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Abstract

Aims This study aims to identify and visualize electrocardiogram (ECG) features using an explainable deep learning–based algo-
rithm to predict cardiac resynchronization therapy (CRT) outcome. Its performance is compared with current guideline 
ECG criteria and QRSAREA.

Methods 
and results

A deep learning algorithm, trained on 1.1 million ECGs from 251 473 patients, was used to compress the median beat ECG, 
thereby summarizing most ECG features into only 21 explainable factors (FactorECG). Pre-implantation ECGs of 1306 CRT 
patients from three academic centres were converted into their respective FactorECG. FactorECG predicted the combined 
clinical endpoint of death, left ventricular assist device, or heart transplantation [c-statistic 0.69, 95% confidence interval (CI) 
0.66–0.72], significantly outperforming QRSAREA and guideline ECG criteria [c-statistic 0.61 (95% CI 0.58–0.64) and 0.57 
(95% CI 0.54–0.60), P < 0.001 for both]. The addition of 13 clinical variables was of limited added value for the 
FactorECG model when compared with QRSAREA (Δ c-statistic 0.03 vs. 0.10). FactorECG identified inferolateral T-wave 
inversion, smaller right precordial S- and T-wave amplitude, ventricular rate, and increased PR interval and P-wave duration 
to be important predictors for poor outcome. An online visualization tool was created to provide interactive visualizations 
(https://crt.ecgx.ai).

Conclusion Requiring only a standard 12-lead ECG, FactorECG held superior discriminative ability for the prediction of clinical outcome 
when compared with guideline criteria and QRSAREA, without requiring additional clinical variables. End-to-end automated 
visualization of ECG features allows for an explainable algorithm, which may facilitate rapid uptake of this personalized de-
cision-making tool in CRT.
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Structure Graphical Abstract

First, an artificial intelligence algorithm (variational auto-encoder) was pretrained on 1.1 million electrocardiograms (ECGs) to learn the underlying 
continuous factors that generate the ECG (i.e. the FactorECG). In this process, the variational auto-encoder (VAE) learns to reconstruct ECGs as 
accurately as possible using only 21 continuous factors without any human input. In the training phase, the pre-procedural median beat ECGs of 1306 
cardiac resynchronization therapy (CRT) patients were each converted into their FactorECG. These 21 factors were subsequently used as input in a 
Cox model to predict the primary composite endpoint of left ventricular assist device implantation, heart transplantation and all-cause death, and the 
secondary endpoint of echocardiographic response. FactorECG significantly improved outcome prediction following CRT when compared with the 
current guidelines and QRSAREA. The algorithm is explainable by using the decoder to visualize the effect of the ECG factors that significantly pre-
dicted outcome on the median beat ECG morphology. Here, for example, the influence of Factor 9 (F9) is visualized, where higher values represent a 
more left bundle branch block-like ECG morphology and lower values, a more right bundle branch block-like morphology. CRT, cardiac resynchro-
nization therapy; DNN, deep neural network; ECG, electrocardiogram; HTx, heart transplantation; LVAD, left ventricular assist device.

Keywords Cardiac resynchronization therapy • Heart failure • Deep learning • Explainable • Electrocardiogram • QRS area
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Introduction
In patients with dyssynchronous heart failure (HF), cardiac resynchroniza-
tion therapy (CRT) can effectively restore left ventricular (LV) electrical ac-
tivation and mechanical function, thereby improving clinical outcome.1

However, for CRT to be beneficial, sufficient LV electrical conduction delay 
must be present.2 Currently, patients are selected based on various require-
ments set out by different guidelines. However, despite indicating the highest 
level of recommendation, by itself, a Class I indication does not necessarily 
ensure a sustained response after CRT.3 Conversely, the effectiveness of 
CRT is variable and doubted in patients without left bundle branch block 
(LBBB) morphology or intermediate QRS duration.2,4,5 Although a substan-
tial portion of these patients will benefit regardless,6 they are at increased risk 
of not being considered for treatment.5,6 Accurate and objective identifica-
tion of the underlying electrical substrate is therefore crucial to optimize pa-
tient selection and ensure optimal treatment.

Currently, electrical characteristics derived from the electrocardiogram 
(ECG), such as LBBB morphology and QRS duration, are used to deter-
mine eligibility for CRT.2 Multiple ECG criteria for LBBB have been defined7

and inter-observer variability is high.8 Moreover, a variety of LV electrical 
activation patterns are concealed in the ECG, further complicating clinical 
decision-making.9 Recently, QRSAREA has emerged as a new and objective 
computerized measure.3,10 QRSAREA is independently associated with sur-
vival and echocardiographic response, outperforming LBBB morphology 
and QRS duration.3,10 As such, QRSAREA partly overcomes the challenges 
of subjective ECG interpretation, but (subtle) ECG characteristics, besides 
the QRS complex, are still not considered.

Machine learning has gained interest as a means of integrating large 
number of variables, thereby producing advanced clinical decision mod-
els. The SEMMELWEIS-CRT score, for example, outperforms many al-
ready existing risk scores, but relies on 33 clinical variables.11 Besides 
being laborious to use, such models also rely on human interpretation 
of input variables such as left ventricular ejection fraction (LVEF), the 
New York Heart Association (NYHA), LBBB morphology and QRS dur-
ation, which are all subjectively assessed. Hence, although such models 
may predict response to CRT, large amounts of clinical variables will still 
need to be acquired, extracted, and entered in such models.11–14

A recent development in the field of machine learning, called deep 
learning, can learn features from the raw ECG signal without the necessity 
for any human interpretation.15 Deep learning algorithms may therefore 
be used to automatically detect, identify, and classify ECG abnormalities 
that are associated with non-response or poor outcome after CRT. 
Although the need for very large data sets and the lack of interpretability 
were deemed common drawbacks of deep learning, a novel technique 
that uses a variational auto-encoder (VAE; the FactorECG) was recently 
introduced.16 This approach enables physicians to better understand and 
verify the learned ECG features of deep learning algorithms, and makes 
the technique available to much smaller data sets.

The present study seeks to compare contemporary guideline ECG 
criteria for CRT implantation and QRSAREA with the FactorECG for 
the prediction of a combined clinical endpoint and echocardiographic 
response. In addition, we aim to identify and visualize ECG features as-
sociated with these outcome measures.

Methods
Study design
All data were acquired for routine patient care and handled anonymously, 
and were collected as part of the multicentre Maastricht–Utrecht– 

Groningen (MUG) registry.10 Under these circumstances, informed con-
sent was waived by the Institutional Review Board at the time of the study. 
All study procedures were performed in compliance with the Declaration 
of Helsinki.

Only patients who received a de novo CRT device with a transvenous LV 
lead were considered for the present study (Figure 1). A baseline ECG 
(within 3 months before implantation) was required for the primary end-
point analysis, whereas a paired echocardiographic examination at baseline 
and follow up (6–12 months) was required for the secondary endpoint. 
Echocardiographic examinations from various vendors were used to deter-
mine LV end-systolic volume (LVESV), and LVEF was calculated using the 
Simpson’s modified biplane method (IntelliSpace Cardiovascular, Philips, 
Eindhoven).

The primary endpoint was a combined clinical endpoint consisting of left 
ventricular assist device (LVAD) implantation, heart transplantation (HTx), 
and all-cause mortality. The secondary endpoint was echocardiographic 
non-response, defined as a relative decrease in LVESV of <15%.17 In add-
ition, three tertiary endpoints were investigated: (i) a composite of HF 
hospitalization and the primary endpoint, (ii) HF hospitalization alone, and 
(iii) ≥1 point of NYHA functional class improvement.

Electrocardiographic data
For all patients, standard 12-lead ECGs were exported and converted into 
median heart beats using the MUSE ECG system (MUSE version 8; GE 
Healthcare, Chicago, IL, USA). The median beat data were constructed 
by aligning all QRS complexes in the 10-second ECG of the same shape 
(e.g. excluding premature ventricular complexes), and generating a repre-
sentative QRS complex by taking the median voltage.18 Automated ECG 
readings were used to derive QRS duration and other typical ECG para-
meters. LBBB morphology was defined according to the 2013 European 
Society of Cardiology (ESC) and 2013 the American Heart 
Association(AHA) criteria at the time (see Supplementary material 
online, Table S1), as previously reported.7 Using these morphological defini-
tions, indications for CRT implantation were determined according to the 
current 2021 ESC guidelines.2 Strauss criteria provide similar risk stratifica-
tion when compared with the 2013 ESC criteria,7 and were therefore not 
evaluated. Without exception, all digitally available ECGs were selected for 
analysis.

To calculate QRSAREA, first all ECGs were semi-automatically recoded 
into vectorcardiograms, consisting of three orthogonal leads (X, Y, and 
Z). To this end, the Kors conversion matrix was used in custom Matlab soft-
ware (MathWorks Inc).19 The three orthogonal leads from the vectorcar-
diogram form a 3D-vector loop, from which QRSAREA was calculated as the 

sum of the area under the QRS complex as 
�������������������������
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Deep learning approach
A recently developed approach to use deep neural networks in an explain-
able method, referred to as the FactorECG, was used. Here, the complete 
median beat ECG is analysed using a VAE, which divides the ECG into mor-
phological features without any assumptions (e.g. an agnostic approach). 
For this approach, the VAE was pretrained to learn these morphological 
features (or underlying generative factors) of the ECG, using a data set of 
1 144 331 ECGs from 251 473 consecutive patients that underwent ECG 
recording in the University Medical Centre Utrecht between July 1991 
and August 2020.16 Overlap in the pretraining cohort and patients included 
in this study was negligible at 0.04% and could not influence the results since 
the VAE was trained unsupervised (i.e. without any knowledge of CRT 
outcome).

The VAE is a generative artificial intelligence algorithm that consists of 
three parts: (i) an encoder neural network, (ii) the FactorECG (a compressed 
version of the ECG in only 32 disentangled continuous factors), and (iii) the 
decoder neural network (Figure 2A). The goal of the VAE is to learn to ‘com-
press’ the ECG, without human interference, into a reduced number of con-
tinuous and independent variables that are presumably related to the 

http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehac617#supplementary-data
http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehac617#supplementary-data
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underlying (patho)physiological generative processes of the ECG. 
Pretraining of the VAE was performed unsupervised by entering the median 
beat ECGs into the algorithm and reconstructing the same ECG, while cal-
culating the difference between the original and reconstructed ECG to op-
timize the network. After training, the first part of the VAE (encoder) can be 
used to convert any median beat ECG into its FactorECG, the distinctive set 
of 32 factors that represent that ECG. Importantly, it has been shown before 
that only 21 of the 32 factors encode significant information.16 Hence, only 
these 21 factors were used in subsequent models. In the training step of the 
current analysis, the 21 continuous FactorECG values for every ECG, as cal-
culated by the encoder, are used in Cox and logistic regression models to 
perform prediction of the different endpoints (Figure 2B).

Explainability of the individual ECG factors was achieved by visualizing 
their influence on the median beat ECG morphology. This was done at 
the model level by varying the values of the individual ECG factors be-
tween −3 and 3, while reconstructing the ECG using the decoder. 
The other factors were kept constant, which allows for visualization 
of the distinct median beat ECG morphology that every factor entails. 
Moreover, patient-level explanations can be obtained by investigating 
the FactorECG values of that specific ECG, in combination with the 
coefficients of the model. This way, we can determine which factors 
were important in a specific patient to make the prediction. Interactive 
visualizations of the model are available at https://crt.ecgx.ai. The architec-
ture and training procedures for the FactorECG have been described in 
detail before.16

Statistical analysis
Baseline characteristics were expressed as mean ± standard deviation (SD), 
or median with interquartile range (IQR), where applicable. Depending on 
the normality of data, differences in continuous variables were assessed 

using the Student’s t-test or Mann–Whitney U test. Conversely, categorical 
variables were tested using the χ2 test or Fisher’s exact test.

Models using different guideline criteria, QRSAREA and the per-patient 
21 significant standardized FactorECG values, were compared. For the 
primary endpoint, multivariable Cox proportional hazard models were fit-
ted to take time-to-event into account. For the secondary endpoint, a simi-
lar approach was applied, with multivariable logistic regression to predict 
the binary endpoint of LVESV non-response <15%. In a second step, the 
added value of the models to a combination of 13 standard clinical para-
meters was assessed. Clinical parameters known to be associated with 
CRT outcome were entered into the multivariable models (i.e. Cox regres-
sion for the primary endpoint and logistic regression for secondary end-
point): sex, age, and aetiology [i.e. ischaemic cardiomyopathy (ICM) or 
non-ICM], weight, height, baseline NYHA class, rhythm (sinus rhythm or at-
rial fibrillation), baseline LVEF, baseline end diastolic volume, baseline inter-
ventricular mechanical delay (IVMD), haemoglobin, creatinine levels, and 
presence of diabetes. As there were missing values of some parameters, 
multivariate imputation using chained equations was performed using 
only these clinical parameters as input.

For all models, non-linear relationships were investigated using natural 
cubic splines, and for the Cox models, the proportional hazards assumption 
was verified. Hazard ratios (HRs) and odds ratios (ORs) were reported to 
investigate the importance of individual predictors, such as the standardized 
FactorECG values. Model fit for all models was assessed using Akaike’s 
Information Criterion, discrimination using Harell’s C-statistic, and calibra-
tion using the calibration slope. The apparent C-statistic and calibration 
slope were obtained by applying the model to the original data. Internal val-
idation was performed by using a bootstrap-based optimism estimation 
technique, where all model development steps were repeated on the 
500 bootstrap samples and the model was tested on the original data.20

The ‘optimism’, which is the mean difference between the performance 

MUG Database 
n = 1946

RV pacing 
n = 340

Eligible patients 
n = 1492

QRS < 120 ms 
n = 114

No digitized ECG
n = 185

Included patients 
n = 1307

Echocardiographic
response endpoint  

n = 821

Primary composite
endpoint 
n = 1306

HF hospitalization 
endpoint
n = 1137

NYHA improvement 
endpoint 
n = 1017

Missing echo 
n = 486

No clinical FU
n = 1

No HFH FU 
n = 170

Missing NYHA 
n = 290

Figure 1 Flow chart for the inclusion of patients in this study. ECG, electrocardiogram; FU, follow up; HF, heart failure; HFH, heart failure hospital-
ization; NYHA, New York Heart Association; RV, right ventricular.

https://crt.ecgx.ai
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measure in the original and bootstrapped data set, was subtracted from the 
apparent performance measures. These optimism-corrected measures 
have been shown to be an unbiased estimate of the generalizability of the 
model, without losing any data for training.21 Confidence intervals (CIs) 
around the performance measures were obtained using 2000 bootstrap 
samples. All statistical analyses were performed using Python version 3.8. 
The Transparent Reporting of a Multivariable Prediction Model for 
Individual Prognosis or Diagnosis Statement for the reporting of diagnostic 
models was followed, where applicable.22

Results
Baseline characteristics
A real-world CRT population was gathered from three Dutch academic 
hospitals (n = 1946), of which 1492 were eligible after exclusion for RV 
pacing and QRS duration <120 ms. Of the 1492 patients, 1307 had a 
digital ECG available in the 90 days before implantation, and 1306 
were included in the analysis for the primary endpoint (Figure 1, 

median beat
ECG

reconstructed
ECG

DNN
encoder

DNN
decoder

FactorECG
21 continuous generative ECG factors

LVAD/HTx/death Non-response
LVESV reduction <15%

Cox regression Logistic regression

A Pretraining: unsupervised on 1.1 million ECGs

B  Training: FactorECG as input to prediction models

Figure 2 Schematic representation of the series of algorithms and 
processes: a variational auto-encoder, the FactorECG and reconstruc-
tions. (A) In the pretraining phase, the variational auto-encoder is 
trained on a data set of 1.1 million median beat electrocardiograms 
from the University Medical Center Utrecht to learn the underlying 
factors that generate the  electrocardiogram. In this process, the vari-
ational auto-encoder learns to reconstruct  electrocardiograms as ac-
curately as possible using only the FactorECG continuous factors. 
(B) In the training phase, the 21 significant  electrocardiogram factors 
for every median beat  electrocardiogram in the cardiac resynchroni-
zation therapy population are obtained using the encoder. These fac-
tors are used as input in Cox and logistic regression models to predict 
outcome (composite of left ventricular assist device implantation, 
heart transplantation, and death) or non-response (left ventricular 
end-systolic volume reduction <15% after cardiac resynchronization 
therapy implantation). DNN, deep neural network; ECG, electrocar-
diogram; HTx, heart transplantation; LVAD, left ventricular assist de-
vice; LVESV, left ventricular end-systolic volume; VAE, variational 
auto-encoder.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Baseline characteristics

Variable Missing, 
n (%)

Overall (n = 1306)

Patient demographics

Age (years) 0 (0) 68.3 (60.0–74.7)

Male sex, n (%) 0 (0) 919 (70.4)

Length (cm), mean (SD) 66 (5.1) 174 (8.9)

Weight (kg), mean (SD) 60 (4.6) 81.9 (16.1)

ICM, n (%) 0 (0) 649 (49.7)

DM, n (%) 2 (0.1) 328 (25.2)

Pre-procedural NYHA, n (%) 29 (2.2)

I 28 (2.2)

II 513 (40.2)

III 672 (52.6)

IV 64 (5.0)

ICD, n (%) 0 (0) 1226 (93.9)

Laboratory measurements

NT-proBNP (pmoL/L), median 
(IQR)

605 (46.3) 1379 (587–2845)

Haemoglobin (mmoL/L), median 
(IQR)

436 (33.3) 8.5 (7.8–9.1)

Creatinine (mmoL/L), median (IQR) 48 (3.7) 102 (83–130)

Electrocardiography

Sinus rhythm, n (%) 9 (0.7) 1096 (84.5)

PR duration (ms), median (IQR) 216 (16.5) 184.0 (164.0–213.5)

QRS duration (ms), median (IQR) 0 (0) 158.0 (146.0–172.0)

QTc duration (ms), median (IQR) 0 (0) 486.0 (463.0–510.0)

LBBB (ESC 2013), n (%) 0 (0) 1028 (78.7)

LBBB (AHA), n (%) 0 (0) 173 (13.3)

QRSAREA (μVs), median (IQR) 0 (0) 108.2 (76.0–151.0)

Echocardiography

LVEDV (mL), median (IQR) 355 (27.2) 205.0 (157.1–271.0)

LVESV (L), median (IQR) 349 (26.7) 151.0 (113.0–209.0)

LVEF (%), median (IQR) 321 (24.5) 24.0 (18.9–30.0)

IVMD (ms), median (IQR) 522 (40.0) 45.0 (22.0–64.0)

Procedure characteristics

CRT-P, n (%) 0 (0) 80 (6.1)

LV lead position, n (%) 38 (2.9)

Anterior 135 (10.6)

Lateral 466 (36.8)

Posterior 667 (52.6)

Outcomes

Duration of follow up (years), 
median (IQR)

0 (0) 3.48 (2.08–5.24)

Continued 
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Table 1). The median time between ECG and implantation was 1 day 
(IQR 1–6 days). The pretrained VAE performed well in the current 
population, with a Pearson correlation between the original and recon-
structed ECG of 0.86. The ESC guideline CRT indications, using the 
2013 ESC criteria for LBBB, were as follows: Class I 737 (56%), Class 
IIa 401 (31%), Class IIb, and Class III 168 (13%; Table 1). When applying 
the AHA criteria for LBBB, the indications were as follows: Class I 134 
(10%), Class IIa 787 (60%), Class IIb, and Class III 385 (30%).

Primary endpoint: combined clinical 
outcome
A total of 385 patients (30%) reached the primary endpoint of LVAD 
implantation (n = 11), HTx (n = 4), or all-cause mortality (n = 370). 
The median follow-up time was 3.5 years (IQR 2.1–5.2 years). 
Optimism-corrected C-statistics were derived for the different predict-
or sets in predicting the occurrence of the primary endpoint (Table 2, 
Supplementary material online, Tables S2, S4–S8). According to current 
guideline criteria for CRT implantation, a Class I indication was signifi-
cantly associated with freedom of the primary endpoint, when com-
pared with a non-Class I indication. However, this association was 
only seen when using the ESC [c-statistic 0.57 (95% CI 0.54–0.60)], 
but not the AHA definition [c-statistic 0.50 (95% CI 0.47–0.53)] of 
LBBB morphology (Table 2). A stronger association with outcome 
was seen using FactorECG [c-statistic 0.69 (95% CI 0.66–0.72), P < 

0.001 for both AHA and ESC definitions]. Moreover, FactorECG had 
a significantly stronger association with outcome than QRSAREA 

[c-statistic 0.61 (95% CI 0.58–0.64), P < 0.001].
When subdividing QRSAREA and FactorECG into four quartiles, 

better discriminative performance for the occurrence of the pri-
mary endpoint was achieved using FactorECG (Figure 3). A signifi-
cantly higher event-free survival at three years was seen in the 
lowest risk FactorECG group when compared with QRSAREA ≥ 
150 μVs (94% vs. 89%; log rank P = 0.01). Additionally, 3-year event- 
free survival for the highest risk FactorECG quartile was significantly 
worse than in patients with QRSAREA < 75 μVs (63% vs. 73%; log 
rank P < 0.005).

Secondary endpoint: echocardiographic 
non-response
Pre- and post-procedural echocardiograms were available in 821 pa-
tients. Long-term echocardiographic non-response was observed in 
355 patients (43%). All evaluated models were significantly associated 
with echocardiographic non-response (Table 2, Supplementary 
material online, Tables S3, S9–S13). However, guideline classifications 
performed the worst, using either the ESC [c-statistic 0.61 (95% CI 
0.57–0.64)] or AHA definition [c-statistic 0.56 (95% CI 0.53–0.60)] of 
LBBB morphology. FactorECG [c-statistic 0.69 (95% CI 0.65–0.72)] 
and QRSAREA [c-statistic 0.70 (95% CI 0.67–0.74)] had similar associa-
tions with non-response (P = 0.12), but were both significantly stronger 
associated with response than either guideline recommendation (P < 
0.001, Figure 3). Differences in the extent of reverse remodelling, strati-
fied according to four groups of FactorECG and QRSAREA, were similar 
(Figure 3).

Tertiary endpoints
The availability of tertiary endpoints is summarized in Figure 1 and Table 1. 
FactorECG was significantly associated with the composite of the pri-
mary endpoint combined with HF hospitalization [c-statistic = 0.68 
(95% CI 0.65–0.70)], and HF hospitalization alone [c-statistic = 0.70 
(95% CI 0.66–0.74)], outperforming QRSAREAand the guideline criteria 
[P < 0.001 for all comparisons (see Supplementary material online, 
Tables S14–S24]. None of the models showed additional predictive value 
for prediction ≥1 point NYHA improvement when compared with a 
baseline model that only consisted of pre-procedural NYHA class (see 
Supplementary material online, Tables S14, S25–S29).

Subgroup analysis
Performance of FactorECG and QRSAREA were compared, stratified by 
known subgroups associated with clinical outcome (Table 3). The stron-
gest association of FactorECG was observed in patients with non-ICM 
[c-statistic 0.77 (95%CI 0.73–0.81)], which was significantly higher 
when compared with QRSAREA [c-statistic 0.62 (95%CI 0.57–0.67)]. 
Using the ESC definition of LBBB morphology, FactorECG outper-
formed QRSAREA in patients with LBBB [c-statistic 0.71 (95%CI 0.68– 
0.74) vs. c-statistic 0.61 (95% CI 0.58–0.65)], and non-LBBB [c-statistic 
0.66 (95% CI 0.60–0.71) vs. c-statistic 0.52 (95% CI 0.46–0.58)]. The 
same observation was made when evaluating patients with an inter-
mediate QRS duration (<150 ms) and patients with ICM. 
Importantly, FactorECG and QRSAREA demonstrated comparable asso-
ciations with echocardiographic response regardless of the subgroup 
analysed (Table 3).
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Table 1 Continued  

Variable Missing, 
n (%)

Overall (n = 1306)

Primary endpoint (LVAD, HTx or 
death), n (%)

0 (0) 385 (30)

LVESV reduction (%), median 
(IQR)

485 (37.1) 20.9 (0.5–41.4)

LVESV non-responder endpoint, 
n (%)

485 (37.1) 355 (43)

Composite of primary endpoint 
and heart failure 
hospitalization, n (%)

169 (12.9) 406 (35.7)

Heart failure hospitalization 
endpoint, n (%)

169 (12.9) 133 (11.7)

Post-procedural NYHA, n 
(%)

249 (19.1)

I 178 (16.8)

II 650 (61.5)

III 216 (20.4)

IV 13 (1.2)

NYHA improvement endpoint 289 (22.1) 509 (50)

CRT-P, cardiac resynchronization therapy pacemaker; DM, diabetes mellitus; ICD, 
implantable cardioverter defibrillator; ICM, ischaemic cardiomyopathy; IVMD, 
interventricular mechanical delay; IQR, interquartile range; LBBB, left bundle branch 
block; LV, left ventricular; LVEDV, left ventricular end diastolic volume; LVEF, left 
ventricular ejection fraction; LVESV, left ventricular end-systolic volume; 
NT-proBNP, N-terminal pro-B-type natriuretic peptide; NYHA, New York Heart 
Association; SD, standard deviation.

http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehac617#supplementary-data
http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehac617#supplementary-data
http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehac617#supplementary-data
http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehac617#supplementary-data
http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehac617#supplementary-data
http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehac617#supplementary-data
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Additional value of clinical model
Readily available patient characteristics, known to be associated with 
CRT outcome, were entered into a clinical model.11 The clinical model 
was significantly associated with outcome [c-statistic 0.69 (95% CI 
0.67–0.72)] and response [c-statistic 0.60 (95%CI 0.56–0.64)] 
(Table 2, Supplementary material online, Tables S4–S13). However, 
for both endpoints, the ECG-only FactorECG model demonstrated 
similar associations when compared with the clinical model (P = 0.48 
and P = 0.10, respectively). For outcome, the addition of a 13-variable 
clinical model significantly improved upon QRSAREA (Δ c-statistic 
0.10, P < 0.001), whereas its addition to FactorECG was of limited 
added value (Δ c-statistic 0.03, P < 0.001). By contrast, concerning 
echocardiographic non-response, the added value of the clinical model 
was negligible (Δ c-statistic 0.01, P = 0.002).

Explainable deep learning through factor 
visualization
Electrocardiogram factors that were significantly associated with out-
come and non-response are summarized in Figure 4. Exact HRs for out-
come and the ORs for non-response are summarized in Supplementary 
material online, Tables S5 and S10, respectively. Visualizations of the 
most important ECG factors, using factor traversals, are shown in 
Figure 5, whereas Supplementary material online, Figure S1 displays a 
complete 12-lead visualization of all factors. Factors associated with 
‘both’ non-response and poor outcome were interpreted as follows: 
F1 (absent QRS notching and ST-segment deviation, but lateral 
T-wave inversion), F9 (transition from LBBB morphology to more right 
bundle branch block morphology with smaller right precordial S-wave 
amplitudes), F10 (increased ventricular rate), and F19 (decreased anter-
ior QS amplitude and lateral notched R). Importantly, F8 and F15 (in-
creased PR interval and P-wave duration) were only associated with 
worse outcomes, whereas F5 (decreased QRS duration and JTc inter-
val) and F26 (decreased QRS duration and amplitude of LBBB morph-
ology) were only associated with non-response. Similar factors (F1, 
F9, and F19), mostly representing reduced QRS and T-wave voltage 
with increased QT duration, were found to be predictive for HF hos-
pitalization when compared with the model for the primary outcome 
alone (see Supplementary material online, Table S21). However, F25, 
which represents reduced QRS duration, was also predictive for HF 
hospitalization.

Clinical applicability using risk groups
Using a combination of predictions of the FactorECG algorithm for 
both echocardiographic non-response and 3-year clinical outcome, 
four distinct groups could be identified to assist patient selection 
(see Supplementary material online, Table S30). Here, QRSAREA 

could not differentiate between good and poor outcomes in echo-
cardiographic responders (median QRSAREA 151 vs. 152 μVs, re-
spectively) or non-responders (median QRSAREA 84 vs. 83 μVs, 
respectively).

In the first group, with both predicted response and good outcome 
(n = 338), 76% of the patients were responders, and only 14% experi-
enced the primary endpoint during follow up. In the second group of 
poor 3-year outcomes despite an echocardiographic response 
(n = 72), patients were more frequently male, had ICM, higher 
NT-proBNP, high QRS duration, and the worst ESV and LVEF. 
Conversely, in the third group, CRT non-responders with good clinical 
outcome regardless (n = 96) were predominantly characterized by 
shorter QRS duration, lowest LVESV, and highest LVEF. In the fourth 
group of patients, with both poor outcome and non-response, signifi-
cantly more ICM, NYHA Class III, and non-LBBB was observed when 
compared with the other subgroups. In this worst performing sub-
group (n = 314), the primary endpoint occurred in 46% of the patients 
during follow up, and response occurred in only 36% of the patients.

In contrast, when using current ESC guidelines for selection of pa-
tients eligible for CRT, in Class I patients (n = 499) response occurred 
in 65% and the primary outcome endpoint in 26% during follow up. In 
patients with Class IIa (n = 226) or IIb/III (n = 96) indications, response 
occurred in 50% and 33%, and the primary outcome endpoint in 35% 
and 37%, respectively. A comparison of the classification in the four 
FactorECG groups and the guideline-based groups can be found in 
Figure 2C.

Discussion
In this large, multicentre, real-world data set, an explainable deep learn-
ing–based algorithm (FactorECG) was predictive for long-term clinical 
outcome, HF hospitalization, and echocardiographic non-response 
after CRT implantation. FactorECG outperformed contemporary 
guideline criteria and vectorcardiographic QRSAREA for clinical 
outcome and HF hospitalization (Structured Graphical Abstract). 
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Table 2 Optimism-corrected C-statistic for outcome and response

Predictors Outcome Response

C-statistic 95% CI C-statistic 95% CI

2013 AHA criteria 0.50 (0.47–0.53) 0.56 (0.53–0.60)

2013 ESC criteria 0.57 (0.54–0.60) 0.61 (0.57–0.64)

QRSAREA 0.61 (0.58–0.64) 0.70 (0.67–0.74)

FactorECG 0.69 (0.66–0.72) 0.69 (0.65–0.72)

Clinical 0.69 (0.67–0.72) 0.67 (0.64–0.71)

QRSAREA/clinical 0.71 (0.68–0.74) 0.72 (0.68–0.75)

FactorECG/clinical 0.72 (0.69–0.75) 0.70 (0.67–0.74)

AHA, American Heart Association; ESC, European Society of Cardiology.

http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehac617#supplementary-data
http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehac617#supplementary-data
http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehac617#supplementary-data
http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehac617#supplementary-data
http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehac617#supplementary-data
http://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehac617#supplementary-data
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Importantly, only a readily available 12-lead ECG is required since little 
added value was obtained using additional clinical input variables. The 
user-independent analysis and automated visualization of key ECG fea-
tures allows for patient-specific interpretation of the algorithm 

(Figure 6), which may facilitate its adoption into clinical practice as a 
valuable alternative for the selection of CRT candidates. Lastly, an on-
line visualization tool was created to provide interactive visualizations 
(https://crt.ecgx.ai).

A

B

C

Figure 3 Clinical utility of FactorECG and QRSAREA in cardiac resynchronization therapy. QRSAREA and FactorECG predicted probabilities were di-
vided into four quartiles of equal size. Quartiles of FactorECG better differentiate clinical outcomes when compared with QRSAREA and guidelines using 
the European Society of Cardiology criteria of left bundle branch block (A). Similar associations with echocardiographic response were seen when com-
pared with QRSAREA, while still outperforming guideline criteria (B). The reclassification flow from the guidelines to the FactorECG predictions is shown 
in C. Here, a combination of predicted clinical outcome and response is assessed by setting the probability cut-off at 50% of the data. The probability 
cut-offs in C therefore correspond to the upper two and lower two quartiles in A and B combined. ECG, electrocardiogram; HTx, heart transplantation; 
LVAD, left ventricular assist device; LVESV, left ventricular end-systolic volume.

https://crt.ecgx.ai
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Deep learning–based prediction of 
outcome
For the first time, deep learning has been used to predict clinical out-
come after CRT using only the raw pre-procedural ECG [c-statistic 
0.69 (95% CI 0.66–0.72)]. In contrast, previous studies aimed to pre-
dict CRT outcome using machine learning to unify a vast number of 
clinical variables into a single model. The SEMMELWEIS-CRT score 
combined 33 clinical variables for the prediction of all-cause mortality, 
reporting a mean internally calculated c-statistic of 0.69, derived from 
1510 patients in a single centre.11 Similarly, three other studies com-
bined a plethora of pre-implantation characteristics, including ECG 
and complex echocardiography data, totalling 19, 45, or even 77 vari-
ables.12–14 Another study compared an unsupervised principal com-
ponent analysis model with QRSAREA.23 Here, similar results for 
QRSAREA [HR = 0.46 (95% CI 0.39–0.55)] and their model [HR = 
0.45 (95% CI 0.38–0.53)] were seen for the composite endpoints 
of death, LVAD, or HTx.

Differences in primary clinical endpoints in the aforementioned stud-
ies complicate a direct comparison with the present study. However, 
similar or better performance was observed with respect to predicting 
clinical outcomes without relying on complex ‘statistical’ models.11,13

Moreover, our approach outperformed QRSAREA with respect to clin-
ical outcome, whereas unsupervised machine learning of baseline QRS 
waveforms previously failed to do so.23 Most importantly, all previously 
proposed models require collection and calculation of many clinical 
variables, which are highly operator dependent, cumbersome, and likely 
to dissuade clinicians from rapidly adopting such an approach.11–14

Although significant added benefit was obtained upon the addition of 
a clinical model to QRSAREA, the increase in model performance was 
three-fold smaller for FactorECG. Rather, our proposed approach re-
quires only a standard 12-lead ECG, without heavily depending on add-
itional clinical input variables, or manual selection of the QRS complex. 
It is therefore conceivable that the clinical practicality of our ECG-only 
approach outweighs the limited benefit of increasing the c-statistic by 
0.03 by using 13 clinical variables. For research purposes, an online 
tool has been developed where the ECG can be uploaded and predic-
tions for CRT outcome can be made (https://crt.ecgx.ai and https:// 
encoder.ecgx.ai).

Echocardiographic and functional 
response
The proportion of 43% non-responders is in accordance with previous 
literature and highlights the need for better patient selection.3,17 In our 
study, a head-to-head comparison of FactorECG and QRSAREA 

provided similar results for the prediction of echocardiographic 
non-response [c-statistic 0.69 (95% CI 0.65–0.72) and 0.70 (95% CI 
0.67–0.74), P = 0.12]. However, next to identifying the electrical sub-
strate on the ECG, characterization of the extent of mechanical impair-
ment is of importance as well, especially in patients with ICM. In fact, 
adding strain-based parameters of mechanical dyssynchrony to 
QRSAREA improves prediction of 6-month response (c-statistic 0.76), 
and is therefore also likely to add value to FactorECG.3 Simple multi-
variate logistic regression models, consisting of only four variables, 
have also been shown to be associated with sustained echocardio-
graphic response (c-statistic 0.774), a surrogate marker of stable dis-
ease remission.3 None of the described models provided added value 
to predict NYHA class improvement, likely because NYHA class is non- 
specific and its assessment is subjective and prone to bias.24

Identifying electrocardiogram features 
beyond the QRS complex
FactorECG improves upon heatmap-based attempts to make deep 
learning explainable, as such approaches merely highlight ‘where’ on 
the ECG significant features are detected but provide no information 
on which morphological change explains the prediction.16 Rather, 
FactorECG allows for ‘quantifiable’ identification of specific ECG fea-
tures, rendering physicians able to evaluate and confirm the clinical ra-
tionale of said features. This is reflected by our results that confirm the 
known importance of LBBB morphology and QRSAREA for the predic-
tion of echocardiographic response.3,10 Using FactorECG, all types of 
LV conduction delay, as reflected in the QRS complex, can be repre-
sented by combining ECG factors 5, 9, 19, and 27. Interestingly, al-
though QRSAREA was associated with outcome, ECG factors that 
incorporate QRS duration were not associated with outcome 
(Figure 5). This may be because, in the presence of sufficient electrical 
substrate, a subset of patients with moderate QRS prolongation are still 
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Table 3 Optimism-corrected C-statistic in various subgroups

Subgroup Outcome [c-statistic (95% CI)] Response [c-statistic (95% CI)]

QRSAREA FactorECG QRSAREA FactorECG

Male 0.60 (0.57–0.63) 0.67 (0.64–0.70) 0.69 (0.65–0.73) 0.70 (0.66–0.74)

Female 0.61 (0.53–0.69) 0.77 (0.71–0.83) 0.70 (0.63–0.77) 0.73 (0.66–0.79)

ICM 0.58 (0.54–0.62) 0.63 (0.60–0.67) 0.65 (0.59–0.70) 0.67 (0.61–0.72)

Non-ICM 0.62 (0.57–0.67) 0.77 (0.73–0.81) 0.72 (0.67–0.77) 0.74 (0.70–0.79)

LBBBa 0.61 (0.58–0.65) 0.71 (0.68–0.74) 0.71 (0.67–0.75) 0.73 (0.69–0.76)

Non-LBBBa 0.52 (0.46–0.58) 0.66 (0.60–0.71) 0.53 (0.43–0.63) 0.55 (0.46–0.65)

QRS ≥150 ms 0.62 (0.58–0.66) 0.70 (0.66–0.73) 0.71 (0.67–0.75) 0.73 (0.69–0.77)

QRS <150 ms 0.58 (0.53–0.63) 0.72 (0.67–0.76) 0.62 (0.55–0.70) 0.67 (0.60–0.73)

ICM, ischaemic cardiomyopathy; LBBB, left bundle branch block. 
aMorphology evaluated according to ESC 2013 criteria.

https://crt.ecgx.ai
https://encoder.ecgx.ai
https://encoder.ecgx.ai
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likely to respond.2,3,5,25 This is also underscored by our results, since 
FactorECG also predicted outcome in patients with QRS duration 
<150 ms [c-statistic 0.72 (0.67–0.76)]. Likewise, when corrected for 
various other ECG features, no significant association with QRS dur-
ation and outcome remains, as also reported previously.26

Visualization of ECG factors also identified various other ECG char-
acteristics known to be associated with outcome and/or response, in-
cluding the PR interval and P-wave duration (F8 and F15). The fact that 
correction of atrioventricular dromotropathy increases LV filling and 
LV pump function may explain the increased risk of poor outcome in 
the present study.27 Similarly, prolonged P-wave duration >120 ms, in-
dicating interatrial myopathy, has been linked to supraventricular ar-
rhythmias, stroke, and mortality.28 In addition, the QRS-T angle,29 JTc 

interval,30 and T-wave area31 have been raised as potentially important 
determinants of response or outcome. However, various other subtle 
markers of ischaemia, dyssynchrony, or risk of arrhythmia may be re-
presented by FactorECG.

Indeed, when evaluated by itself, a large number of other factors can 
be identified from the ECG.7 Unfortunately, accurately identifying these 
factors, and interpreting their interrelated meaning, is highly complex. In 
the first place because there is lack of consensus7 and inter-observer 
disagreement8 as to what truly defines LBBB morphology. Matters 
are further complicated when septal and LV activation patterns are 
concealed, or wrongly mimicked.9 Finally, various unknown ECG cri-
teria may have remained undetected. Interpretation of the LBBB 
ECG is therefore complex and misleading. In this regard, FactorECG 

Figure 4 Hazard and odds ratios for the models predicting either the clinical endpoint or echocardiographic non-response (left ventricular end- 
systolic volume reduction < 15%) using the electrocardiogram factors as the only input for the model. Colours correspond with factor traversal re-
constructions in Figure 5. All electrocardiogram factors were standardized and hazard and odds ratios can be interpreted as importance scores. 
ECG, electrocardiogram; HTx, heart transplantation; LVAD, left ventricular assist device; LVESV, left ventricular end-systolic volume.
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allows for a unified and agnostic approach, is user independent, and is 
inherently explainable.

Clinical implications
The FactorECG algorithm can be used in every patient that is consid-
ered for CRT. When provided with the baseline ECG, the patient- 
specific ECG factors that are associated with response and outcome 
are identified and combined into an individual risk score, and a patient- 
specific visualization of these factors is given (Figure 6). Hence, 
assessment of the electrical substrate as a ‘continuum’, rather than 
the current binary classification of LBBB morphology, is achieved. 
While similar in size, the CRT non-response and poor outcome sub-
groups, as predicted by the FactorECG, performed worse than patients 
without a Class I indication for CRT according to the ESC guideline 

criteria. Importantly, 39% of patients in this worst performing subgroup 
had a Class I indication (Figure 2C). FactorECG therefore enables better 
classification of patient eligibility, without compromising the total pro-
portion of patients deemed suitable for CRT implantation.

Future perspectives
Our self-contained ECG-based model was especially effective in females 
and the non-ICM population (c-statistic = 0.77 for both), but additional 
clinical variables are required to improve performance in patients with 
ICM. A future study will address the importance of adding strain-based 
mechanical dyssynchrony to FactorECG.3 In addition, optimal placement 
of the LV lead is of importance to enhance response in CRT patients. This 
is particularly important in patients with scars, but also in patients with 
heterogeneous LV electrical activation.9 In the future, FactorECG may 

Figure 5 Factor traversals of a subset of the electrocardiogram factors associated with both clinical outcome (composite endpoint of left ventricular 
assist device/HTx/death) and echocardiographic response (left ventricular end-systolic volume reduction >15%). In each graph, the corresponding fac-
tor is varied from −3 (blue) to 3 (red) standard deviations from the mean of 0 (white line), which represents the mean electrocardiogram in the cardiac 
resynchronization therapy population. For each factor, the lead showing the most easily interpretable effect is shown in the upper left corner. A com-
plete 12-lead electrocardiogram of all factors can be found in Supplementary material online, Figure S1. ECG, electrocardiogram; HTx, heart transplant-
ation; LVAD, left ventricular assist device; LVESV, left ventricular end-systolic volume.
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use ECG-derived data to identify the site of latest electrical activation, 
thereby guiding LV lead implantation.9 Moreover, the results need to be 
validated in a patient group that received a CRT-P device, as recent 

reports have shown similar survival between patients with a CRT-P and 
a CRT-D.32 Lastly, prospective studies with FactorECG are warranted 
to acquire CE certification, allowing its use as a medical device.

Figure 6 Patient-level example of a prediction with the FactorECG explanation. A standard 12-lead electrocardiogram is entered into a deep learning 
model, which automatically translates this electrocardiogram into its FactorECG containing all distinct features. These factors are entered into the Cox 
and logistic regression models, and predicted probabilities for both left ventricular assist device/HTx/death and non-response are shown to the user. 
This patient responded well to cardiac resynchronization therapy but died within 3 years regardless. Despite the presence of a ‘typical’ left bundle 
branch block morphology (F9), FactorECG demonstrates that this prediction of high probability of poor outcome is driven by increased ventricular 
frequency (F10), long PR interval with broad P-wave (F15), and axis deviation to the right (F31). ECG, electrocardiogram; HTx, heart transplantation; 
LVAD, left ventricular assist device; LVESV, left ventricular end-systolic volume.
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Strengths and limitations
Our data were derived from a large multicentre database, and thereby re-
present a real-world population. Internal validation by means of bootstrap-
ping was performed, which allows for unbiased validation of the complete 
data set and is therefore considered the recommended approach for in-
ternal validation of any prediction model.20,21,32 As a result, performance 
was not assessed in a single train-test split because this approach only va-
lidates an example model in an arbitrarily chosen and small data subset and 
produces a poorer model by default.33 We acknowledge that external val-
idation of data sets with a different patient population remains important 
to investigate the generalizability of our results. However, by using regular 
prediction models (i.e. logistic regression and Cox regression) with a lim-
ited number of predicting variables as input (only the 21 factors), the risk 
of overfitting is low. Although ECG data were derived from a single vendor, 
previous studies have shown that ECG-based deep learning results gener-
alize well to other cohorts with different ECG manufacturers.34,35 Despite 
QRSAREA being calculated manually, performance is identical to that of 
automated calculation.36 Although measurement of LVESV is user depend-
ent, excellent intra- and inter-observer reliabilities were previously demon-
strated in a subpopulation of this study.3

Many clinicians regard deep learning as a ‘black box’, which limits 
trust in such algorithms.16 However, our approach to make the model 
inherently explainable may abate this concern and increase willingness 
to facilitate clinical adoption of the FactorECG. Although an overall 
c-statistic of 0.69 leaves room for improvement, our approach is unique 
in its clinical practicality, with better risk stratification than QRSAREA. 
The addition of a few important clinical values might further increase 
the predictive value of FactorECG. Especially use of strain parameters 
has been shown to be highly predictive, also in addition to QRSAREA,3 or 
when used in machine-learning models.12 As a result, no direct com-
parison with pre-existing scores could be performed.11 Conversely, 
our approach only requires a standard 12-lead ECG, and no advanced 
and highly user-dependent measurements are needed. Lastly, ethnicity 
and cause of death were not systemically gathered, and our results can-
not be generalized to patients receiving an upgrade to CRT.

Conclusions
FactorECG, an inherently explainable and end-to-end automated deep 
learning model, can accurately predict long-term clinical outcome, HF hos-
pitalization, and echocardiographic non-response in patients eligible for 
CRT. Moreover, it outperformed contemporary guideline ECG criteria 
and QRSAREA with superior discriminative ability. This approach is based 
solely on a standard 12-lead ECG, without heavily relying on additional 
clinical parameters, and visualizes patient-specific key features associated 
with outcome and response. Besides QRS morphology, T-wave ampli-
tude and inversion, ventricular rate, PR interval, and P-wave duration 
were identified as important ECG factors. The FactorECG thereby facil-
itates personalized decision-making in CRT while being easy to use, allow-
ing rapid uptake for everyday clinical practice.
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