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Abstract The accumulation of various types of drug informatics data and computational

approaches for drug repositioning can accelerate pharmaceutical research and development. How-

ever, the integration of multi-dimensional drug data for precision repositioning remains a pressing

challenge. Here, we propose a systematic framework named PIMD to predict drug therapeutic

properties by integrating multi-dimensional data for drug repositioning. In PIMD, drug similarity

networks (DSNs) based on chemical, pharmacological, and clinical data are fused into an integrated

DSN (iDSN) composed of many clusters. Rather than simple fusion, PIMD offers a systematic way

to annotate clusters. Unexpected drugs within clusters and drug pairs with a high iDSN similarity

score are therefore identified to predict novel therapeutic uses. PIMD provides new insights into the

universality, individuality, and complementarity of different drug properties by evaluating the con-

tribution of each property data. To test the performance of PIMD, we use chemical, pharmacolog-

ical, and clinical properties to generate an iDSN. Analyses of the contributions of each drug

property indicate that this iDSN was driven by all data types and performs better than other DSNs.

Within the top 20 recommended drug pairs, 7 drugs have been reported to be repurposed. The

source code for PIMD is available at https://github.com/Sepstar/PIMD/.
Introduction

Despite the ever-increasing funding of pharmaceutical research
and development (R&D), the number of new drugs approved

has not increased significantly [1]. Traditional de novo drug
development remains costly, risky, and time-consuming [2,3].
Drug repositioning, wherein an existing drug receives a new

application, provides a new opportunity for pharmaceutical
nces and
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R&D [4]. With the accumulation of drug informatics datasets,
computational algorithms can be used for systematic identifi-
cation of potential new indications for on-market drugs,

thereby reducing the financial and time investment, as well
as the risk, involved in pharmaceutical R&D [5–8].

Recent studies have shown that computational approaches

based on drug similarity have the potential to reveal novel
indications for on-market drugs. These approaches have been
applied primarily in the following four ways. 1) The first group

includes transcriptional response-based approaches. For
instance, Iorio et al. [9] used drug-specific response profiles
based on the Connectivity Map (CMap) database to find drugs
with similar modes of action, whereas Xie et al. [10] used drug

perturbation profiles from the Library of Integrated Network-
based Cellular Signatures (LINCS) project to predict addi-
tional therapeutic properties of drugs. 2) The second group

includes chemical structure-based approaches. For example,
Keiser et al. [11] predicted potential drug targets based on
combined drug–target structure. 3) The third group includes

side effect- or other phenotype-based approaches. For exam-
ple, Campillos et al. [12,13] constructed a side effect-driven
drug similarity network (DSN) based on the assumption that

drugs with similar side effects may share targets leading to
the identification of novel drug targets. 4) The last group
includes target property-based approaches. For example,
Yildirim et al. [14] used known drug–target associations to

assess ongoing trends and shifts in drug discovery and to quan-
tify interrelationships between drug targets and disease-
causing gene products. Although they shared the assumption

that similar drugs tend to share therapeutic properties, each
of these studies focused on a single drug feature in assessment
of drug similarity, raising some doubts about the usefulness of

these approaches. For example, Yildirim et al. [14] pointed out
that most drugs with the same targets have different chemical
structures, and Keiser et al. [15] demonstrated that a small

change in drug structure could alter binding affinity dramati-
cally. In addition, the transcriptional response to drug pertur-
bation may differ across cell lines and drug dosages, thus
introducing noise into drug repositioning strategies based on

transcriptome data. Notwithstanding, our previous studies
illustrated positive correlations between repositioning poten-
tial based on transcriptome data and that based on side effect

profile or structure [10].
With the development of network pharmacology and sys-

tems biology, integrating multi-attribute data of drugs seems

to be a feasible means of identifying new opportunities for
drug repositioning [16]. One of the most common methods
to integrate such data is to concatenate several measurements
from various properties, such as side effects and chemical frag-

ments, of each drug [17,18]. However, the already low signal-
to-noise ratio in each data type could be diluted by concatena-
tion [19]. To avoid this problem, many researchers have made

some preliminary attempts to use DSNs based on different
drug properties for data combination. For example,
Napolitano et al. [20] constructed three DSNs, based on drug

structures, distances between drug targets in protein–protein
interaction (PPI) networks, and expression patterns of drug
perturbations, separately. They then integrated these attribute

datasets by averaging three drug similarity measurements to
predict new therapeutic properties of drugs. Meanwhile, Wang
et al. [21] proposed a new algorithm, called PreDR, which pre-
dicts as yet unidentified drug–disease associations by taking
the maximums of three drug similarity matrices derived from
chemical structure, target protein sequence, and side effect
profile similarities. Zhang et al. [22] proposed the Similarity-

based LArge-margin learning of Multiple Sources (SLAMS)
algorithm of drug similarity based on multiple sources of drug
and disease property data. SLAMS outputs therapeutic scores

for each drug–disease pair that correspond to multi-level drug
properties and disease properties, and then averages the scores
to predict the novel disease applications for drugs. Liu et al.

[23] proposed the two-pass random walks with restart on a
heterogeneous network (TP-NRWRH) to predict new indica-
tions for approved drugs. In the model, DSNs are integrated
using the probability disjunction formula. Additionally, there

are many articles on the drug–target predictions with data inte-
gration based on a linear combination of multiple attributes
[24–42]. Although many studies take into account multiple

drug sources, these integration strategies based on simple aver-
aging or maximization are linear and cannot make full use of
topology and non-linear information. Furthermore, most of

the methods cannot evaluate the contribution and the relative
importance of each property data. As for network-based anal-
ysis, to our knowledge, there is no integrated method offering

a systematic way to annotate and evaluate the drug clusters. In
recent years, non-linear multi-dimensional data fusion algo-
rithms and tools have been widely applied in disease subtype
identification, such as the Similarity Network Fusion (SNF)

and Integrated Clustering of Multidimensional biomedical
data (ICM) [19,43].

In this study, we propose a systematic and extensible para-

digm of drug repositioning, namely prediction of drug thera-
peutic property by integrating multi-dimensional data
(PIMD), and report the construction of an integrated DSN

(iDSN) based on drug structure, side effect profile, and target
protein sequence data. First, we integrated different types of
drug information, including side effects, chemical structures,

and molecular targets representing clinical, chemical, and
pharmacological properties, separately, and constructed a
DSN for each of these properties. Second, we used a non-
linear fusion algorithm, namely SNF, to combine three DSNs

into the iDSN iteratively [19]. Next, we evaluated the contribu-
tions of each dimension of data in the iDSN and the correla-
tion among them.

Our study examined the types of data underlying the iDSN
and how the iDSN performs relative to single-property net-
works. We used spectral clustering to divide the iDSN into

clusters, and then conducted a systematic and comprehensive
drug cluster analysis through five types of statistical analyses,
including drug-based enrichment analysis, target-based enrich-
ment analysis, drug property analysis, chemogenomic enrich-

ment analysis (CGEA), and chemical ontology enrichment
analysis. We hypothesize that if similar drugs have similar
therapeutic properties, then the drugs that appear unexpect-

edly in a cluster based on their anatomical therapeutic chemi-
cal (ATC) label would represent repositioning candidates.

Method

Data source

We collected information on 7132 drugs with their correspond-
ing target protein information from the DrugBank database, a
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bioinformatics resource with detailed drug data and complete
drug–target interaction data. We used version 5.0 of the Drug-
Bank database to construct the DSN based on drug targets

(DSN-T) [5]. Protein sequence data were extracted from the
UniProt database, which provides high-quality, freely accessi-
ble protein sequence data [44].

We obtained 139,756 relationships between 1430 drugs and
5868 side effects from the Side Effect Resource (SIDER) data-
base, which contains information about on-market drugs and

their recorded adverse drug reactions or side effects, extracted
from public documents and package inserts. We used version
4.1 of SIDER to construct the DSN based on drug side effects
(DSN-S) [8].

PubChem Compound is a database containing more than
92 million unique structures of compounds. Similarly, We
extracted chemical structures of drugs from PubChem Com-

pound to construct the DSN based on drug chemical structure
(DSN-C) [7]. We used the PubChem Compound Identifier
(CID) as the only identifier of drugs to identify drugs shared

across the databases. We used the identified drugs to construct
three single DSNs.

Drug similarity measurements

Drug similarity quantifies the degree of shared features
between paired drugs. We restricted similarity scores to be
between 0 (lowest) and 1 (highest). We defined the drug simi-

larity measurements of the three properties examined
separately.

Drug similarity based on drug side effects

Side effects represent the clinical properties of a drug. We
obtained side effect data from SIDER. We used drug side
effect information with frequency data (as opposed to without)

because such information was derived empirically and thus
deemed more credible. Given there are risks of bias in observa-
tion and statistics, we filtered outsider effect terms if they

occurred only once or with a frequency < 0.1%. Finally, we
characterized drug side effects according to the 2072-
dimensional binary vector EðdÞ, known as side effect profile.

Similarity based on side effects between two drugs d and d 0

was computed by the Tanimoto coefficient of their side effect
profiles:

Ssideeffect
d;d 0 ¼ EðdÞ � Eðd 0Þ

E dð Þj j þ E d 0ð Þj j � EðdÞ � Eðd 0Þ ð1Þ

where E dð Þj j and E d 0ð Þj j are the number of side effect terms for

drugs d and d 0, respectively. EðdÞ � Eðd 0Þ represents the num-
ber of side effects shared by these two drugs.

Drug similarity based on drug chemical structure

Drug chemical structure represents the chemical properties of
a drug. We obtained chemical structure information from Pub-
Chem Compound and computed atom-pair descriptors of

drugs using the R package ‘‘ChemmineR” [45]. The atom-
pair descriptors used to quantify the chemical structure of
small molecule compounds encode all atom pairs in a drug.
We computed similarity based on the chemical structure
between drugs d and d 0 as the Tanimoto coefficient of the

chemical atom-pair descriptors:

Schem
d;d 0 ¼ CðdÞ � Cðd 0Þ

C dð Þj j þ C d 0ð Þj j � CðdÞ � Cðd 0Þ ð2Þ

where C dð Þj j and C d 0ð Þj j represent the number of atom pairs
for drug d and drug d 0, respectively. CðdÞ � Cðd 0Þ represents
the number of the atom pairs shared by these two drugs.

Drug similarity based on drug targets

Drug targets represent the pharmacological properties of a

drug. We obtained drug–target interactions and target protein
sequences from the DrugBank and Uniprot databases, respec-
tively. Then, similarity based on drug targets between drugs d
and d 0 was computed with a normalized Smith–Waterman

score as follows:

Starget
d;d 0 ¼ 1

P dð Þj j � P d 0ð Þj j
XP dð Þj j

i¼1

XP d 0ð Þj j

j¼1

� SWðPi dð Þ;Pi d
0ð ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SWðPi dð Þ;Pi dð ÞÞp ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SWðPi d 0ð Þ;Pi d 0ð ÞÞp ð3Þ

where P dð Þ represents a target protein set of drug d, Pi dð Þ indi-
cates the ith target of drug d, and P dð Þj j represents the size of
the target protein set of drug d. SWðPi dð Þ;Pi d

0ð ÞÞ is the Smith–

Waterman sequence alignment score of target proteins of
drugs d and d 0 [46].
SNF method

We used the ‘‘SNFtool” in R software to achieve SNF, a use-
ful and popular computational method for data integration in

the field of disease subtype identification [19]. It can deal with
noise in different data types and make full use of common
and complementary information across data types by inte-

grating data in a non-linear way. We introduced SNF into
multi-dimensional drug informatics data integration in this
study for the first time, in the following three steps. 1) DSNs
are built for each data type. 2) Multiple DSNs are integrated

with SNF, and each of these DSNs is updated iteratively with
information from other networks, making them more similar
to each other than before. There are three main parameters in

SNF: hyperparameter (g), number of neighbors (K), and
number of iterations (T). The integration is robust to these
parameters as described previously [19]. Here we set

g ¼ 0:5, K ¼ 20, and T ¼ 20, as recommended by Wang
and colleagues [19]. 3) A final iDSN is obtained from SNF
process convergence.

Cluster validity index

We used two cluster validity indexes to determine the number
of clusters.
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Dunn index

The Dunn index is the ratio of the smallest distance between

observations not in the same cluster to the largest intra-
cluster distance. The Dunn index has a value between zero
and infinity and should be maximized. The Dunn index is cal-

culated as follows:

DI ¼ min
Ck2C

min
Cl2C

distðCk;ClÞ
max
Cm2C

diamðCmÞ

0
@

1
A ð4Þ

where C is the collection of all clusters, diamðCmÞ is the largest
intra-cluster distance in Cluster Cm, whereas distðCk;ClÞ is the
distance between the nearest pair of samples in Cluster Ck and
Cluster Cl.

Silhouette index

The silhouette value is a measure of how well each object lies
within its cluster. The silhouette value ranges from �1 to 1,

and should be maximized. It is calculated as follows:

SðiÞ ¼ bi � ai
max bi; aið Þ ð5Þ

where ai is the average distance between sample i and all other

data points within the same cluster, bi is the lowest average dis-
tance of sample i to all points in any other clusters.

Evaluation measurements

Several evaluation measurements were used in the study, as
introduced below.

Normalized mutual information

In probability theory and information theory, the mutual
information (MI) of two random variables is a measure of
their mutual dependence. In this study, X is the ATC label vec-

tor of all the 593 drugs in iDSN, and Y is the predicted label
vector obtained by clustering these drugs. MI was calculated
as follows:

MIðX;YÞ ¼
X
y2Y

X
x2X

p x; yð Þlog2
p x; yð Þ
p xð Þp yð Þ

� �
ð6Þ

where p x; yð Þ is the joint probability function of X and Y,

whereas p xð Þ and p yð Þ are the marginal probability distribu-
tion functions of X and Y, respectively. Normalized MI
(NMI) is calculated as follows:

NMI X;Yð Þ ¼ MI X;Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H Xð Þ �H Yð Þp ð7Þ

where HðXÞ and HðYÞ are the entropy of X and Y,
respectively.

H Xð Þ ¼ �
X
x2X

p xð Þlog2p xð Þ ð8Þ

where pðxÞ is the marginal probability distribution function of
X.

ATC overlap rate

In drug set D, the number of drug pairs is denoted as Sum. For

each drug pair dx; dy
� �

in the set, we calculated the intersection

of ATC first-level codes of drugs dx and dy. If the intersection
was not empty, AI dx; dy
� � ¼ 1, otherwise denoted

AI dx; dy
� � ¼ 0. The ATC overlap rate (AOR) in drug set D

is computed as follows:

AOR Dð Þ ¼
X

dx ;dyð Þ2D
AI dx; dy

� �
Sum

ð9Þ
Superclass overlap rate

In drug set D, the number of drug pairs is denoted as Sum. For

each drug pair dx; dy
� �

in the set, if the superclass label of drug

dx is the same as that of drug dy, SI dx; dy
� � ¼ 1, otherwise

SI dx; dy
� � ¼ 0. The superclass overlap rate (SOR) in drug set

D is computed as follows:

SOR Dð Þ ¼
X

dx ;dyð Þ2D
SI dx; dy
� �
Sum

ð10Þ
Connectivity

The connectivity indicates the degree of connectedness of the
clusters. Denote N as the number of observations and denote
C as the collection of all clusters. L represents the number of

nearest neighbors. Define nni jð Þ as the jth nearest neighbor of

observation i. Let xi;nni jð Þ be zero if i and j are in the same clus-

ter, and 1=j otherwise. The connectivity is defined as:

ConnðCÞ ¼
XN
i¼1

XL
j¼1

xi;nni jð Þ ð11Þ

The connectivity has a value between zero and infinity and
should be minimized.

Rogers–Tanimoto index

The Rogers–Tanimoto similarity rely on a 2 � 2 contingency
table, consisting of the following four cells: n11, n10, n01, and
n00. n11 is the number of observation pairs, where the two
observations belong to the same cluster according to both par-

tition P1 and P2. n10 is the number of observation pairs, where
the two observations belong to the same cluster according to
partition P1 but not to P2. n01 is the number of observation

pairs, where the two observations belong to the same cluster
according to partition P2 but not to P1. n00 is the number of
observation pairs, where the two observations do not belong

to the same cluster according to both partition P1 and P2.
The Rogers–Tanimoto similarity is defined as:

RT ¼ n11 þ n00
n11 þ n00 þ 2ðn10 þ n01Þ ð12Þ
Other integrative methods for comparison

We compared the network fusion performance of PIMD with

three previous integrative methods: 1) the maximum method
[21], 2) the weighted average method [20,22,24–32], and 3)
the probability disjunction [23]. For the maximum method,

we took the maximums of multiple drug similarity matrices.
For the weighted average method, we averaged multiple drug
similarity matrices by traversing weight. The weight of each

drug similarity network is from 0 to 1 with step 0.1. For the
probability disjunction, the formula is:
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Sd;d 0 ¼ 1� ð1� Ssideeffect
d;d 0 Þð1� Schem

d;d 0 Þð1� Starget
d;d 0 Þ ð13Þ

where Sd;d 0 is the integrative similarity measurement between

drug d and d 0.

Data type contribution

For each edge in the iDSN, we used similarity scores from each

single network to describe which data type was the primary
contributor. First, we ranked three similarity scores of the edge
in each single network as Si � Sj � Sk, where i, j, and k refer to

the three types of data. If Si was � 10% higher than Sj, the

edge was attributed to the i data type. If Si was < 10% higher
than Sj but Sj was � 10% higher than Sk, the edge was attrib-

uted to both the i and j data types. If Si is < 10% higher than
Sj, but Sj is < 10% higher than Sk, the edge was attributed to

all three data types.

Statistical analysis

We performed five types of enrichment analyses to annotate
the drug clusters for drug precision repositioning. For drug-

based and target-based enrichment analyses, we calculated
enrichment score (ES) as follows:

ES ¼ kN

nm
ð14Þ

where k is the number of drugs with a particular label (e.g.,
ATC code) in the cluster of interest, m is the number of drugs

with the label in the overall dataset, n is the total number of
drugs in the cluster of interest, and N is the total number of
drugs in the overall dataset. Then we used the hypergeometric

distribution to calculate the P value as follows:

P X � kð Þ ¼
X1

x¼k

m
x

� �
N�m
n�x

� �
N
n

� � ð15Þ
Drug-based enrichment analysis

For each cluster, we performed drug class and absorption, dis-
tribution, metabolism, excretion, and toxicity (ADMET) prop-
erty enrichment analyses based on the DrugBank database.
We computed ESs and P values based on drug ATC code,

superclass label, and ADMET properties.

Target-based enrichment analysis

For target proteins of each cluster, we performed target class,

Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way, and Gene Ontology (GO) enrichment analyses based on
the International Union of Basic and Clinical Pharmacology/

British Pharmacological Society (IUPHAR/BPS), KEGG,
and GO databases, respectively [47–49]. KEGG and GO anal-
yses were conducted with the ClusterProfiler tool in R software

[50]. KEGG and GO enrichment results were selected by a P
value threshold of 0.05.

Drug property analysis

Physicochemical features were extracted from a drug property
list in RepurposeDB [51]. Chemical descriptors were computed
based on information from the Pybel, JOELib2, and Chem-

miner chemoinformatics libraries [45,52,53]. We used t-tests
to evaluate the significance of deviation of mean values for
each cluster from that of all drugs in DrugBank. In each clus-
ter, for property i in property set I, the deviation from the

mean value of all drugs in DrugBank is calculated as follows:

D ið Þ ¼ C ið Þ � AðiÞ
AðiÞj j ; i 2 I ð16Þ

where A ið Þ is the mean property value for all drugs in Drug-
Bank, and C ið Þ is the mean property value fro drugs in the

cluster.

Chemogenomic enrichment analysis

We use the CGEA online tool to analyze drugs in each cluster

(http://server.dudleylab.org/index). CGEA maps the drug list
to various annotation resources, including drug-induced
transcriptional modules, enzymes, and fragments. These

potentially relevant features identified provide a rich chemoge-
nomic context for drugs of interest.

Chemical ontology enrichment analysis

BiNChE is a web tool for chemical enrichment analysis based
on the Chemical Entities of Biological Interest (ChEBI) Ontol-
ogy [54]. We performed enrichment analysis by mapping the
drugs in each cluster to both ‘structure’ and ‘role’ subsets of

ChEBI Ontology.
Results

An overview of PIMD framework

PIMD is a systematic framework that predicts new therapeutic
properties of known drugs, calculates the contributions of var-

ious types of data, and annotates various aspects of drug
grouping, by integrating multiple drug properties. In this
study, we hypothesize that if drug dA and drug dB are similar
with respect to a particular parameter, then the therapeutic

property t of drug dA may also be shared by drug dB. The func-
tions of a drug can be characterized by multiple drug informat-
ics. Therefore, in PIMD, we investigated three representative

drug properties: 1) chemical properties, based on chemical
structure data derived from the PubChem Compound data-
base [7]; 2) pharmacological properties, based on protein target

sequence data derived from the DrugBank and UniProt data-
bases [5,44]; and 3) clinical and phenotypic properties, based
on side effect data derived from the SIDER database [8].

The PIMD consists of three parts (Figure 1). In the first

part, we constructed three DSNs based on side effects, chemi-
cal structure, and drug targets, denoted as DSN-S, DSN-C,
and DSN-T, respectively. Then, we applied the SNF method

to fuse the DSN-S, DSN-C, and DSN-T into the iDSN in a
manner that enables the relative contribution of each data type
to be calculated. In the second part, we assessed drug reposi-

tioning using two approaches: finding drug pairs with a high
similarity score, and identifying unexpected drugs in each clus-
ter. In the iDSN, drug pairs are ranked according to their sim-

ilarity scores, with highly ranked drug pairs being the most
likely to achieve drug repositioning, wherein one drug in a pair
may be repurposed for the therapeutic properties of the other
drug. We used spectral clustering to distinguish clusters within

the iDSN [55], wherein drugs within the same cluster have

http://server.dudleylab.org/index
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Figure 2 The iDSN and contributions of various data types

The 593 drugs in the iDSN are grouped into 32 clusters. Each node represents a drug, and node color signifies cluster assignment of the

drug. Edges are weighted according to similarity score. Edges are color coded according to the major contributing data types, as defined in

the pie chart on the right. Three types of data, including chemical structure, drug targets, and side effects, are used alone or in various

combinations to evaluate their respective contributions. Clusters 3 and 28 are zoomed in as examples for better illustration.

3

He S et al / PIMD: An Integrative Framework for Drug Repositioning 571
similar therapeutic properties, as reflected by first-level ATC

codes. Within each cluster, drugs with unexpected ATC labels
are flagged as having the potential for a repositioning of ther-
apeutic properties. In the third part, aimed at drug precision
repositioning, we carried out the following series of enrichment

analyses to label and annotate each cluster: 1) drug-based
enrichment analysis; 2) target-based enrichment analysis; 3)
drug property analysis; 4) CGEA; and 5) chemical ontology

enrichment analysis. These analyses can provide guidance to
researchers conducting drug repositioning studies from various
perspectives. They may also help to elucidate differences in the

mode of action of different drug clusters and reveal potential
associations between drugs within a cluster.
Figure 1 Construction, drug repositioning, and annotation of iDSN us

In the first part, we constructed three single-property DSNs. DSNs

denoted as DSN-S, DSN-C, and DSN-T, respectively. Then we fused t

applications were obtained based on high similarity or the occurrence o

data type that is the main contributor to the similarity between the drug

clusters. In the third part, 593 drugs were included in the iDSN and

Silhouette values. We then performed a systematic analysis to an

repositioning. PIMD, prediction of drug therapeutic property by int

iDSN, integrated DSN; ATC, anatomical therapeutic chemical; A, alim

C, cardiovascular system; D, dermatological; G, genito-urinary system

sex hormones and insulins; J, anti-infectives for systemic use; L, an

system; N, nervous system; P, anti-parasitic products, insecticides, and
Global analysis of iDSN

We used PubChem CIDs as the sole drug identifiers and
extracted chemical structures, target sequences, and side effect

sources for 593 drugs from the PubChem Compound, Drug-
Bank, UniProt, and SIDER databases. After constructing
the DSN-C, DSN-T, and DSN-S, and combining these three

networks into the iDSN with the SNF method, we applied
spectral clustering to divide the iDSN into 32 subnetworks (la-
beled Cluster 1–32) based on two validity indexes (Figure 2,
Figure S1) [55,56].

In the iDSN, each node represents a drug, and the edges
connecting the nodes are thickness-weighted according to sim-
ing PIMD

based on side effects, chemical structure, and drug targets were

hem into the iDSN. In the second part, possible drug repositioning

f unexpected drugs within iDSN clusters. Edge color indicates the

s. Pentagram and triangle represent unexpected drugs within iDSN

grouped into 32 clusters (C1–C32) according to Dunn index and

notate iDSN clusters from various perspectives to guide drug

egrating multi-dimensional data; DSN, drug similarity network;

entary tract and metabolism; B, blood and blood-forming organs;

and sex hormones; H, systemic hormonal preparations, excluding

tineoplastic and immunomodulating agents; M, musculoskeletal

repellents; R, respiratory system; S, sensory organs; V, various.
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ilarity of the connected drugs. Node color represents the clus-
ter which the drug belongs to. Note that high-similarity con-
nections are found predominantly within clusters. Edge color

indicates the data type that is the main contributor to the sim-
ilarity between the drugs, corresponding to the color scheme in
the pie chart. Note that the iDSN model as a whole is sup-

ported by all analyzed types of data; in particular, drug pair
similarities in the iDSN are supported by two or more types
Figure 3 Performance of the iDSN

A. Heatmaps of DSNs. DSN-S, DSN-C, and DSN-T were integrat

correspond to the original ATC code (left) and PMID cluster label (r

iDSN. C. NMI for DSN-S, DSN-C, DSN-T, and iDSN. D. AOR for D

pairs was slid from the top to the bottom of the drug pair list with a ste

320 bins is plooted here. E. PIMD outperforms other integrative metho

drug similarity matrices were averaged by traversing weight. The wei

normalized mutual information; AOR, ATC overlap rate.
of data, and among the three single drug properties, the high-
est relative contribution comes from the drug target-based
data.

We divided the iDSN edges into two categories: within-
cluster edges and between-cluster edges. Data contribution
analysis for edges within the cluster (Figure S2) shows that side

effect-based data, chemical structure-based data, and drug
target-based data account for 11.0%, 22.2%, and 43.9%,
ed into the iDSN. The two sidebars to the left of the networks

ight) separately. B. Dunn index for DSN-S, DSN-C, DSN-T, and

SN-S, DSN-C, DSN-T, and iDSN. A bin composed of 3000 drug

p size of 100. AOR was calculated for each bin and that for the first

ds for DSN clustering. For the weighted average method, multiple

ght of each DSN ranges from 0 to 1 with the step of 0.1. NMI,
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respectively. Although the contributions of drug target-based
data and side effect-based data are greater than that of chem-
ical structure-based data for all edges in the iDSN (Figure 2),

side effect-based data contribute the least to the edges inside
the cluster and excessive contribution is from drug target-
based data (Figure S2). These results indicate that drug

target-based data play a more important role in drug cluster-
ing. Data contribution details for each cluster are reported in
Table S1. For instance, the contribution of chemical

structure-based data in Cluster 6 accounts for 94.4%. We
found that Cluster 6 drugs are all peptide drugs, which have
chemical structures significantly different from those of other
drugs. Cluster 6 drugs also exhibit a significant deviation for

physicochemical features (Figure S3A and B). The deviation
is consistent with the nature of these peptide drugs.

Comparing the performances of the iDSN and each single-

property network, we found that the iDSN has a clearer cluster
structure than any of the three single-property DSNs
(Figure 3A). To verify that, we calculated Dunn index, a metric

for evaluating the quality of clustering results. The Dunn index
for the iDSN is higher than those for the single-property DSNs
(Figure 3B).

Furthermore, compared to the single-property DSNs, the
iDSN has a larger overlap between the drug cluster and drug
ATC labels. NMI, which reflects consistency across the origi-
nal ATC and cluster labels, was examined, and a higher

NMI for the iDSN was obtained than those for the DSN-C,
DSN-T, or DSN-S (Figure 3C). In addition, we compared
the AOR of each single-property DSN and the iDSN by first

ranking similarity scores of all drug pairs in the iDSN or
single-property DSNs and assigning overlapping consecutive
drug pair bins with 3000 pairs per bin, such that bin 1 contains

the top 3000 most similar drug–drug pairs, bin 2 contains pairs
ranked 100th to 3100th in similarity, and so on (first 320 bins
are shown in Figure 3D). Subsequent calculation of AORs for

each bin shows clearly that the AORs for the iDSN are higher
than those of the single-property DSNs (Figure 3D). These
results suggest that PIMD makes full use of common and com-
plementary information about drug properties and that the

iDSN performs better than any single-property DSNs.
The network fusion of PIMD goes beyond a simple integra-

tion representing a maximum or an average of drug similarity

measurements. It can capture potential links between drugs.
On the one hand, if the similarity score in a single-property
DSN is high, but the similarity scores in other single-

property DSNs are low, PIMD does not dilute the original
information. On the other hand, if the similarity scores for a
drug pair in each of the three single-property DSNs are unre-
markable, PIMD can still capture potential similarities. For

example, the first-level ATC codes for fenoprofen and sul-
fasalazine are M and A, respectively. Fenoprofen (CID:
000003342) is used for symptomatic relief of rheumatoid

arthritis, osteoarthritis, and mild to moderate pain, whereas
sulfasalazine (CID: 005359476) is used to treat inflammatory
bowel disease. The similarity scores for fenoprofen and sul-

fasalazine based on the three individual properties are rela-
tively low (rank of 16,951 in DSN-C, 13,466 in DSN-T, and
146,145 in DSN-S), while the iDSN similarity score ranked

much higher (rank of 2729) and both drugs were placed in
Cluster 8. Although crossover in an application would not
have been predicted by any of the single-property DSNs, it
has been reported that sulfasalazine can be used to treat
rheumatoid arthritis [57,58].

PIMD shows better performance than previous integrated

methods

To better evaluate the network fusion performance of PIMD,

we compared our results with three previous integrative meth-
ods: 1) the maximum method [21], 2) the weighted average
method [20,22,24–32], and 3) the probability disjunction [23].

Here, we calculated two internal indices (connectivity and
Dunn index) and two external comparison indices (NMI and
Rogers–Tanimoto index). The internal indices are used to mea-

sure the goodness of a clustering structure without external
information [59]. The external indices are a measure of agree-
ment between two partitions where the first partition is the a
priori known clustering structure, and the second partition

results from the clustering procedure [60]. The connectivity
indicates the degree of connectedness of the clusters. The
Rogers–Tanimoto index reflects similarity between the original

ATC and cluster labels. Among the four indices, only connec-
tivity should be minimized. We found that PIMD performs the
best compared with other methods (Figure 3E). The superior

network fusion performance of PIMD results from the appli-
cation of network-based approach, which is non-linear and
utilizes topology information of the network.
Drug repositioning from two aspects

There are two approaches for drug repositioning: the first is
finding drug pairs with a high similarity score; the second is

finding unexpected drugs in each cluster. Drug pairs with high
similarity in the iDSN could provide us with clues for drug
repositioning. The AORs of the top 10 (Table 1) and the top

100 (top 1000 drug pairs are listed in Table S2) drug pairs
reached 80% and 94%, respectively. Drug pairs with high sim-
ilarity scores but different ATC codes may have the potential

for repositioning. For example, triptorelin (CID: 025074470)
and nafarelin acetate (CID: 025077649) are both
gonadotropin-releasing hormone receptor agonists despite
having different first-level ATC codes. Interestingly, this drug

pair has a high iDSN similarity score and is ranked second in
the drug association list. Within the top 20 drug pairs, 7 drugs
have been repurposed successfully according to RepurposeDB

[51] and Repurposed Drug Database (http://drugrepurposing-
portal.com/), which record all repurposed drugs thus far. We
further checked whether the repositioning in the databases is

relevant to our prediction and found that 6 out of these 7 drugs
are repositioned for the same purpose as we predicted.

Unexpected drugs within an iDSN drug cluster can also sig-

nify the potential for repositioning based on distinct therapeu-
tic properties. That is, a drug with an unusual ATC code
within a certain cluster may be repositioned for alternative
therapeutic properties. The unexpected drugs in each cluster

are indicated in Table S3, and some cases are discussed in
the section of drug repositioning case using PIMD.

We compared the two drug repositioning approaches

together. In the top 100 drug pairs with a high similarity score,
there are 6 drug pairs with totally different first-level ATC
codes, among which 3 pairs can be discovered using the second

http://drugrepurposingportal.com/
http://drugrepurposingportal.com/


Table 1 Top 10 drug pairs in the iDSN

Note: Similarity scores between drug pairs among the 593 drugs in the iDSN were calculated using SNF

and the 10 drug pairs with highest similarity scores were selected. iDSN, integrated drug similarity

network; SNF, Similarity Network Fusion; ATC, anatomical therapeutic chemical; A, alimentary tract

and metabolism; C, cardiovascular system; D, dermatological; H, systemic hormonal preparations,

excluding sex hormones and insulins; J, anti-infectives for systemic use; L, antineoplastic and

immunomodulating agents; M, musculoskeletal system; N, nervous system; R, respiratory system; S,

sensory organs; V, various.
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approach. In the top 1000 drug pairs, there are 234 drug pairs
with totally different first-level ATC codes, among which 75

pairs can be discovered using the second approach. These data
indicate a certain overlap between the results predicted using
these two approaches. The unexpected drugs in each cluster

can achieve drug repositioning between different ATC codes.
Compared to the second approach, top-ranking drug pairs
with the same ATC codes are more inclined to achieve drug

repositioning.
To explore the global repositioning association among

ATC codes, we analyzed the top 5% of drug pairs in the iDSN.
After dividing these drugs into 14 groups according to their

ATC codes, we averaged the similarity scores between the dif-
ferent drug groups and used these averages as indices of the
repositioning potential within each ATC code. As shown in

Figure 4 (where edge thickness represents repositioning poten-
tial between two ATCs), there is a particularly high reposition-
ing potential between dermatological drugs and respiratory

system drugs. Among 78 dermatological drugs (D) and respi-
ratory system drugs (R), 23 drugs have been repurposed suc-
cessfully between D and R (Table S4).

Drug cluster annotation in the iDSN

To label and annotate clusters for drug precision repositioning,
we performed iDSN cluster analysis consisting of five statisti-

cal analysis methods from drug and target perspectives, thus
providing multiple views to verify and select drug clusters for
researchers in different fields. These analyses reveal potential

links between drugs in the same clusters and differences in
the modes of action between drugs in different clusters.
ATC, superclass, and ADMET property enrichment analyses of
drugs

We set to explore to what extent drugs within a cluster share a
common ATC code. For each cluster, we computed an ATC

code enrichment score and an accompanying P value. We
found that 30 out of 32 clusters were significantly enriched
for at least one ATC code (P < 0.05; Figure 5A). Further-

more, 25 out of 32 clusters were significantly enriched for at
least one superclass label (P < 0.05; Figure 5B). The super-
class label of the drug is extracted from the DrugBank data-
base and focuses more on the chemical attributes of drugs.

Combining the two enrichment results may lead to new discov-
eries. For example, Cluster 22 was found to be enriched in the
lignan/norlignan superclass as well as in the antineoplastic and

immunomodulating agent ATC code. Recent studies have
shown that lignans/norlignans play an important role in anti-
cancer therapies [61]. In addition, we extracted 18 ADMET

property terms from the DrugBank database and examined
whether drugs within the same cluster tend to have the same
ADMET properties (Figure S3C). For example, 6 clusters
are enriched in the nervous system ATC code, while four of

them (Cluster 11, Cluster 26, Cluster 28, and Cluster 30) are
also enriched in the blood brain barrier (+). This observation
is in line with the knowledge that nervous system drugs usually

need to penetrate the blood brain barrier.

KEGG and GO enrichment analyses of targets

To explore whether drugs in the same cluster tend to target
similar proteins and whether particular drug classes are associ-
ated with particular target classes, we performed KEGG path-

way and GO enrichment analyses for targets of each drug



Figure 4 Global repositioning association among ATC codes

First, we divided drugs found in the top 5% of drug pairs in the

iDSN into 14 groups according to their ATC codes. Then we

averaged the similarity scores between the different drug groups

and used these averages as indices of the repositioning potential

within each ATC code. The 14 nodes represent ATC first levels.

Edge thickness represents the repositioning potential of drugs

between the two ATC codes connected.
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cluster [48–50]. The most enriched pathways, biological pro-
cesses, cellular components, and molecular functions

(Figure 5C and D, Figure S3D and E; result matrices are listed
in Table S5) differ substantially among the different clusters,
highlighting differences in mode of action of drugs. Nonethe-

less, some drug clusters were found to contain common
pathways and biological processes. We applied key biological
themes for major clusters. For example, Cluster 27, which is

enriched for antineoplastic and immunomodulating agents,
was most enriched for the KEGG pathways of Rap1 signaling
pathway, Ras signaling pathway, and central carbon metabo-
lism in cancer. The most enriched GO biological process terms

for Cluster 27 include protein autophosphorylation, positive
regulation of MAPK cascade, and phosphatidylinositol-
mediated signaling. These pathways and biological processes

are indeed closely related to the mechanisms of antineoplastic
drugs.

Another example is Cluster 16. Drugs in Cluster 16 are

enriched for the ‘respiratory system’ ATC code. Chemical
ontology enrichment analysis shows that drugs in this cluster
are enriched for methylxanthine. The methylxanthines in Clus-
ter 16, such as caffeine and theophylline, are used in therapy

for respiratory diseases. However, the KEGG pathway enrich-
ment analysis shows that drug targets in this cluster are also
enriched for some cancer and immunology related pathways.

These data suggest the association between methylxanthine
and cancer, which is supported by recent studies [62,63].

Furthermore, we conducted target enrichment analysis for

each cluster based on class information. The class information
is collected from the IUPHAR/BPS database [47], which
indicates the type of drug targets, such as G-protein-coupled
receptors (GPCR), catalytic receptor, and enzyme. We found
that 24 of the 32 iDSN clusters were significantly enriched

(P < 0.05; Figure S3F). For example, Cluster 32 is enriched
in the voltage-gated ion channel (VGIC) target class as well
as in the ‘cardiovascular system’ ATC code. This observation

is in line with the fact that most of Cluster 32 drugs are calcium
channel blockers and used as antihypertensive drugs, whose
targets mainly include calcium voltage-gated channel alpha1

(CACNA1) subunits.

Physicochemical feature and chemical descriptor analyses of
drug properties

Given pharmacological profiling of small molecules may also
affect drug repositioning, we analyzed the characteristic
physicochemical features and chemical descriptors for each

cluster. In total, we extracted 14 physicochemical features from
the RepurposeDB drug property list [51] and 62 chemical (i.e.,
atomic, compositional, and geometric) descriptors. These
properties were quantitated using the Pybel, JOELib2, and

Chemminer chemoinformatics tools [45,52,53]. For each prop-
erty, we calculated mean values of these drug properties for all
drugs in DrugBank and in each cluster. We found that the

mean value of drug properties for drugs in each cluster was
deviated from that for all drugs in DrugBank (Table S6).
The degrees of statistically significant deviation (P < 0.05;

see Method) are shown in Figure S3A and G. Considering
the bias resulting from the incompleteness of drug set, we also
compared the mean value of drugs in each cluster with those of

all the 593 drugs in the iDSN (Figure S3B and H).

Chemogenomic enrichment analysis

CGEA, similar to gene set enrichment analysis, is a method

that compares drugs with a range of biological and chemical
annotations [64] (http://server.dudleylab.org/index). By identi-
fying chemogenomic characteristics shared by sets of drugs
such as enzymes, transporters, and structural fragments, we

can obtain abundant chemogenomic context for a biological
state of the drug set. We used CGEA to analyze drugs in each
cluster for biological and chemical annotations. The results are

listed in Table S7. The example of CGEA is described in detail
in the section of ‘Case study: drug repositioning using 4 clus-
ters of iDSN’.

Enrichment analysis of chemical ontology

Chemical ontology enrichment analysis is based on the ChEBI
Ontology, which is a dictionary of chemical compounds with

biological roles [65]. Mapping drugs to the ChEBI database
can improve our understanding of biochemical nature of
drugs. We performed a chemical ontology enrichment analysis

of the drugs in each cluster using the BiNChE tool [54]. The
resultant ChEBI-based enriched structure terms and role terms
for each cluster are provided in Table S8. The example of

chemical ontology enrichment analysis is described in detail
in the section of ‘Case study: drug repositioning using 4 clus-
ters of iDSN’.

These analyses validate the rationality of the cluster divi-

sion. Furthermore, by performing the 5 types of analyses
described above, we have a comprehensive understanding of
various properties of drugs in the cluster to conduct drug repo-

sitioning better. For example, Cluster 15 and Cluster 27 are

http://server.dudleylab.org/index


Figure 5 Drug-based and target-based enrichment analyses

A. Enrichment landscape of ATC codes. B. Enrichment landscape of superclass codes from the DrugBank database. C. Enrichment

landscape of KEGG pathways. D. Enrichment landscape of GO biological processes. Deeper color signifies greater ES in panels A and B,

and signifies greater significance in panels C and D, respectively. Common biological themes shared by multiple clusters are boxed with

names provided in the plot. ES, enrichment score; GO, Gene Ontology. Enrichment matrices of ATC codes and superclass codes were

obtained using Fisher’s exact test based on hypergeometric distribution. KEGG and GO enrichment results were obtained using the

ClusterProfiler tool in R software.
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both enriched for antineoplastic and immunomodulating
agents, but their enriched KEGG pathways and GO terms
(Figure 5C and D, Figure S3D and E) differed from each
other. Chemical ontology enrichment analysis shows that



He S et al / PIMD: An Integrative Framework for Drug Repositioning 577
Cluster 15 drugs have a role term of antimetabolite, while
Cluster 27 drugs have a role term of protein kinase inhibitor.
Most of Cluster 15 drugs are purine or pyrimidine analogs,

whereas most of Cluster 27 drugs are tyrosine kinase inhibi-
tors. These analyses highlight the differences in mode of action
of the drugs. In Cluster 15, ribavirin (ATC code for ‘anti-

infectives for systemic use’), which is a guanosine analog used
for anti-virus, shows its therapeutic potential for cancers [66],
and its mode of action is similar to other Cluster 15 drugs.

Additionally, these analyses provide us a chance to look at
the same drug cluster in combination of different perspectives,
which may bring us some new discoveries. For example, Clus-
ter 5 drugs are enriched for the ‘nervous system’ ATC code.

Chemical ontology enrichment analysis shows that Cluster 5
drugs have a role term of serotonergic drug, a type of nervous
system-related drugs. KEGG pathway enrichment and GO

enrichment analyses also reveal terms related to the nervous
system. However, there are also terms related to cardiovascu-
lar system according to cellular components (CC) and molec-

ular function (MF) of GO enrichment analysis results
(Figure S3D and E). In ADMET property enrichment analy-
sis, Cluster 5 drugs are enriched in human ether-a-go-go-

related gene (hERG) inhibition (predictor I, strong inhibitor)
and hERG inhibition (predictor II, inhibitor). hERG inhibi-
tion is related to QT prolongation. Moreover, CGEA results
indicate that Cluster 5 drugs are enriched for the side effect

electrocardiogram QT prolonged. These aforementioned anal-
yses suggest that some serotonergic drugs (especially in Cluster
5) may cause QT prolongation. Indeed, some recent studies

revealed the association between serotonergic drugs and QT
prolongation [67,68].
Case study: drug repositioning using 4 clusters of iDSN

To illustrate the drug repositioning performance of PIMD, we
examined some clusters in this section.

The Cluster 28 drugs (Figure 2) are enriched for the ‘ner-
vous system’ ATC code, the ‘benzenoids’ superclass label,
and the ‘G-protein coupled receptors’ target class. KEGG
pathway enrichment and GO enrichment analysis results also

include terms related to the nervous system (Figure 6A and
B, Figure S4A and B; Table S9). Our CGEA analysis shows
that Cluster 28 drugs are enriched for the molecular fragment

CCCN(C)C and drug-induced transcriptional module PC3-3
(Figure 6C). The module contains expression profiles for 38
genes in response to 25 drugs, 6 drugs out of which are

included in Cluster 28 [69]. The most prominent drug mode
of action among Cluster 28 drugs is ‘Antihistamines for sys-
temic use’, which can affect the central nervous system [70].
Chemical ontology enrichment analysis illustrates that Cluster

28 drugs are enriched with neurotransmitters, neurotransmit-
ter derivatives, and central nervous system drugs (Fig-
ure 6D–F; drug property analysis results in Figure 6F). We

found that cyclobenzaprine, a drug used to treat skeletal mus-
cle spasms and fibromyalgia, is an unexpected drug in Cluster
28. Cyclobenzaprine, as well as another drug named the anti-

depression drug amitriptyline in this cluster, exhibits antago-
nistic effects on the 5-hydroxytryptamine receptor 2A and pos-
sesses a tricyclic structure. Cyclobenzaprine is being studied

for the post-traumatic stress disorder treatment according to
ClinicalTrials.gov (https://clinicaltrials.gov/), a database of
clinical studies conducted around the world. Therefore, the
novel therapeutic property for cyclobenzaprine might be N
(nervous system). These results indicate that Cluster 28 drugs

are related to nervous system and show the good compatibil-
ity. Unexpected drugs in Cluster 28 also have the potential
to be repositioned to ‘nervous system’ ATC code.

Similarly, pentoxifylline, an unexpected drug in Cluster 16
(drugs in this cluster are enriched for the ‘respiratory system’
ATC code), is an interesting case. Pentoxifylline carries an

ATC code for ‘cardiovascular system’ and is used in therapy
for intermittent claudication [71]. Notably, it has a high simi-
larity score with theophylline (ATC code for ‘respiratory sys-
tem’), another drug in Cluster 16 used to treat respiratory

diseases such as asthma. They are both members of the xan-
thine family, so they have a relatively high similarity score
based on chemical structure (rank of 2898 in DSN-C). They

also have a relatively high similarity score based on drug tar-
gets (rank of 7277 in DSN-T) because of the presence of 5
common targets. Pentoxifylline can increase red blood cell

deformability and decrease blood viscosity [72]. But its similar-
ity with theophylline has encouraged researchers to explore the
potential of pentoxifylline to treat asthma [73].

Clusters simultaneously enriched in two therapeutic proper-
ties can also provide a unique perspective for drug repurpos-
ing. Cluster 3 drugs (Figure 2) are enriched for both the
‘cardiovascular system’ and ‘genitourinary system and repro-

ductive hormones’ ATC codes (Figure S5A–G; Table S9). In
this cluster, iloperidone, a drug used for schizophrenia, may
be repositioned for applications related to the ‘cardiovascular

system’ and the ‘genitourinary system and reproductive hor-
mones’. Indeed, a previous study showed that repeat adminis-
tration of iloperidone moderated hypotension [74].

Interestingly, we noted that sildenafil, a drug that was success-
fully repositioned from ‘cardiovascular system’ treatment to
‘genitourinary system and reproductive hormones’ treatment,

is also present in Cluster 3, suggesting that drugs in this cluster
may have the potential for both therapeutic properties. Like-
wise, prazosin and terazosin are an interesting pair. Prazosin
(ATC code for ‘cardiovascular system’) is used to treat hyper-

tension and also for urinary hesitancy associated with prostatic
hyperplasia [75]. Terazosin (ATC code for ‘genitourinary sys-
tem and reproductive hormones’) is used to treat enlarged

prostate symptoms, which can also moderate hypertension
[76,77]. Hence, the primary indications of these two drugs
can be treated as secondary indications of each other. In terms

of target proteins, both drugs have antagonistic effects on
alpha-1A, -1B, and -1D adrenergic receptors. In terms of
chemical structures, their most common substructure is the
molecular fragment O=CN1CCNCC1. Their common

adverse reactions include dizziness, headache, drowsiness, lack
of energy, and weakness.

Another interesting case is cyproterone acetate (ATC code

for ‘genito-urinary system and sex hormones’) in Cluster 19.
Cyproterone acetate can not only treat androgen-dependent
conditions like excessive hair growth and acne but also treat

prostate cancer [78]. Therefore, the novel therapeutic property
for cyproterone acetate could be L (antineoplastic and
immunomodulating agents). More interestingly, cyproterone

acetate was originally developed as a progestin [79], but it
was first marketed as an antiandrogen [80]. Cluster 19 drugs
are enriched for both the ‘genito-urinary system and sex hor-
mones’ and ‘antineoplastic and immunomodulating agents’

https://clinicaltrials.gov/


Figure 6 Community analysis of Cluster 28

A. Dot plot of KEGG pathway enrichment results. B. Dot plot of GO biological process enrichment results. Dot size and color indicate

the count of enriched genes in each of the categories and the corresponding significance of enrichment, respectively. Gene ratio represents

the ratio of enriched genes to all genes in each of the categories. GO IDs are presented here for simplicity. The list of corresponding GO

terms associated with these IDs can be found in Table S9. C. Drug-induced transcriptional module PC3-3. The transcriptional module

data were obtained from the study of Iskar and colleagues [69]. Drug enrichment analysis was performed using CGEA. The horizontal axis

represents the drug name and the vertical axis represents the gene probe ID, respectively. D. ChEBI Ontology structure term enrichment

results. E. ChEBI Ontology role term enrichment results. Nodes indicate the enriched ChEBI terms. The lower the node transparency is,

the more significantly the term is enriched. Arrows proceed from child to parent terms. F. Physicochemical feature deviation of drugs in

Cluster 28. Red and blue bars represent the indicated drug feature of Cluster 28 that is higher or lower than the average of all drugs in the

DrugBank database, respectively. CGEA, chemogenomic enrichment analysis; ChEBI, Chemical Entities of Biological Interest.
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ATC codes. In this cluster, cyproterone acetate has high simi-
larity scores with bicalutamide (ATC code for ‘antineoplastic
and immunomodulating agents’) and medroxyprogesterone

acetate (ATC code for ‘antineoplastic and immunomodulating
agents’ and ‘genito-urinary system and sex hormones’). For
the drug pair of cyproterone acetate and medroxyprogesterone

acetate, their similarity score based on the chemical structure is
relatively high (rank of 101 in DSN-C), but the similarity score
based on drug targets is relatively low (rank of 35,974 in DSN-

T). On the contrary, cyproterone acetate and bicalutamide
have relatively high similarity score based on drug targets
(rank of 178 in DSN-T) but relatively low similarity score
based on chemical structures (rank of 81,257 in DSN-C). This
is because cyproterone acetate is more structurally similar to
medroxyprogesterone acetate (a type of progestin) but has
antiandrogenic effects on androgen receptor like bicalutamide

(a kind of antiandrogen). This explains the uniqueness of
cyproterone acetate. These results also show that PIMD takes
advantage of the universality, individuality, and complemen-

tarity of different drug properties.
Discussion

Here, we proposed PIMD, an integrative, systematic, and
extensible framework for discovering novel therapeutic



He S et al / PIMD: An Integrative Framework for Drug Repositioning 579
properties of drugs from heterogeneous data sources. PIMD
characterizes the iDSN by integrating chemical structure data,
target protein sequence data, and side effect data; and per-

forming spectral clustering of the iDSN identified 32 drug clus-
ters. Additionally, PIMD facilitates drug repositioning from
two aspects: drug pairs with high iDSN similarity score and

unexpected drugs in each cluster. Finally, via a series of enrich-
ment analyses, PIMD annotates and evaluates all clusters from
chemical, pharmacological, and genomic views. Thus, PIMD

screens suitable clusters for drug precision repositioning.
By integrating multi-dimensional drug informatics data,

PIMD can capture potential similarities between drugs with
sensitivity. The iDSN is superior to single-property DSNs in

multiple evaluation measurements, including AOR, NMI,
and cluster compactness. In this study, we primarily used
ATC label as a golden standard to annotate drugs and evalu-

ate the performance of PIMD and other compared methods.
Interestingly, if the superclass label is used to calculate the
evaluation measurements instead of ATC code, the SOR and

NMI values of chemical structure-based DSN are higher than
those of other DSNs, even the iDSN (Figure S6A and B). This
suggests that chemical property has a large positive effect on

superclass, whereas clinical and pharmacological properties
could affect drug superclass label negatively. Indeed, ATC
label and superclass label are two different drug catalogs.
ATC label can comprehensively reflect therapeutic properties

of drugs, thus commonly used to classify and label drugs,
whereas superclass label primarily represents the chemical
properties of the drugs. This result can improve our under-

standing of the difference between ATC and superclass labels
of the drugs.

PIMD offers new insights into the universality, individual-

ity, and complementarity of three drug properties, including
chemical, pharmacological, and clinical properties. Our calcu-
lations of the relative contribution of each data type indicate

that the iDSN is driven by all data types. PIMD makes full
use of the information on each property. Examination of
NMI among single-property, dual-property, and three-
integrated-property DSNs (Figure S7A–D) shows that net-

works based on single property alone overlap marginally but
are complementary to each other instead. Furthermore, PIMD
provides the drug property contribution to each cluster,

improving our understanding of the cluster characteristics
(Table S1).

Rather than simple fusion, PIMD provides a systematic

way to evaluate the drug cluster and drug repositioning. Phar-
macochemistry and pharmacogenomics researchers can use
PIMD to screen drug clusters based on their own requirements
(Figure 5A–D, Figure S3A–F; Tables S7 and S8).

As a highly extensible framework, PIMD can fuse various
properties beyond the three properties examined here. For
example, combining drug expression profiles would allow us

to elucidate similarities between drugs at the transcriptional
level. Drugs have multi-dimensional properties, and drug
effects on disease processes are an interdisciplinary issue.

The complementarity among multiple properties allows us
to assess drug similarities more accurately and thus to pro-
vide a more comprehensive and clearer direction for drug

repositioning.
There are two reasons why we chose these three data

sources as an example. Firstly, these three data sources are rep-
resentative of a variety of drug informatics data. Side effect,
chemical structure, and molecular target data represent the
clinical, chemical, and pharmacological properties of drugs,
respectively. The three properties comprehensively summarize

the drug characteristics. Secondly, these three data sources
have sufficient data to extract. We can collect plenty of these
data from the public databases. Moreover, despite insufficient

data available, we also compared iDSN with DSNs based on
three other data types: 1) drug 3D structure, 2) drug expression
profiles, and 3) PPI network (similarity measurements can be

found in File S1). The results show that iDSN performs best
compared with other DSNs (Figure S8).

The current study is limited by the set of drugs available
when using the intersection of drug sets with multi-

dimensional properties. If a certain property of a drug is not
available, it would be excluded from the construction of iDSN.
Therefore, with the accumulation of drug informatics data in

the future, we expect that the scale of iDSN would be
expanded, and the performance of PIMD would be further
improved accordingly.

In summary, PIMD provides a new perspective for drug
repositioning through multi-property fusion and an analysis
package. It facilitates to understand the integration of drug

properties at a deeper level, and its high expansibility and
modularity would allow users to explore drugs from a wider
range of fields.

Code availability

Source code of PIMD is available at https://github.com/Sep-

star/PIMD/.
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