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Abstract 
Background: Fluorodeoxyglucose positron emission tomography (FDG PET) with glycolytic metabolism 

suppression plays a pivotal role in diagnosing cardiac sarcoidosis. Reorientation of images to match 

perfusion datasets is critical and myocardial segmentation enables consistent image scaling and 

quantification. However, both are challenging and labor intensive. We developed a 3D U-Net deep 

learning (DL) algorithm for automated myocardial segmentation in cardiac sarcoidosis FDG PET. 

Methods: The DL model was trained on 316 patients' FDG PET scans, and left ventricular contours 

derived from perfusion datasets. Qualitative analysis of clinical readability was performed to compare DL 

segmentation with the current automated method on a 50-patient test subset. Additionally, left ventricle 

displacement and angulation, as well as SUVmax sampling were compared to inter-user reproducibility 

results. 

Results: DL segmentation enhanced readability scores in over 90% of cases compared to the standard 

segmentation currently used in the software. DL segmentation performed similarly to a trained 

technologist, surpassing standard segmentation for left ventricle displacement and angulation, as well as 

correlation of SUVmax. 

Conclusion: The DL-based automated segmentation tool presents a marked improvement in the 

processing of cardiac sarcoidosis FDG PET, promising enhanced clinical workflow. This tool holds 

significant potential for accelerating clinical practice and improving consistency and quality. Further 

research with varied datasets is warranted to broaden its applicability. 

Introduction 
Cardiac sarcoidosis results from the infiltration of inflammatory cells into the myocardium, leading to a 

range of serious cardiac complications including arrhythmia, heart failure, and death [1–3].  Diagnosis of 

cardiac sarcoidosis may lead to invasive and complex treatments including placement of implantable 

cardioverter-defibrillators and immunosuppressive medications. Consequently, accurate diagnosis is of 

utmost importance. Furthermore, serial assessment of inflammatory activity is often helpful to guide 

management of immunosuppression [4]. FDG PET with metabolic suppression of myocardial glycolytic 

metabolism [5–7] is critical for the diagnosis and management of cardiac sarcoidosis. In addition, similar 

types of scans are now an important part of the diagnosis of prosthetic valve endocarditis in both 

European and American guidelines [8, 9]. 

Correlation of FDG uptake to perfusion findings is critical for accurate interpretation of cardiac 

sarcoidosis PET studies [10]. Ideally, this is done in cardiac planes: short axis, vertical long axis, and 

horizontal long axis. Segmentation of the myocardium allows for scaling of these images to optimize 

image dynamic range. However, standard cardiac segmentation algorithms developed for myocardial 

perfusion imaging (MPI) do not perform well for cardiac FDG PET scans performed with suppression of 

myocardial glycolytic metabolism. This is due to cardiac perfusion studies having mostly uniform 

distribution throughout the myocardium, whereas FDG PET scans with myocardial suppression have 

highly variable distributions of activity. Normal studies have no uptake in the myocardium while 

abnormal studies typically present hot spots of activity in varied locations. Manual segmentation and 

reorientation are time consuming and inconsistently used in many laboratories. Improper or suboptimal 

myocardial segmentation could lead to diagnostic errors if incorrect image scaling is applied to FDG PET 
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scan images. Finally, approaches that copy segmentation contours from perfusion to FDG PET scans still 

require manual intervention and are not possible when perfusion images are not routinely acquired (i.e., 

for endocarditis FDG PET). 

Deep learning (DL) approaches to image segmentations have been increasingly used in the medical 

imaging field, successfully performing various tedious segmentation tasks [11, 12]. Consequently, we 

sought to develop a fully automated myocardial segmentation algorithm for cardiac FDG PET performed 

with suppression of myocardial glycolytic metabolism using a deep convolutional neural network. 

Methods 

Study Population 
316 non-consecutive patients with cardiac FDG PET scans performed with a myocardial FDG suppression 

protocol [5, 13], coupled with rest 82Rb perfusion PET scans, at the University of Michigan between June 

2015 and June 2018, along with their repeat studies ranging from May 2012 to May 2019, were 

processed and reviewed in Corridor4DM (INVIA Medical Imaging Solutions, Ann Arbor, MI, USA). There 

were no exclusion criteria. Contours of the left ventricular myocardium created on perfusion datasets 

[14] were manually transferred to inflammatory datasets using image fusion by two users (imaging 

expert and trained technologist). Contours were subsequently converted to binary masks in transverse 

orientation. The transverse FDG PET volumes and binary masks were separately used as input and label 

for the supervised DL modeling. The 316 patients were divided into training, validation and testing sets 

of 189 (306), 63 (112), and 64 (106) patients (studies) respectively for our DL modeling effort. 

Additionally, a final test population of 50 patients was randomly selected from patients with an 

inflammatory FDG scan performed in 2019, taking care to exclude any individuals who also had prior 

scans in the training population. In the case of patients with multiple scans performed in 2019, only the 

latest scan was selected. The final test population was processed by both users to obtain inter-user 

variability. 

DL Algorithm 
The DL architecture applied in this work is a 3D U-Net model, which has been used previously for image 

segmentation tasks. The U-Net architecture was originally designed for 2D image segmentation but is 

extended here to handle 3D volumetric data [15, 16]. The model consists of an encoder-decoder 

structure. The encoder captures the high-level features and context from the input 3D volume 

(128×128×80) while the decoder uses this information to generate a segmented output. The encoder 

uses convolutional layers for feature extraction and pooling layers to downsample the spatial dimensions 

of the data, reducing computational complexity. In the decoder, upsampling layers are employed to 

increase the spatial dimensions of the data. Skip connections directly link the corresponding layers in the 

encoder and decoder, allowing for the preservation of fine-grained details during the upsampling. The 

final layer consists of a convolutional layer with a sigmoid activation function. This produces the 

segmentation map, matching the dimensions of the input 3D volume. The model was trained with a 

binary cross entropy loss function and the Adam optimizer, with a fixed learning rate of 0.001, for 500 

epochs. Performance improvement through epochs was also tallied using the dice coefficient, a measure 

of similarity commonly used for segmentation, of the binary contour masks and the resulting 

segmentation maps. 
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Qualitative and Quantitative Result Analysis 
Our final test population was processed by two users (imaging expert and trained technologist) as well as 

run through the DL segmentation algorithm and the standard surface generator used for perfusion image 

segmentation provided in Corridor4DM. Segmented images normalized to peak uptake within contours 

from the DL segmentation algorithm and the standard segmentation algorithm were reviewed by an 

expert physician reader (100 images). Each image was scored on a scale of 1 to 4 (1:Poor, 2:Fair, 3:Good, 

4:Excellent) for quality of: left ventricular centering, left ventricular orientation, scaling/normalization of 

image intensity, and overall readability. In addition, we compared the centering, orientations, and 

SUVmax produced by the DL and standard segmentation methods to the inter-user variability with 

manual contour transfer. 

Results 
The demographics of the training, validation, and test subsets as well as our final test population are 

shown in Table 1. 

Concordance of Segmented Contours 
Figure 1 demonstrates convergence of segmentation with maximization of the Dice coefficient in the 

validation subset. The model was verified to yield similar performance with the DL modeling test 

dataset, yielding a dice coefficient of 0.622. 

Qualitative Analysis of Automatic Segmentation 
To assess the adequacy of DL segmentation for clinical interpretation, the algorithm was compared to 

the standard segmentation developed and optimized for perfusion images [14]. Blinded physician scores 

for a random mixture of DL and standard segmentations are shown in Figure 2. Generally, standard 

segmentation fared poorly, with more than 50% of studies rated as fair to poor. The DL algorithm 

consistently improved centering, alignment, normalization, and overall readability of studies, yielding 

scores of good to excellent in more than 90% of studies. 

Only 3 (6%) studies were rated worse with DL segmentation than with standard segmentation: 2 studies 

decreased from excellent to good for combinations of centering, orientation, and overall readability, and 

1 study decreased from fair to poor in normalization (notably being scored as poor in overall readability 

for both the DL and standard segmentation). Importantly, no ratings decreased from excellent/good to 

fair/poor. If successful segmentation is defined as having all quality scores greater than 2 (good and 

above), DL segmentation improves the success rate to 90% from 12% for standard segmentation 

(p<0.0001). If successful segmentation is defined as having all quality scores greater than 1 (fair and 

above), DL segmentation improves success to 98%, compared with 32% for standard segmentation 

(p<0.0001).  

Inter-User Processing Reproducibility 
Both standard and DL segmentations were compared to the reproducibility of manual processing 

between a trained technologist and an imaging expert. Overall, displacement of the left ventricle (LV) 

center for the DL segmentation compared to the imaging expert was similar to that for the trained 

technologist and was markedly smaller than for the standard segmentation algorithm (Figure 3a, p < 

0.0001). Similar results were observed for angulation in Figure 3b. 
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The maximum SUV sampled within the LV contours was compared between the imaging expert and the 

three other processing (trained technologist manual processing, and both automated segmentations) in 

Figure 4. The DL algorithm showed excellent correlation with the imaging expert (R² = 0.97, p<0.0001), 

similarly to the trained technologist (R² = 0.98, p<0.0001), and markedly better than the standard 

segmentation (R² = 0.14, p=0.007). 

Discussion 
We have developed an automated deep learning algorithm for segmentation of myocardial FDG PET 

images acquired with a glycolytic metabolic suppression protocol, demonstrating performance 

comparable to manual contour transfer by a trained technologist. This algorithm markedly improved 

quality scores assigned by a physician as compared to standard segmentation. This automated algorithm 

has the potential to improve throughput and increase reproducibility of quantitative and qualitative 

interpretations. 

The scope of this work is focused on image segmentation, reorientation, and scaling for clinical review. 

Another earlier study has investigated the application of deep learning for the segmentation and 

classification of FDG PET studies [17]. The focus of that work was on segmentation of a broad heart 

region including multiple structures rather than the myocardium and on classification performance into 

no uptake, diffuse uptake, or partial uptake, rather than on optimization of images for clinician review. 

While the results show clear performance improvements, there are limitations worthy of consideration 

for future improvements. This study was performed using data from a single center which has published 

extensively on optimization of myocardial glycolytic metabolic suppression protocols with generally high-

quality studies  [5, 6, 13]. As such, implementation at other sites with differing protocols or lower image-

quality may not fare as well. Deep learning approaches are rapidly advancing, and U-Net is well 

established but other networks may have superior performance. Finally, the population used for both 

construction and validation of the DL model is relatively small and may not contain representative 

examples of less common cardiac imaging findings. 

Ultimately, the latter two limitations suggest further improved results may be feasible using novel deep 

learning network architectures and larger training and testing databases, including scans from multiple 

sites with more diversity of protocols and cameras. Having a larger training database is particularly 

desirable given the diverse activity distributions seen in inflammatory scans, ranging anywhere from 

multiple high-activity hot spots to no myocardial activity. 

Nonetheless, implementation of this new tool within the clinical sarcoid workflow should be a clear 

success compared to standard segmentation. Cases of inadequate contouring could still be corrected by 

manual approaches such as transferring contours from perfusion studies, when available. Furthermore, 

mutual registration of perfusion and FDG datasets will also be more straightforward with improved 

segmentation of the LV on both image sets. 

Conclusion 
In this work, we used deep learning to develop a tool to perform automatic segmentation of cardiac FDG 

PET studies performed with a myocardial glycolytic metabolic suppression protocol. Results show clear 

improvement in segmentation, centering, orientation, and normalization resulting in a marked 
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improvement in overall readability of these scans despite the complex and highly variable activity 

distributions observed. Clinical implementation of this new tool should greatly improve clinical workflow. 
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Tables 
 

Table 1. Demographics of the 2 patient populations 

 DL Modeling Population 
Final Analysis 

Population 

 Training Validation Testing  

N 189 63 64 50 

Male 128 (68%) 29 (46%) 36 (56%) 32 (64%) 

Age (years) 57.0 ± 11.4 57.7 ± 11.5 53.5 ± 13.2 60.9 ± 11.4 

Race (AA, C, A/P) 
46 (24%), 

134 (71%), 
1 (1%) 

16 (25%), 
45 (71%), 

0 (0%) 

19 (27%), 
45 (70%), 

0 (0%) 
11 (22%), 35 (70%), 1 (2%) 

BMI (kg/m²) 31.7 ± 6.7 32.0 ± 6.7 32.0 ± 7.3 30.2 ± 6.4 

Hypertension 107 (57%) 29 (47%) 36 (56%) 37 (74%) 

Hypercholesterolemia 91 (48%) 27 (44%) 30 (47%) 24 (48%) 

Diabetes 42 (22%) 12 (19%) 19 (30%) 15 (30%) 

Smoking 28 (15%) 8 (13%) 13 (20%) 7 (14%) 

AA: African American 

C: Caucasian 

A/P: Asian/Pacific Islander 

12 patients were missing race information 
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Figures 
 

 

Figure 1. Evolution of the dice coefficient throughout the epochs for the training and validation 
datasets 
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Figure 2. Evolution of quality scores with the introduction of DL segmentation 
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Figure 3. Comparison of the displacement (a) and angulation (b) of the LV for standard, trained 
user and automatic DL segmentation, versus our expert user segmentation. 
 
**: p < 0.01, ***: p < 0.001, ****: p < 0.0001. 
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Figure 4. Correlations between our expert user and standard segmentation (a), our trained user 
(b), and our newly developed DL segmentation (c). 

(c) 
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