C. Snell-Rood

Abstract

Background: Agricultural environments have long presented an opportunity to study evolution in action, and
genomic approaches are opening doors for testing hypotheses about adaptation to crops, pesticides, and fertilizers.
Here, we begin to develop the cabbage white butterfly (Pieris rapae) as a system to test questions about adaptation to
novel, agricultural environments. We focus on a population in the north central United States as a unique case study:
here, canola, a host plant, has been grown during the entire flight period of the butterfly over the last three decades.

Results: First, we show that the agricultural population has diverged phenotypically relative to a nonagricultural
population: when reared on a host plant distantly related to canola, the agricultural population is smaller and more
likely to go into diapause than the nonagricultural population. Second, drawing from deep sequencing runs from six
individuals from the agricultural population, we assembled the gut transcriptome of this population. Then, we
sequenced RNA transcripts from the midguts of 96 individuals from this canola agricultural population and the
nonagricultural population in order to describe patterns of genomic divergence between the two. While population
divergence is low, 235 genes show evidence of significant differentiation between populations. These genes are
significantly enriched for cofactor and small molecule metabolic processes, and many genes also have transporter or
catalytic activity. Analyses of population structure suggest the agricultural population contains a subset of the genetic
variation in the nonagricultural population.

Conclusions: Taken together, our results suggest that adaptation of cabbage whites to an agricultural environment
occurred at least in part through selection on standing genetic variation. Both the phenotypic and genetic data are
consistent with the idea that this pest has adapted to an abundant and predictable agricultural resource through a
narrowing of niche breadth and loss of genetic variants rather than de novo gain of adaptive alleles. The present
research develops genomic resources to pave the way for future studies using cabbage whites as a model contributing
to our understanding of adaptation to agricultural environments.

Keywords: de novo transcriptome, Population divergence, Single nucleotide polymorphism

Background
Agricultural environments have long provided an oppor-
tunity to study evolution in action [1–3], whether
through adaptation to pesticides [4–6] or adaptation of
pests to specific crops [7–9]. In some cases, agricultural
environments may even result in diversification [10] or
unique evolutionary dynamics in pests, because crop
resources are incredibly abundant and homogenous

relative to wild populations of resources [11–13]. Gen-
omic tools are facilitating novel approaches to testing
hypotheses about evolutionary responses of populations
to agriculture [14–17]. For instance, genomic studies in
aphids have shown changes in copy number, symbionts,
and gene expression associated with specific crops and
insecticides [18–21]. However, there have been calls to
study more diverse systems in order to test a range of
hypotheses about pest evolution [14].
Here, we begin to develop the cabbage white butterfly

(Pieridae: Pieris rapae) as a new system to test questions
about adaptation to agricultural environments. The
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cabbage white butterfly uses plants in the family
Brassicaceae as hosts, which includes many cultivated
species such as cabbage, canola, and radish. Thus, they
are often important pests, especially for organic farmers
[22–24]. Cabbage whites and their close relatives are
well studied with respect to behavioral, physiological,
and morphological plasticity [25–32], making them a
great system to explore the relatively untested role of
plasticity in the colonization of agricultural environ-
ments [14]. In the present study, we focus on the
hypothesis that adaptation to a novel agricultural envir-
onment occurs at least in part through selection on
standing genetic variation, resulting in a subsampling of
the ancestral population. Similar to other genetic studies
of adaptations of pests to agricultural environments
[20, 33–35], we predict that the more recent agricul-
tural population will show lower genetic diversity, as
well as some population structure and divergence des-
pite continued gene flow.
To test these predictions, we are studying a unique

population of cabbage white butterflies that is associated
with intensive canola agriculture. Northern North
Dakota, southern Manitoba and Saskatchewan have been
extensively farmed for canola since the late 1970s and
early 1980s. In the last decade, the northeastern region
of North Dakota often plants over half a million acres of
canola annually [36]. Cabbage whites in this area feed on
canola crops as both a larval host and adult nectar plant,
especially since pesticide application is minimal and,
when it does occur, is limited to early in the season
when butterfly numbers are low [37]. From the perspec-
tive of pest adaptation to agriculture, this region is truly
unique because in other regions of North America,
Brassicaceae agriculture tends to be limited to cool sea-
sons, whereas in North Dakota, canola is available
throughout most of the flight period of cabbage white
butterflies. This represents an abundant, predictable and
high nutrient resource. Indeed, in some areas in the late
summer, we have estimated adult butterfly density at
over 150,000 individuals per hectare. Relative to other
pest systems, this represents a case where an agricultural
population may be adapting to a high nutrient and abun-
dant resource without going through major pesticide-
induced bottlenecks.
In contrast to this agricultural population, most popu-

lations of cabbage whites make use of many wild native
and non-native mustards, in addition to using hosts in
gardens, roadsides, ditches and other disturbed areas.
This represents a unique opportunity to study adapta-
tions to agricultural environments, as one can study
both the agriculture-associated population and a nonag-
ricultural population that is probably representative of
the ancestral condition (found in St. Paul, Minnesota,
approximately 430 miles away). Thus, at the landscape

level, there is a clear mosaic of resource predictability
that is likely shaping pest adaptation despite ongoing
gene flow [33]. In particular, the relative homogeneity
and predictability of the agricultural area should, over
time, favor increased specialization and associated loss
of plasticity related to the use of a range of host plants.
In this research, we first describe phenotypic differences
between the populations, comparing development time
and adult body size of each population when reared in
the lab on hosts varying in relatedness to canola. Then,
we begin to develop genomic tools for comparing this
unique agricultural population to nonagricultural popu-
lations. After assembling the gut transcriptome of this
population, we compare patterns of differentiation in
coding sequences between the two populations. We ex-
pected to find genetic differentiation between popula-
tions at both the phenotypic and genomic levels.

Results and discussion
Population performance on different hosts
We raised caterpillars from both the agricultural (herein
referred to as ND) and nonagricultural (MN) populations
under controlled conditions to contrast the performance
of the two populations on hosts varying in relatedness to
canola. “Canola” represents several different cultivars of
three Brassica species—Brassica napus, B. rapa, and B.
juncea. Most varieties in North Dakota are B. napus, but
B. rapa is also grown [37]. We used Brassica rapa (var.
chinensis) as our host approximating “canola” because
canola varieties performed poorly in our greenhouse trials
and were too stunted to support normal larval growth.
We compared caterpillar performance on Brassica to that
on Raphanus sativus (radish), both purchased as organic
produce. Raphanus has a different profile of chemical de-
fenses than the genus Brassica (glucosinolates, [38]), but
is still a commonly used host in the MN population in
either community gardens or as feral radish. We predicted
the ND population would perform relatively better on the
Brassica host than on Raphanus, as the former is more
closely related to canola.
Using general linear models that controlled for sex

(Table 1), there were significant population-by-host in-
teractions for both wing length (P = 0.006) and wing area
(P = 0.009) as well as a marginally significant interaction

Table 1 Larval performance on different host plant species
using a general linear model

Forewing length Forewing area Development
time

Population F1,58 = 17.4*** F1,58 = 17.4*** F1,58 = 0.49

Host F1,58 = 24.2*** F1,58 = 27.8*** F1,58 = 146***

Population x Host F1,58 = 8.3** F1,58 = 7.2** F1,58 = 3.5*

Sex F1,58 = 1.6 F1,58 = 1.1 F1,58 = 6.5**

***P < 0.0001; **P < 0.01; *P < 0.10
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for development time (P = 0.065). For both measures of
body size, the ND population was significantly smaller
than the MN population when raised on Raphanus, the
host more distantly related to canola (Fig. 1). For devel-
opment time, both populations developed more slowly
on radish (Fig. 1), and females developed more quickly
than males (Table 1, Additional file 1). Contrary to
expectations, the MN population had significantly faster
development time on the Brassica host, relative to the
ND population (Fig. 1). However, the difference in devel-
opment time is rather small—shifting from about 21 to
22 days—and unlikely to have a meaningful impact on
fitness, especially compared to other factors. Given the
extreme temperature dependence of development time,
it’s also possible this trait is not the best performance
measure for comparing these populations, especially
given climate differences between the sites. The popula-
tions were reared simultaneously in the same climate
chamber, in replicate and interspersed cups, so it is un-
likely that temperature fluctuations during rearing could
account for the observed difference in development
time. Taken together, these results suggest that the non-
agricultural (MN) population does indeed have a
broader host breadth than the agricultural (ND) popula-
tion, out-performing them on some metrics on host
plants less closely related to canola.
After describing these initial differences in perform-

ance between the two populations, we performed a sec-
ond, more extensive common garden experiment where
we additionally harvested gut tissue for measures of gene
expression (see below). In this experiment, we were pre-
vented from doing additional phenotypic comparisons
between populations because individuals from the agri-
cultural population were more likely to go into diapause
as pupae regardless of diet (80.15% from ND vs. 0% from
MN, N = 258, Χ2 = 215.9, P < 0.0001). This suggests add-
itional genetic differentiation between the populations –
the agricultural population from northern North Dakota

may have a different threshold of diapause induction
due to the shorter growing season relative to southern
Minnesota or the harvesting of canola in mid-August.
Comparing agricultural and nonagricultural populations
at the same latitude would help to distinguish these
two hypotheses. While this population difference in
diapause induction may represent an adaptation to abi-
otic conditions rather than an adaptation to an agricul-
tural environment per se, it still represents a significant
difference between the two populations in a common
garden.
Our controlled laboratory experiments suggest signifi-

cant phenotypic differentiation in fitness proxies be-
tween these agricultural (ND) and nonagricultural (MN)
populations of cabbage whites on the two hosts. Most
striking is the reduced body size observed in the ND
population when raised on the nonagricultural host
plant, which suggests that the ND population has a re-
duced capability to utilize suitable host plants outside of
the genus Brassica. Such changes are likely associated
with genetic differentiation in genes related to larval
feeding. Future experiments comparing the niche
breadth of these two populations would be strengthened
by including North Dakota canola varieties and a range
of other host plants. Given our struggles growing high
quality canola in greenhouse conditions, this would
likely be best accomplished with organic agricultural
plots of a range of host plants, with leaves harvested
daily for lab rearing in common climatic conditions.

Transcriptome assembly
There are currently limited genomic resources for Pieris
rapae to facilitate studies that investigate the genetic
basis of the adaptation to specific host plants, such as
we observe in the agricultural population. Although
transcriptome assemblies have recently been completed
for Pieris rapae [39, 40], these studies had limited repre-
sentation of the caterpillar stages and tissues that are
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relevant to address the hypothesis that changes in gene
expression in the gut contribute to adaptation to agricul-
tural environments. To address this limitation, we set
out to more fully characterize the transcriptome in the
digestive tract of Pieris rapae caterpillars.
To do this, we collected gut tissue from 6 descendants

of butterflies collected from the ND population reared
on either Brassica or Raphanus. We chose to focus on a
single population in order to minimize the genetic vari-
ability, thus simplifying the transcriptome assembly. Of
these, four caterpillars were collected at the 5th instar
stage, and two were collected as 2nd instars. In addition,
for one of the 5th instar larvae, we also sequenced RNA
from the fat body, a tissue that also plays a critical role
in insect metabolism and energy storage [41]. All sam-
ples were sequenced in a single lane of an Illumina
HiSeq2000. A summary of the combined sequencing re-
sults is presented in Table 2.
We assembled high-quality sequencing reads using the

Trinity transcriptome assembly platform [42, 43]. After
filtering small and fragmented contigs, and removing
genes that matched plant or bacterial contaminants, the
resulting assembly contained 31,624 contigs (i.e. tran-
scripts) from 17,595 unique clusters (unigenes). From
each transcript cluster, we selected the contig with the
longest predicted open reading frame (ORF) to represent

the consensus sequence of the unigene. Unless otherwise
noted, all analyses were performed on the set of consen-
sus unigene sequences, to minimize the probability that
a given gene was represented multiple times in each
statistic. The characteristics of the final transcriptome
assembly are summarized in Table 2.
The final unigene sequences were compared against

the arthropod Benchmarking Universal Single-Copy
Orthologues (BUSCO) [44]. The arthropod BUSCOs are
a set of 2675 proteins that are expected to be present as
a single-copy gene in all arthropod species, and can be
used as a benchmark for assessing the completeness of a
gene set. A significant fraction (21.0%) of BUSCO genes
were not found among the Pieris rapae unigenes, likely
because our transcriptome was assembled from a narrow
range of tissues and stages. Of the BUSCOs that were
matched to assembled unigenes, the majority were found
in a single copy, and most recovered the complete pro-
tein sequence (Table 2). Thus, despite using a limited set
of tissues and developmental stages, we have neverthe-
less assembled a high quality transcriptome that covers a
significant fraction of the expected genes in Pieris rapae.

Transcriptome annotation

Most of the assembled transcripts show significant
sequence similarity to existing protein databases (Table 3),
indicative of the high quality of our final assembled tran-
scripts. Of the representative sequences selected for each
unigene, 11,049 (62.8%) showed significant sequence simi-
larity (BLASTx, E value < 10-5) to the silk moth (Bombyx
mori) protein database. Similarly, a majority of unigenes
(70.2%) showed significant similarity to proteins in the
NCBI non-redundant (nr) protein database (BLASTx, E
value < 10-5). Fewer (51.3%) matched Drosophila proteins,
likely due to the longer divergence time from Lepidoptera.
Nearly half of the assembled sequences matched entries in

Table 2 Summary of sequencing and transcriptome
assembly results

Sequencing (for de novo transcriptome)

Raw reads (101 nt paired-end) 179472918 pairs

Cleaned reads 159812653 pairs

14974970 orphans

Sequenced bases (cleaned) 31.8 Gb

Assembly

Number of transcripts (contigs) 31624

Number of unigenes 17595

Mean length (unigene) 1420.69 bp

Median length (unigene) 909 bp

N50 (unigene) 2416 bp

Assembled length (unigenes) 25.0 Mb

GC content (unigenes) 38.8%

Number of protein-coding ORFs 13991

Mean ORF length 1058.4 bp

BUSCO arthropod gene set (2675 genes)

Complete, single-copy 1875 (70.1%)

Complete, duplicated 72 (2.7%)

Partial 165 (6.2%)

Missing 563 (21.0%)

Table 3 Summary of Pieris rapae transcriptome annotation

Unigene annotation

Bombyx mori proteins (E < 10-5) 11,049 (62.8%)

Drosophila melanogaster proteins (E < 10-5) 9041 (51.3%)

NCBI nr database (E < 10-5) 12,358 (70.2%)

UniProt/Swiss-Prot database (E < 10-5) 8651 (49.2%)

UniProt/TrEMBL database (E < 10-5) 12,230 (69.5%)

InterProScan 11,537 (65.6%)

Pfam domaina 11,428 (65.0%)

GO annotationb 7464 (42.4%)

KEGG annotationa 4554 (25.9%)
aPfam and KEGG searches included only sequences from 13979 protein
coding ORFs
bGO matches were identified for 9595 unigenes, of which 7464 met
significance cutoff requirements for annotation
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the high-quality, manually curated Swiss-Prot protein
database [45].
Using the significant hits to the nr protein database, we

used the functional mapping software Blast2GO [46–48]
to assign gene ontology (GO) terms from the generic GO-
Slim dictionary [49, 50] to the unigenes in our Pieris rapae
transcriptome. In all, 7464 unigenes (42.4%) were success-
fully annotated with at least 1 GO term using default
parameters for annotating GO matches. As expected, we
saw many genes mapping to biological process terms such
as carbohydrate metabolic process (215 unigenes), lipid
metabolic process (194), or more generally to biosynthetic
process (832 unigenes) (Additional file 2). Other key
functions of the gut, including transport (269), response
to stress (225), immune system function (59), and homeo-
static processes (80), were also represented in the
expressed genes. The molecular function term with the
highest representation in our transcriptome was ion bind-
ing (2092), followed by oxidoreductase activity (506).
We also used BlastKOALA [51] to assign our genes to

pathways in the KEGG ontology [52, 53]. 4554 unigenes
(25.9%) could be assigned to KEGG pathways (Fig. 2;
Table 3). Many genes were annotated as belonging to at
least one of the major metabolic pathways, including

carbohydrate, lipid, and amino acid metabolism. The
largest KEGG category was the signal transduction
proteins, of which we annotated 527 genes. Notably, we
identified components of several organismal system
pathways, including digestive and excretory systems,
immune system, and development, which we expect to be
expressed in gut tissue or at early developmental stages.

Population divergence in gut transcripts
To examine population differences between ND and
MN populations of Pieris rapae, we collected gut RNA
from early and late stage larvae from each of the two
populations, and scanned for polymorphic loci that were
divergent between the two populations. We identified
63,595 highly supported biallelic single nucleotide poly-
morphisms (SNPs) present in at least 16 individuals
from each population in the Pieris gut transcriptome,
after applying stringent quality filters to minimize the
impact of sequencing errors and misalignments. These
SNPs were located on 5105 unigenes, with a polymorph-
ism rate of 5.5 SNPs per kb of sequence within the vari-
able genes (Table 4).
The two populations showed very little genetic

differentiation across the transcriptome. The average
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differentiation between the two populations, measured
by GST [54], was 0.018 across all loci. Furthermore, we
did not find any sites with fixed differences between the
ND and MN populations (Additional file 3). Our obser-
vation of very little differentiation (FST < 0.05; [55]) is
comparable to other population genetics studies in
butterflies, most of which find little genetic differenti-
ation [56–60] or only modest differentiation (FST < 0.10;
[59, 61–63]) in either microsatellites or allozymes at a
variety of spatial scales. As a species, Pieris rapae is
highly mobile, and will readily disperse over significant
distances [64], and may also make use of a variety of
fragmented habitats, like the closely related Pieris napi
[59]. These traits may contribute to the low population
differentiation overall by enabling gene flow across
Minnesota and North Dakota.
Despite the low overall divergence between the agri-

cultural and nonagricultural populations, there were 318
SNPs on 235 unique genes that were significantly
differentiated between populations (Fisher’s exact test,
Bonferroni corrected p < 0.05). Values of GST for the sig-
nificantly differentiated SNPs ranged from 0.11 to 0.29
(see Additional file 4). The set of unigenes containing
significant SNPs was significantly enriched for cofactor
and small molecule metabolic processes (FDR < 0.05).
Many of the genes in this set also have transporter or
catalytic activity from the molecular function ontology
tree (Fig. 3; Additional file 4).
Most of the significantly differentiated SNPs were

synonymous coding changes (200). Only two unigenes
lacking predicted ORFs differed between the two popu-
lations. 83 SNPs fell in UTR regions flanking a predicted
ORF. Some of these may include regulatory changes that
alter expression levels of the associated transcripts.
Finally, 33 nonsynonymous changes were significantly
different between populations.

The set of 29 genes containing divergent nonsynon-
ymous SNPs are of particular interest as candidate genes
that could facilitate adaptation to different host plant
environments (Table 5). Three unigenes of particular
interest are c15052_g1, c16008_g1, and c18004_g1, all of
which contain multiple nonsynonymous SNPs. Unigene
c16008_g1 contains significant sequence similarity to
nuclear pore complex protein Nup50, and has annotated
functions in protein transport and neurological system
processes. Unigene c18004_g1 is most similar to phos-
phatase I regulatory subunit 15a, which in mammals
may facilitate recovery after cellular stress [65]. Other
genes with significant nonsynonymous SNPs are in-
volved in a variety of metabolic processes (Table 5).
A few other genes stand out as being potentially related

to the difference in the onset of diapause in the two popu-
lations or tolerance to a colder winter in North Dakota.
Unigene c13176_g2, identified as heat shock 70 cognate 3,
has 8 significantly differentiated synonymous SNPs, as
well as an additional sequence change in the 3’ untrans-
lated region (UTR) of the gene. This cognate has been
shown to respond to cold shock in other insects [66]. Fur-
thermore, two unigenes with nonsynonymous mutations
(c16497_g2 adenosylhomocysteinase and c14347_g1 alde-
hyde dehydrogenase X, mitochondrial-like) are, among
other functions, part of the juvenile hormone pathway in
insects [67, 68], and thus we speculate could be involved
with the differences in diapause onset or development
time between these two populations [69].
Finally, we also estimated the allele frequency

spectrum for the variable unigenes using Tajima’s D [70]
(Additional file 5). Of the genes with significantly differ-
entiated SNPs, 20 genes (8.5%) had values of Tajima’s D
that differed substantially from the expectation of neu-
trality in at least one of the two populations. In most
cases, Tajima’s D was negative, suggesting that positive
selection may be acting on these genes. While we cannot
rule out the possibility that demographic processes may
account for these observations [71], these genes are
nevertheless excellent candidates for future studies.

Complex population structure in Pieris
We next performed principal components analysis to
examine patterns of population structure in more detail
for our two sampled populations (Fig. 4a). For this ana-
lysis, we included only SNPs that could be genotyped for
all 96 individuals (2287 SNPs in total). Surprisingly, the
two populations were not clearly distinct from one an-
other on the major axes of variation, although this may
be consistent with the observation of rather low differ-
entiation between the populations. In MN, about 25% of
the individuals clustered with the ND population on
PC1 and PC2. However, the rest of the MN caterpillars
clustered separately on either PC1 or PC2, but not both.

Table 4 Summary of biallelic SNPs identified in the final
transcriptome assembly

SNP summary Total Filtereda

Number of biallelic SNPs 524184 63595

SNPs/bp (all unigenes) 0.0025

Number of unigenes containing variants 5105

SNPs/bp in variant unigenes 0.0055

% transitionsb 60.55%

% in predicted coding transcripts 98.59%

% in exons 71.51%

% nonsynonymous substitutions 12.50%

% synonymous substitutions 59.01%
aSNPs passing filtering criteria have a called genotype (Q > 20) in at least 16
individuals per population with a minor allele frequency >1%
bExpect 33% if transitions occur at random
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To investigate this pattern further, we used fastStruc-
ture [72] to examine population structure on the full set
of SNPs. At a value of k = 2, fastStructure identified 2
apparently distinct subpopulations within the nonagri-
cultural MN population (Fig. 4b). The first subpopula-
tion clusters with the agricultural ND population. The
second subpopulation occurs almost exclusively within
the MN population, although there is a small amount of
introgression in a few of the ND individuals. In fact, the
individuals in this MN-specific subpopulation also have
high scores on PC1, confirming our observations of

population structure within MN. Additional substructure
on PC2 can be detected using k = 4. These analyses of
population structure suggest that the ND population con-
tains only a subset of the genetic variation present in the
MN population. This is consistent with the hypothesis
that at least some adaptation to the agricultural environ-
ment in North Dakota resulted from selection on standing
genetic variation.
We also considered the alternate hypothesis that some

of the structure in the nonagricultural population could
be a consequence of having sampled siblings, which was
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Table 5 Summary of 33 nonsynonymous SNPs that are significantly different between populations

Unigene Position GST G’ST D ϕST Description GO annotationa

c5933_g1 548 0.14 0.33 0.12 0.58 Transport and Golgi organization 11 C:cellular_component; F:isomerase activity

c7209_g1 1211 0.15 0.44 0.23 0.53 FK506-binding 59 isoform X1 P:protein folding

c10952_g1 794 0.18 0.44 0.19 0.51 Ankyrin repeat domain-containing 11 C:cellular_component

c11274_g1 630 0.17 0.43 0.19 0.54 UDP-galactose 4-epimerase P:biological_process; F:molecular_function

c11590_g2 235 0.14 0.33 0.10 0.38 BCL-6 corepressor 1

c11789_g1 423 0.14 0.38 0.17 0.45 hypothetical protein KGM_20694 C:cellular_component

c11993_g1 616 0.16 0.39 0.15 0.60 alpha-tocopherol transfer -like P:transport; F:transporter activity; C:intracellular

c12584_g1 1268 0.13 0.37 0.18 0.44 PREDICTED: uncharacterized protein
LOC106138810, partial

c12711_g1 1584 0.16 0.35 0.11 0.53 Recombination repair 1 C:nucleus; F:DNA binding; F:nuclease activity;
F:lyase activity; F:ion binding; P:DNA metabolic
process; P:response to stress

c13334_g1 1471 0.16 0.45 0.24 0.49 aspartate–tRNA ligase, cytoplasmic C:cytoplasm; F:ion binding; P:tRNA metabolic
process; P:cellular amino acid metabolic process;
F:ligase activity; P:translation

c13731_g1 1607 0.13 0.35 0.14 0.51 Chorion b-ZIP transcription factor F:DNA binding; F:nucleic acid binding
transcription factor activity; P:cellular nitrogen
compound metabolic process; P:biosynthetic
process

c14347_g1 644 0.11 0.26 0.06 0.46 aldehyde dehydrogenase X, mitochondrial-like F:oxidoreductase activity

c15052_g1 791 0.16 0.35 0.12 0.43 glutamic acid-rich -like P:biological_process; C:extracellular region;
F:molecular_function

c15052_g1 873 0.15 0.37 0.14 0.45 glutamic acid-rich -like P:biological_process; C:extracellular region;
F:molecular_function

c15359_g2 775 0.13 0.28 0.08 0.38 PREDICTED: uncharacterized protein
LOC101740601

C:membrane; C:integral component of
membrane

c15377_g1 1122 0.19 0.43 0.16 0.53 prion-like-(Q N-rich) domain-bearing 25 C:membrane; C:integral component of
membrane

c15434_g1 67 0.15 0.44 0.25 0.56 cholinesterase 1-like P:metabolic process; F:hydrolase activity

c15846_g1 1999 0.16 0.39 0.16 0.63 nicastrin C:cellular_component

c15990_g1 1062 0.14 0.42 0.24 0.51 pancreatic triacylglycerol lipase-like P:biological_process; C:extracellular region;
F:molecular_function

c16008_g1 531 0.22 0.55 0.30 0.71 nuclear pore complex Nup50 C:nuclear envelope; P:nucleocytoplasmic
transport; P:protein targeting; P:vesicle-mediated
transport; P:signal transduction; P:cell
differentiation; P:anatomical structure
development; P:neurological system process;
F:molecular_function

c16008_g1 789 0.24 0.58 0.32 0.78 nuclear pore complex Nup50 C:nuclear envelope; P:nucleocytoplasmic
transport; P:protein targeting; P:vesicle-mediated
transport; P:signal transduction; P:cell
differentiation; P:anatomical structure
development; P:neurological system process;
F:molecular_function

c16008_g1 853 0.22 0.49 0.21 0.73 nuclear pore complex Nup50 C:nuclear envelope; P:nucleocytoplasmic
transport; P:protein targeting; P:vesicle-mediated
transport; P:signal transduction; P:cell
differentiation; P:anatomical structure
development; P:neurological system process;
F:molecular_function

c16231_g1 2477 0.19 0.45 0.19 0.74 serine palmitoyltransferase 1 F:ion binding; P:biosynthetic process;
C:cellular_component
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a possibility with our egg collection setup that harvested
eggs from large groups of females. We examined genetic
relatedness among individuals within each of the popula-
tions to determine whether the observed population struc-
ture could be explained by the presence of a single full-
sibling family with an unusual genetic background. In both
populations, we identified several clusters of two or more
individuals that are likely to be full siblings, and many of
the putative sibling pairs were also laid on the same or
consecutive dates, further supporting the likelihood of the
full-sibling relationship (Additional file 6). In MN, we also
identified a large cluster of individuals that corresponded

to the second subpopulation identified in the fastStructure
analysis. While these individuals tend to be more genetic-
ally related than the rest of the nonagricultural population,
most did not seem to be full-siblings. Furthermore, these
individuals were laid during two distinct collection periods,
with non-overlapping sets of mothers. It is therefore un-
likely that the pattern can fully explained by the influence
of a single family. In other words, it is unlikely that a single
female dominated egg laying in a group cage and biased
the results. Behavioral observations of egg-laying cages are
also consistent with this interpretation – multiple females
are often observed laying simultaneously in group cages.

Table 5 Summary of 33 nonsynonymous SNPs that are significantly different between populations (Continued)

c16497_g2 1985 0.18 0.44 0.20 0.57 adenosylhomocysteinase P:sulfur compound metabolic process; P:cofactor
metabolic process; C:cytosol; P:cellular amino
acid metabolic process; P:cellular nitrogen
compound metabolic process;
F:molecular_function

c16508_g2 391 0.12 0.32 0.12 0.57 phosphoenolpyruvate carboxykinase P:small molecule metabolic process;
P:carbohydrate metabolic process; F:lyase
activity; F:ion binding; P:biosynthetic process;
F:kinase activity

c16613_g1 749 0.18 0.41 0.14 0.65 translocator -like isoform X2 C:intracellular

c17019_g1 1437 0.16 0.44 0.23 0.54 FAM114A2 isoform X1

c17117_g1 1294 0.13 0.32 0.11 0.57 saccharopine dehydrogenase-like
oxidoreductase

F:oxidoreductase activity; C:cellular_component

c17365_g1 1932 0.14 0.34 0.12 0.49 otopetrin-2-like isoform X1 C:cellular_component

c17954_g2 1970 0.15 0.36 0.12 0.61 probable uridine nucleosidase 2 isoform X2 P:metabolic process; F:hydrolase activity

c18004_g1 465 0.22 0.56 0.32 0.67 phosphatase 1 regulatory subunit 15A C:cellular_component

c18004_g1 566 0.18 0.48 0.26 0.59 phosphatase 1 regulatory subunit 15A C:cellular_component

c18452_g1 386 0.14 0.31 0.08 0.55 serine-rich adhesin for platelets-like isoform X1 F:calcium ion binding; C:membrane; C:integral
component of membrane; P:cell adhesion;
P:homophilic cell adhesion via plasma
membrane adhesion molecules; C:plasma
membrane

aGO descriptions are designated as cellular component (C), molecular function (F), or biological process (P)
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Conclusions
This research represents the first step in developing cab-
bage white butterflies as a case study to contribute to
our understanding of adaptation to agricultural environ-
ments. The present results are consistent with the idea
that adaptation to a novel agricultural environment oc-
curred via selection on existing genetic variation in the
ancestral population. The performance differences of the
two populations on different hosts suggests that the
agricultural population has become more specialized;
the genetic data suggests this specialization may have
occurred through selection on a subset of standing vari-
ation rather than de novo gain of adaptive alleles. In fu-
ture work, we plan to more explicitly test the role of
plasticity in this process. Plasticity is thought to enable
the colonization of novel environments, including cities
and agricultural monocultures [73–76]. In predictable
environments such as monocultures, any costs associ-
ated with plasticity could result in the loss of plasticity
and the fixation of traits following colonization [77–79].
Genomic approaches can facilitate tests of such “genetic
assimilation” by testing the prediction that developmen-
tal pathways expressed by the ancestor become constitu-
tively expressed in derived populations [80–82].

Methods
Population adaptation to hosts
In 2011, we first performed a common garden rearing
experiment to test for differences between the agricul-
tural (ND) and nonagricultural (MN) populations in
host performance. Approximately 40 females were col-
lected adjacent to canola fields in Cavalier and Ramsey
County, North Dakota, USA, which has been a center of
canola agriculture for 30 years (see additional details in
introduction). Approximately 30 females were collected
from roadsides, community gardens, and campus agri-
cultural fields in St Paul, Minnesota, USA.
Larvae were reared in 16 oz. plastic containers in

groups of 2-6 individuals (average 5.5). Larvae were pro-
vided with either Brassica rapa (var. chinensis), a host
closely related to canola, or Raphanus sativus (radish),
both purchased as organic produce and refreshed daily.
We initially sought to rear individuals on canola varieties
grown in North Dakota, but these varieties performed
poorly in greenhouse conditions. Larvae were reared in
a climate chamber at 24°C with a 14 hour day length.
Populations were reared simultaneously in the same cli-
mate chamber, in replicate and interspersed cups. Wing
length, wing area, and development time (egg to adult
emergence) were taken as measures of performance. To
measure wing traits, we removed forewings from indi-
viduals with forceps, photographed wings and measured
length and area using the line and polygon functions in
Image J (NIH). Wing length was defined as the distance

from the articulation point of the forewing with the
thorax to the wing apex. Measures of body size and de-
velopment time were analyzed for 25 MN individuals
and 38 ND individuals randomly selected from a wide
range of rearing cups.
Phenotypic traits were compared using general linear

models in JMP 13 (SAS Institute) using population, host,
population x host, and sex as independent variables.
Because males have larger wings than females, we
controlled for sex in the analysis. We only included one
interaction as we had a priori reason to suspect interac-
tions between population and host. Post hoc analysis
showed no significant interactions between population
and sex.

Population sampling for transcriptome and SNP calling
In mid- to late-August 2014, we resampled the same
field sites used in the 2011 rearing experiment. Approxi-
mately 60 females were collected from ditches and road-
sides adjacent to canola fields in Cavalier and Ramsey
County, North Dakota, USA. For the nonagricultural
population, approximately 30 females were collected
from roadsides, community gardens, and campus agri-
cultural fields in St Paul, Minnesota, USA.
Females were set up in groups of 4-10 for egg harvest-

ing in replicate population cages (61x61x61 cm “bug
dorm” tent cages) in a greenhouse. Each cage contained
one Brassica rapa (var silvestris) and one Raphanus
sativa (var Hong Vit), changed out daily, for egg collec-
tion. Females had access ad libitum to a 10% honey so-
lution on 3-4 yellow sponges set in small petri dishes.
Humidity in cages was kept elevated by the plants and
wet towels on which they were set. Supplemental light-
ing was provided in the greenhouse to extend the day
length to 15 h. Eggs were collected between August 22
and September 1. In total, eggs were obtained from ap-
proximately 27 ND females and approximately 17 MN
females (based on the number of females rotated into
cages that were alive for at least 24 h of egg collection).
Spermatophore counts (N = 16 females) revealed that
females mated on average with 1.6 males in the MN
population and 1 male in the ND population.

Tissue harvesting for RNA sequencing
Larvae for the transcriptional profiling experiments were
reared on either Brassica rapa (var silvestris) or Raphanus
sativa (var Hong Vit), spread across 33 replicate mesh
cages. In addition, a subset of larvae from each population
was reared on one host type before being switched to the
alternate host at the 3rd instar stage. This combination of
diet regimes was selected to capture a range of transcrip-
tional responses relevant to larval development and gut
function. We harvested larval tissue at two stages for RNA
sequencing (RNA-seq): 2nd instar larvae harvested 7 days
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after egg laying, and 5th instar larvae harvested 17 days
after egg laying. Parallel comparisons of phenotypic adap-
tation to host plant were not possible in this experiment
given that a large proportion of ND larvae went into dia-
pause under greenhouse rearing conditions and diapaused
individuals were significantly smaller than non-diapaused
individuals.
For each larva, we harvested midgut tissue in RNase-free

conditions. For the 5th instar larvae, we also harvested fat
body tissue, which is important for metabolism and energy
storage [41]. We avoided any 5th instar larvae in the wan-
dering stage (soon to pupate) and aimed to dissect an equal
number of males and females based on the presence of
paired, dorsal testes. Excised tissue was placed in 350 ul of
RLT Plus buffer (Qiagen, Hilden, Germany) contain-
ing 2-mercaptoethanol. Samples were placed immediately
on ice prior to maceration with a pestle and flash freezing.
All samples were stored at -70°C until RNA isolation. A
small subset of these samples from the ND population was
sequenced for the transcriptome assembly as described
below. A larger set of 96 samples including individuals
from both populations was used for SNP discovery.

RNA extraction and sequencing
Transcriptome assembly
To construct a high-quality transcriptome assembly, we
sampled individuals from the ND agricultural population
only. We focused on the ND population for the refer-
ence assembly because we predicted that this population
would have less genetic variation and would therefore
result in a higher quality transcriptome. We included 2
gut samples and 1 fat body sample from 5th instar larvae
fed on Brassica rapa, 2 gut samples from 5th instar lar-
vae fed on Raphanus, and 2 gut samples from 2nd instar
larvae fed on Brassica. Total RNA was isolated from dis-
sected gut or fat body tissue using an RNeasy Plus Mini
Kit (Qiagen) according to the manufacturer’s directions.
Libraries enriched for mRNA were prepared using
TruSeq RNA Library Preparation Kit v2 (Illumina, San
Diego, CA, USA) at the University of Minnesota
Genomics Center (UMGC; Minneapolis, MN). All sam-
ples were sequenced in a single lane on an Illumina HiSeq
2000 at UMGC. In total, we generated 179.5 million
paired-end reads 100 bp in length (Table 1) that were used
for the transcriptome assembly.

SNP discovery
To examine population differences between MN and
ND populations of Pieris rapae, we collected gut sam-
ples from 2nd instar and 5th instar larvae reared on
Raphanus, Brassica, or both as described previously. In
total, we collected tissue from 48 individuals from each
population for SNP discovery (N = 8 per treatment). All
mRNA libraries were prepared using the TruSeq kit as

described above. The samples used for SNP discovery
were sequenced across 4 lanes on an Illumina HiSeq 2500
(high-output mode) at UMGC. A total of 1118.3 million
single-end reads, 50 bp in length, were generated.

Transcriptome assembly and annotation
After demultiplexing, all sequenced reads were cleaned
and trimmed using Trimmomatic (version 0.33) [83].
Sequences containing TruSeq adapter sequences were
trimmed, as were low quality (Q < 5) bases from the be-
ginning or end of the reads. We also applied a sliding
window filter, so that reads were trimmed after the aver-
age quality for each 4-bp window reached Q < 20. Any
reads that were shorter than 36 bp in length after trim-
ming were discarded.
Cleaned and trimmed reads were assembled using the

Trinity de novo assembler (version r20140717) [42, 43].
During assembly, we utilized the in silico normalization
option in Trinity to improve memory usage. In addition,
we required a minimum k-mer coverage of 2, which im-
proved the quality of the preliminary assembly by redu-
cing sequencing errors.
We further refined the initial assembly with several

stages of filtering. First, we removed redundant contigs
(contigs which were completely overlapping, with 100%
sequence identity) with CD-HIT-EST (version 4.6.1)
[84]. Next, we aligned the original reads from the ND
samples to the assembled transcriptome using bowtie2
(version 2.2.4) [85]. Of the reads from the ND popula-
tion that were used, 86.78% aligned back to assembly.
Any contigs that had no reads aligned to them were re-
moved from the final assembly. Finally, we used Trans-
Decoder (version 2.1.0) [86] to find the longest predicted
open reading frame for each contig. Contigs with frag-
mented ORFs less than 150 nucleotides (50 amino acid
residues) in length were removed from the final
assembly. We also used TransDecoder to identify genes
predicted to code for functional proteins (see below).
However, if transcripts were not predicted to contain a
protein-coding ORF, they were retained in our assembly
as “non-coding” transcripts, as long as they also met the
minimum transcript length requirement.
Finally, we used a translated BLAST query (blastx,

BLAST+ version 2.2.29) [87–89] to compare the uni-
genes to the NCBI nr database. We identified 5 unigenes
with significant sequence similarity (E < 1e-5) to the host
plant genera Brassica and Raphanus, as well as the re-
lated Arabidopsis, also in the plant family Brassicaceae,
but no similarity to any species within Insecta. These
sequences are likely to represent a low level of con-
tamination from the caterpillars’ food source, rather than
caterpillar-expressed transcripts. Therefore, all tran-
scripts resulting from these unigenes were removed from
the final version of the Pieris rapae transcriptome.
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Additional contamination screening identified 14
unigenes including bacterial and Illumina primer
contaminants that were also removed or trimmed in the
final assembly.
We selected a single representative transcript for each

unigene to use as the consensus sequence for further an-
notation and SNP analysis, so that each unigene would
only appear once. For genes that were predicted to have
a protein-coding ORF by TransDecoder, we selected the
transcript for each unigene that had the longest ORF,
and longest transcript length, to serve as the consensus
sequence. If the gene did not have a predicted likely cod-
ing region, we selected the longest assembled transcript
for the cluster.
We used the BUSCO software pipeline (version 1.1b1)

[44] to assess the completeness of our final transcrip-
tome. The consensus sequences of the unigenes were
mapped against the arthropod BUSCO gene set.

Transcriptome annotation
We used a translated BLAST query (blastx) [87–89] to
identify homology to genes in the Bombyx mori [90, 91]
and Drosophila melanogaster [92] protein databases, the
UniProtKB/Swiss-Prot and UniProt/TrEMBL protein da-
tabases [45], and the NCBI nr protein database. Tran-
scripts were determined to have significant homology if
E < 1E-5.
Using the significant blastx hits to the nr protein data-

base, we mapped gene ontology (GO) terms [49, 50] to
transcripts with the software package Blast2GO (version
3.3.5) [46–48] using default parameters for annotating
GO matches. The GO terms used were a subset of terms
taken from the generic GOSlim ontology dictionary.
Blast2GO was also used to identify protein families and
domains from the InterPro database [93].
Finally, we used BlastKOALA [51] to assign unigenes

to pathways in the Kyoto Encyclopedia of Genes and
Genomes (KEGG) ontology [52, 53]. Query sequences
were searched against the genus_eukaryotes KEGG
GENES database for K number assignment.

Variant discovery and annotation
Demultiplexed sequence reads from the 96 samples used
to examine population divergence were cleaned and
trimmed as described above. Reads were then aligned to
the Pieris rapae gut transcriptome assembly with bow-
tie2 [85] with the “sensitive” preset parameter options.
To simplify the downstream analysis, only the represen-
tative consensus sequence for each unigene was used as
reference for the alignment.
We performed SNP and indel discovery and genotyp-

ing across all 96 samples simultaneously with the
Genome Analysis Toolkit (GATK; [94]) using hard filter-
ing parameters appropriate for RNA-seq data. Prior to

variant discovery, reads in regions identified as possible
indels were realigned according to GATK Best Practices
recommendations [95, 96]. Because the distribution of
RNA-seq reads does not match the expectation of gen-
ome wide sequence reads, we chose not to filter reads
tagged as duplicates. However, the SNP sets obtained
with and without the duplicate read filter were very
similar—87.4% of the SNPs we identified in our data were
also present when the duplicate reads were removed.
Genetic variants were identified using GATK

HaplotypeCaller. The minimum phred-scaled confidence
threshold for calling and emitting variants was set to 20.
We chose to focus on biallelic SNPs, since calling indels
may be complicated by differential splicing patterns in
genes, especially given that we are only focusing on a sin-
gle representative transcript for each potential unigene.
We filtered called biallelic SNPs using the following cri-
teria based on current recommendations from GATK’s
Best Practices recommendations for RNA-seq data: SNPs
were removed if they had a FisherStrand score greater
than 30, if the depth-corrected quality score of the variant
call was less than 2, and if there were more than 3 SNPs
within a 35bp window. In addition, we required a se-
quence depth of at least 25 reads at each SNP. Among the
SNPs passing these filters, we required that individual
genotype calls have a quality score of at least 20—individ-
uals with a low quality genotype at a given SNP were
marked as “no call” for that SNP. After removing low
quality individual genotype calls, we removed SNPs that
were present in less than 16 individuals in each popula-
tion, in order to focus on the more informative sites for
population analyses. This approach precludes analysis of
many genes with low levels of overall expression; however,
we expect that many of the genes of interest for gut func-
tion should be expressed at sufficient levels for SNP
analysis. Finally, we removed SNPs with a minor allele
frequency <1%, as these are more likely to result from
sequencing errors.
We used the software package SnpEff (version 4.2)

[97] to determine whether identified SNPs were syn-
onymous, nonsynonymous, or noncoding. Any SNPs in
unigenes that were not predicted to have functional
ORFs by TransDecoder were classified as noncoding. If
the unigene did contain a predicted ORF, then SNPs that
were located outside of the ORF region were classified
as noncoding UTR variants.

Population divergence and structure
We used the R package mmod (version 1.3.2) [98] to
measure several differentiation statistics for the SNPs
passing quality filters, including GST [54], G’ST [99],
Jost’s D [100], and ϕST [101]. SNPs that differed signifi-
cantly (α < 0.05, Bonferroni correction for multiple
comparisons) between populations were identified using

Sikkink et al. BMC Genomics  (2017) 18:412 Page 12 of 16



Fisher’s exact test using base functions in the R statis-
tical framework (version 3.2.4) [102]. We also used a
Bayesian approach implemented in BayeScan (version
2.1) [103–105] to measure FST and identify outlier SNPs.
For the set of genes with significant differentiation

(GST) between populations, we tested for enrichment
of gene ontology terms from the GOSlim annota-
tion. To do this, we used the Fisher exact test with
false discovery rate correction implemented in
Blast2GO [46–48].
We also measured average nucleotide diversity (π) by

gene for each population separately. We calculated (πnt)
for each nucleotide as

πnt ¼ 1−
X

i

ni

2

!
� n

2

!  
ð1Þ

where ni is the count of allele i in the population, and
n = ∑ni. We took the average of (πnt) for each position
across the gene as the average nucleotide diversity for
each unigene.
We also calculated Tajima’s D [70] for each unigene

from the nucleotide diversity and the number of SNPs
within each gene. This statistic was calculated separately
for each population. We took the sample size for each to
be the average number of alleles genotyped at each SNP
within a given locus. We defined a locus as substantially
different from the neutral expectation if the value for
Tajima’s D was in the upper or lower 2.5th percentile of
the distribution for the population.
To examine population structure, we first performed a

principal components analysis using R [102]. For this
analysis, only SNPs that had genotype calls in all individ-
uals were included. We also used fastStructure (version
1.0) [72] to explore these patterns further. All identified
SNPs that passed our stringent filtering criteria were in-
cluded in the fastStructure analysis. We ran the algo-
rithm with a simple prior for values of K ranging from 1
to 10. We then used the provided script to determine
the appropriate complexity for the model. The optimal
value of K that maximized marginal likelihood (Kε

*) was 2.
The smallest number of components explaining the
ancestry observed in the data ðK �

∅C Þ was 4. Results from

both models are reported.
Finally, we used the R package related (version 1.0)

[106] to estimate relatedness among individuals. Be-
cause of computational constraints, we used only the
subset of SNPs for which we had genotype calls from
all individuals. The triadic likelihood method [107]
was used to estimate relatedness among individuals
within the nonagricultural and agricultural popula-
tions separately.

Additional files

Additional file 1: Phenotyping data for MN and ND individuals. Table
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Additional file 2: Gene ontology annotation summary. The number of
annotated unigenes assigned to generic GOSlim categories from the
Pieris rapae transcriptome are shown. (PDF 253 kb)
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Tajima’s D estimates by population for all genes containing SNPs.
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Additional file 6: Genetic relatedness within populations. Pairwise
genetic relatedness in (A) the agricultural ND population and (B) the
nonagricultural MN population are shown. Individuals are clustered based
on the relatedness scores; fastStructure results and the date each individual
egg was laid are shown to the right of each plot for comparison. (PDF 397 kb)
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