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Abstract 

Background:  Machine learning was a highly effective tool in model construction. We aim to establish a machine 
learning-based predictive model for predicting the cervical lymph node metastasis (LNM) in papillary thyroid micro-
carcinoma (PTMC).

Methods:  We obtained data on PTMC from the SEER database, including 10 demographic and clinicopathological 
characteristics. Univariate and multivariate logistic regression (LR) analyses were applied to screen the risk factors for 
cervical LNM in PTMC. Risk factors with P < 0.05 in multivariate LR analysis were used as modeling variables. Five differ-
ent machine learning (ML) algorithms including extreme gradient boosting (XGBoost), random forest (RF), adaptive 
boosting (AdaBoost), gaussian naive bayes (GNB) and multi-layer perceptron (MLP) and traditional regression analysis 
were used to construct the prediction model. Finally, the area under the receiver operating characteristic (AUROC) 
curve was used to compare the model performance.

Results:  Through univariate and multivariate LR analysis, we screened out 9 independent risk factors most closely 
associated with cervical LNM in PTMC, including age, sex, race, marital status, region, histology, tumor size, and 
extrathyroidal extension (ETE) and multifocality. We used these risk factors to build an ML prediction model, in which 
the AUROC value of the XGBoost algorithm was higher than the other 4 ML algorithms and was the best ML model. 
We optimized the XGBoost algorithm through 10-fold cross-validation, and its best performance on the training set 
(AUROC: 0.809, 95%CI 0.800–0.818) was better than traditional LR analysis (AUROC: 0.780, 95%CI 0.772–0.787).

Conclusions:  ML algorithms have good predictive performance, especially the XGBoost algorithm. With the continu-
ous development of artificial intelligence, ML algorithms have broad prospects in clinical prognosis prediction.

Keywords:  Papillary thyroid microcarcinoma cervical lymph node metastasis, Machine learning, Conventional 
regression model, Risk factors, Prediction model
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Background
Over the past few decades, the incidence of thyroid can-
cer has been increasing. Among which papillary thyroid 
microcarcinoma (PTMC) accounted for a large propor-
tion [1].PTMC was defined as a papillary thyroid carci-
noma (PTC) with a maximum diameter of 1 cm or less. 
Although most PTMC incidences appear indolent [2], 
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a small number of cases still show significant biologi-
cal aggressiveness, such as early metastasis and lymph 
node involvement [3]. Cervical lymph node metasta-
sis (LNM), especially in the central compartment, were 
found in many patients with PTC. Some studies showed 
that it could be found in 29.4–51.3% of PTC [4, 5], and 
was associated with an increased risk of local recurrence 
and mortality [6]. Accurate preoperative identification 
of cervical LNM was essential for clinical management. 
Many clinical institutions had used their clinical data to 
analyze the risk factors and constructed models for cervi-
cal LNM of PTMC. However, these models were mostly 
established based on a small sample size, thus have cer-
tain limitation in predicting outcome [5, 7, 8]. There were 
also some predictive models constructed by conventional 
statistics based on the SEER database, which had a large 
number of clinical data of patients with PTMC [9, 10]. 
But at present it appeared that these models often uti-
lize conventional regression-based approaches and fail to 
properly consider the nonlinear relations and interactive 
effects, thus may not provide optimal prediction power.

In recent years, advancements in the field of artificial 
intelligence had introduced machine learning (ML) as 
a highly effective tool in many eras including medical 
research. ML was less concerned with model interpret-
ability and more mathematically focused on predictive 
performance and model generalization around cross-
validation and iterative improvement of algorithms. ML 
can deal with a large number of variables that might 
have nonlinear and higher-dimensional relationships. 
For these reasons, ML often out-performance explana-
tory models when complex, high-dimensional data was 
available. As of today, ML methods are widely applied in 
the medical field including image interpretation, patho-
logical diagnosis, risk factor screening, etc. [11–14]. 
Here we aim to establish a machine learning-based pre-
dictive model for predicting the cervical LNM in PTMC 
patients. The goal was to identify important risk factors 
in cervical LNM of PTMC and provide clinicians with 
more personalized clinical decision in the management 
of the PTMC.

Methods
Data sources and study population
Data was obtained from the SEER database. We used 
SEER*stat 8.3.9 software for data acquisition. The sub-
jects of the study were patients diagnosed with papillary 
thyroid microcarcinoma from 2004 to 2015 in 18 regions 
of the United States. Inclusion criteria: ① There was no 
restriction on age and gender. ② The histological type 
was papillary thyroid. ③ The tumor size≤10 mm.Exclu-
sion criteria: ① Unknown information/not applicable. ② 
PTMC was not the only tumor (that is, combined with 

other tumors). The detailed research process was shown 
in Fig. 1. This study does not require institutional review 
board approval because it involves the use of publicly 
available data.

Data selection and definition
We extracted information from the SEER database 
according to the SEER User Guide and the Collabora-
tive Data Collection System (CS Handbook Online Help) 
[15]. Finally, we selected demographic characteristics that 
were available in the SEER database, including age, gen-
der, race, region of residence, marital status, and clinico-
pathological characteristics, including tumor size, tumor 
pathological type, multifocality, and extrathyroidal exten-
sion. Detailed definitions and classifications of variables 
can be found in Supplementary Materials Table S1. Data 
extraction, definition, and classification were conducted 
by two of the authors (Yanling Huang and Yaqian Mao), 
Any resulting discrepancies were resolved by discussion.

Risk factor screening and conventional regression model 
construction
In the baseline analysis, we performed correlation tests 
between variables by Pearson correlation analysis and 
presented the results in the form of heat maps. We used 
variance inflation factor (VIF) [16] to assess multicolline-
arity among variables. In the univariate LR analysis, vari-
ables with P < 0.05 were selected as the related risk factors 
for cervical LNM and were included in the multivariate 
analysis. 95% confidence intervals (CIs) and odds ratios 
(ORs) for risk factors were calculated using multivariate 
LR analysis with forward stepwise regression. Variables 
with P<0.05 in multivariate LR analysis were selected as 
modeling variables to construct the conventional regres-
sion model.

We used forest plots to show OR values ​​and 95% CIs 
of statistically significant factors. We visualized conven-
tional regression analysis in the form of a nomogram. 
Each predictor variable was assigned to a point in the 
nomogram. By adding the scores for each variable, rang-
ing from 0 to 100, we can predict the probability of devel-
oping cervical LNM in a given patient.

Machine learning model construction and evaluation
Similarly, we used the variables screened by univariate 
analysis and multivariate analysis as modeling variables 
for ML. All data were randomly divided into training set 
and validation set in a ratio of 8:2. Five commonly used 
machine learning algorithms were applied in the training 
set respectively, including gaussian naive bayes (GNB), 
extreme gradient boosting (XGBoost), random forest 
(RF), multi-layer perceptron (MLP) and adaptive boost-
ing (AdaBoost). GNB is a variant of Naïve Bayes, which 
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Fig. 1  Flow chart of patients selection and study design



Page 4 of 13Huang et al. BMC Endocrine Disorders          (2022) 22:269 

is a supervised machine learning classification algo-
rithm based on the Bayes theorem. Various strengths of 
GNB are its convenience, computation speed, scalability 
with small data and flexibility with continuous and dis-
crete features [17]. XGboost is an efficient and scalable 
machine learning classifier based on the Gradient Boost-
ing Decision Tree (GBDT) algorithm. It provides parallel 
tree boosting and enhances performance by using learn-
ing rate, subsampling ratio, and maximum tree depth to 
make the model less prone to overfitting [18]. RF algo-
rithm is a combined classifier algorithm based on cart 
decision tree, which allows construction of multiple tree 
classification models. Although they are strong in mod-
eling capacity, tree based models tended to have some 
overfitting of the training set, thus the used for generali-
zation might be limited [19]. MLP is a feedforward artifi-
cial neural network. The characteristics of MLPs include 
multiple layers and nonlinear activation for nodes of 
hidden and output layers, which enabled the algorithms 
to deal with nonlinear data [20]. AdaBoost is a typical 
boosting algorithm. By reducing the classification error 
of individual learner each time, the importance of good 
individual learner is increased, and the final integrated 
learner is obtained. Adaboost is considered more effec-
tive at handling an unbalanced dataset than Random For-
ests [21].

In the construction of the ML model, resampling 
method was adopted to obtain the best modeling param-
eters and tuning was considered for ML-based models 
to avoid overfitting. Model evaluation was performed 
using area under the receiver operating characteristic 
(AUROC) curve, accuracy, sensitivity and specificity. The 
model with the largest AUROC was selected for further 
optimization. Finally, a 10-fold cross-validation was per-
formed on the selected model to improve the accuracy. 
Performance of the model was evaluated by the test set, 
thereby establishing the optimal ML model. We used 
XGBoost’s own algorithm to rank variable importance. 
SHapley Additive exPlanations (SHAP) was applied to 
provide an explanation for our predictive model [22].

Performance evaluation and comparison
We evaluated the performance of the conventional 
regression model and ML model through the AUROC, 
sensitivity, specificity, accuracy, and negative predictive 
value.

Statistical analysis
All statistical analyses were performed using R ver-
sion 3.6.3 (http://​www.r-​proje​ct.​org/) and Python ver-
sion 3.7.0 (https://​www.​python.​org/​downl​oads/​relea​se/​
python-​370/) Categorical variables were expressed using 
frequencies and percentages, and baseline characteristic 

analysis was performed by chi-square test. The Python 
packages “scikit-learn==0.22.1”, “Xgboost==1.2.1”, 
“Lightgbm==3.2.1” were used for ML algorithms. All 
statistical analyses were performed with a two-sided 
test, with a P value less than 0.05 indicating a significant 
difference.

Results
Demographics features
A total of 33,285 patients were included in the final 
data analysis. Of these patients, 3484 had cervical LNM 
(10.5%), including patients with central and lateral LNM. 
The flowchart of study was shown in Fig.  1. The base-
line characteristics of all PTMC patients were shown in 
Table 1.

Univariate and multivariate logistic regression analyses
To explore the influence of variables on lymph node 
metastasis, a baseline analysis was carried out first, See 
Table 1 for the baseline analysis. Pearson correlation test 
was performed between all variables, and the correla-
tion heat map shown that there was no significant cor-
relation between them (Fig. 2). The inflation factor (VIF) 
of all variables was<10, indicating that there was no 
multicollinearity between the variables. Table  2 showed 
the results of univariate and multivariate LR of cervical 
LNM. In univariate LR analysis cervical LNM was sig-
nificantly correlated with tumor size, ETE, multifocal-
ity, histology, region, marital status, race, gender and age 
(P < 0.001). The above mentioned risk predictors were all 
incorporated into the multivariate LR analysis. Multi-
variate LR indicated that among the demographic char-
acteristics, male gender (OR: 2.279, 95%CI:2.086–2.488), 
single marital status (OR:1.152, 95% CI:1.042,1.273), peo-
ple lived in Pacific Coast (OR:1.309, 95% CI:1.203–1.425) 
and Southwest residence (OR:1.171, 95% CI:0.999–
1.367) were independent positive predictors of cervical 
LNM. While older age 25–39 years (OR:0.586, 95% CI: 
0.492–0.7); 40–54 years (OR:0.362,95% CI:0.304–0.433); 
50–69 years (OR:0.26, 95%C:0.215–0.314); ≥70 years 
(OR:0.239, 95%CI:0.186–0.306) were independent nega-
tive predictors of cervical LNM. For clinicopathological 
characteristics, compared with classical papillary thyroid 
microcarcinoma, the histology of the follicular variant 
(OR: 0.26, 95%CI: 0.215–0.314) and being encapsulated 
variant (OR: 0.316, 95%CI: 0.123–0.661) were negative 
predictors. While having columnar-cell/tall-cell variant 
(OR: 2.002, 95%CI: 1.405–2.825) was a positive predictor. 
Tumor size≥5 mm (OR: 3.634, 95%CI: 3.328–3.969), ETE 
(OR: 4.583, 95%CI: 4.115–5.103), and multifocal tumor 
(OR:2.359, 95%CI: 2.184–2.547) were all positive predic-
tors for cervical LNM.

http://www.r-project.org/
https://www.python.org/downloads/release/python-370/
https://www.python.org/downloads/release/python-370/
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Table 1  Characteristics of patients of PTMC with cervical LMN identified from the SEER database

Note: aOthers include American Indian / Alaska native, Asian or Pacific islander

Abbreviations: PTMC Papillary thyroid microcarcinoma, LNM lymph node metastasis, ETE Extrathyroidal extension

Characteristic Total
(n = 33,285)

Cervical LMN (−) 
(n = 29,801)

Cervical LMN (+) (n = 3484) p-value

Age, n(%) < 0.001

  <25 1059 (3.182) 799 (2.681) 260 (7.463)

  25–39 7062 (21.217) 6004 (20.147) 1058 (30.367)

  40–54 13,173 (39.576) 11,849 (39.760) 1324 (38.002)

  55–69 9552 (28.698) 8863 (29.741) 689 (19.776)

   ≥ 70 2439 (7.328) 2286 (7.671) 153 (4.392)

Gender, n(%) < 0.001

  Female 27,569 (82.827) 25,083 (84.168) 2486 (71.355)

  Male 5716 (17.173) 4718 (15.832) 998 (28.645)

Race, n(%) < 0.001

  White 27,796 (83.509) 24,800 (83.219) 2996 (85.993)

  Black 2245 (6.745) 2147 (7.204) 98 (2.813)

  Othera 3244 (9.746) 2854 (9.577) 390 (11.194)

Marital status, n(%) < 0.001

  Married 22,671 (68.112) 20,383 (68.397) 2288 (65.672)

  Single 6217 (18.678) 5349 (17.949) 868 (24.914)

  Divorced 2591 (7.784) 2369 (7.949) 222 (6.372)

  Widowed 1479 (4.443) 1399 (4.694) 80 (2.296)

  Separated 279 (0.838) 258 (0.866) 21 (0.603)

  Partner 48 (0.144) 43 (0.144) 5 (0.144)

Region, n(%) < 0.001

  East 14,013 (42.100) 12,724 (42.697) 1289 (36.998)

  Pacific Coast 14,235 (42.767) 12,544 (42.093) 1691 (48.536)

  Northern Plains 2734 (8.214) 2467 (8.278) 267 (7.664)

  Southwest 2303 (6.919) 2066 (6.933) 237 (6.803)

Histology, n(%) < 0.001

  Classical type 23,131 (69.494) 20,404 (68.468) 2727 (78.272)

  Follicular variant 9652 (28.998) 8986 (30.153) 666 (19.116)

  Oxyphilic variant 42 (0.126) 36 (0.121) 6 (0.172)

  Encapsulated variant 183 (0.550) 177 (0.594) 6 (0.172)

  Tall-cell variant 192 (0.577) 131 (0.440) 61 (1.751)

  Diffuse sclerosing variant 85 (0.255) 67 (0.225) 18 (0.517)

Tumorsize, n(%) < 0.001

  <5 mm 17,298 (51.969) 16,377 (54.955) 921 (26.435)

   ≥ 5 mm 15,987 (48.031) 13,424 (45.045) 2563 (73.565)

ETE, n(%) < 0.001

  No 31,288 (94.000) 28,585 (95.920) 2703 (77.583)

  Yes 1997 (6.000) 1216 (4.080) 781 (22.417)

Multifocality, n(%) < 0.001

  Solitary tumor 21,618 (64.948) 20,174 (67.696) 1444 (41.447)

  Multifocal tumor 11,667 (35.052) 9627 (32.304) 2040 (58.553)

Laterality, n(%) 0.732

  Unilateral 33,144 (99.576) 29,676 (99.581) 3468 (99.541)

  Bilateral 141 (0.424) 125 (0.419) 16 (0.459)



Page 6 of 13Huang et al. BMC Endocrine Disorders          (2022) 22:269 

Performance of conventional regression model
In the conventional LR model, the sensitivity of the 
model was 0.78, and the specificity was 0.718，demon-
strated in Fig.  3A. Figure  3B was the forest plot of the 
conventional regression model. Figure 3C showed visual-
ization of the results of the multivariate LR model in the 
form of nomogram.

Machine learning model construction and screening
Figure  4A, B and Table  3 showed the performance of 
each ML model on the training set and validation set. 
Figure  4C showed the AUC score forest plot of each 
model; Fig.  4D showed the reliability curve of each 
model. XGBoost had the best performance both in the 
training set (AUROC: 0.781, 95%CI: 0.772–0.791) and 
the validation set (AUROC: 0.778, 0.758–0.798). Fig-
ure 5 showed the optimization process of the XGBoost 
model (Fig. 5A, Fig. 5B and Fig. 5D displayed the ROC 
curve of the train, validation and test of the XGBoost 
model by 10-fold cross-validation. Figure  5C showed 
the learning curve of the XGBoost classifier. Figure 5E 
showed the reliability curve of XGBoost model). After 

10-fold cross-validation, the AUROC value of the 
model on the training set was 0.809 (95%CI: 0.800–
0.818), and the AUROC value on the validation set is 
0.772 (95%CI: 0.743–0.800), and the AUROC value on 
the test set is 0.751 (95% CI: 0.731–0.770). At this point 
the model has the best predictive stability and accuracy. 
Given that the performance of the model on the valida-
tion set as evaluated using the AUROC index did not 
exceed that on the test set or the exceed ratio was less 
than 10%, the fitting can be considered as successful, 
and XGBoost model can be used for classification of 
the future datasets.

Summary plots for SHAP values was shown in Fig. 5F. 
For each feature, one point corresponded to a single 
patient. A point’s position along the x axis represented 
the impact that feature had on the model’s output [23]. 
The feature of ETE had the largest SHAP value. It was 
the highest risk factor for the LNM. While features were 
arranged along the y axis based on their importance on 
the model, The higher the feature was positioned the 
more important it was for the model. It was evident that 
the most important factor for the model was the tumor 
size and the least one was race.

Fig. 2  Pearson correlation test for variables
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Table 2  Univariate and multivariate logistic regression analyses of cervical LNM

Note: aOther include American Indian /Alaska native, Asian or Pacific islander;

Abbreviations: PTMC papillary thyroid microcarcinoma, LMN lymph node metastasis, OR Odds ratio, CI Confidence interval

Characteristics Univariate Analysis Multivariate Analysis

OR 95%CI P-Value OR 95%CI P-value

Age, No.(%)

   < 25 1 [Reference] NA 1 [Reference] NA

  25–39 0.542 [0.464,0.632] < 0.001 0.586 [0.492–0.7] < 0.001

  40–54 0.343 [0.295,0.399] < 0.001 0.362 [0.304–0.433] < 0.001

  55–69 0.239 [0.204,0.280] < 0.001 0.26 [0.215–0.314] < 0.001

   ≥ 70 0.206 [0.166,0.255] < 0.001 0.239 [0.186–0.306] < 0.001

Gender, No.(%)

  Female 1 [Reference] NA 1 [Reference] NA

  Male 2.134 [1.971,2.311] < 0.001 2.279 [2.086–2.488] < 0.001

Race, No.(%)

  White 1 [Reference] NA 1 [Reference] NA

  Black 0.378 [0.308,0.464] <0.001 0.551 [0.442–0.68] < 0.001

  Othera 1.131 [1.011,1.266] 0.032 0.906 [0.799–1.025] 0.119

Marital status, No.(%)

  Married 1 [Reference] NA 1 [Reference] NA

  Single 1.446 [1.330,1.572] < 0.001 1.152 [1.042–1.273] 0.006

  Divorced 0.835 [0.723,0.964] 0.014 1.05 [0.898–1.223] 0.533

  Widowed 0.509 [0.405,0.641] < 0.001 0.885 [0.684–1.131] 0.339

  Separated 0.725 [0.464,1.134] 0.159 0.646 [0.39–1.016] 0.072

  Partner 1.036 [0.410,2.618] 0.941 0.782 [0.251–1.982] 0.636

Region, No.(%)

  East 1 [Reference] NA 1 [Reference] NA

  Pacific Coast 1.331 [1.233,1.437] < 0.001 1.309 [1.203–1.425] < 0.001

  Northern Plains 1.068 [0.930,1.227] 0.35 1.124 [0.966–1.303] 0.126

  Southwest 1.132 [0.978,1.311] 0.095 1.171 [0.999–1.367] 0.048

Histology, No.(%)

  Classical type 1 [Reference] NA 1 [Reference] NA

  Follicular variant 0.555 [0.508,0.606] < 0.001 0.552 [0.502–0.606] < 0.001

  Oxyphilic variant 1.247 [0.525,2.962] 0.617 1.299 [0.472–3.019] 0.574

  Encapsulated variant 0.254 [0.112,0.573] 0.001 0.316 [0.123–0.661] 0.006

  Tall-cell variant 3.484 [2.565,4.733] < 0.001 2.002 [1.405–2.825] < 0.001

  Diffuse sclerosing variant 2.01 [1.193,3.387] 0.009 1.472 [0.802–2.581] 0.193

Tumor size, No.(%)

  <5 mm 1 [Reference] NA 1 [Reference] NA

   ≥ 5 mm 3.395 [3.138,3.673] < 0.001 3.634 [3.328–3.969] < 0.001

Extrathyroidal extension, No.(%)

  No 1 [Reference] NA 1 [Reference] NA

  Yes 6.792 [6.157,7.493] < 0.001 4.583 [4.115–5.103] < 0.001

Multifocality, No.(%)

  Solitary tumor 1 [Reference] NA 1 [Reference] NA

  Multifocal tumor 2.96 [2.756,3.180] < 0.001 2.359 [2.184–2.547] < 0.001

Laterality. No.(%)
  Unilateral 1 [Reference] NA

  Bilateral 1.095 [0.650,1.845] 0.732
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We optimized the XGBoost algorithm through 10-fold 
cross-validation, and its best performance on the training 
set AUROC value (AUC: 0.809, 95%CI: 0.800–0.818) is 
better than the traditional LR model (AUC: 0.780, 95%CI: 
0.772–0.787).

Discussion
The clinical strategy for patients with PTMC remained 
controversial. Should we opt for surgery or just active 
surveillance only? If surgery was being performed, would 
it necessary to do the bilateral lobar resection (BLR), or 
only operating on the affected lobe (unilateral lobec-
tomy)? For non-invasive, clinically node-negative (cN0) 
PTMC, would it have a better prognosis if the prophy-
lactic central lymph node dissection (pCLND) was car-
ried out? The availability of suitable prognostic models 
became important. Conventional LR model and ML each 
had their own advances and limitations. We established 
models for cervical LNM by conventional LR and ML 
algorithms with the goal of evaluating their performance 
in prediction of LNM in PTMC.

Risk factors for cervical LNM of PTMC
In the ML model and the traditional regression model 
analyses, four risk factors were found to be most closely 
associated with cervical LNM in PTMC. These includes, 
extrathyroidal metastasis (ETE), tumor size, age, and 
multifocality. Among them, ETE was the most important 
factor affecting the outcomes predicted by the models. It 
was confirmed by many clinical research that ETE pre-
dicts negative clinical outcomes in papillary thyroid can-
cer [24]. All levels of extrathyroidal extension, including 
microscopic, were associated with a increased risk for 
nodal and distant metastasis [25]. Unfortunately, minimal 

ETE was often difficult to identify before the operation, 
The utility of intra-operative frozen section for the evalu-
ation of microscopic extrathyroidal extension in papillary 
thyroid carcinoma seemed important and the patients 
who were diagnosed as ETE in postoperative pathology 
without pCLND. might be recommended to be inten-
sively followed up. Since tumor size was a simple param-
eter that can be determined with ultrasound images, it 
was widely used to predict the aggressiveness of PTMC 
to aid clinical decision-making. In PTC, the larger the 
tumor was, the greater the risk of cervical LNM was [26], 
Similar results were found in PTMC [27]. In our study, 
patients with tumors ≥5 mm had a significantly higher 
risk of cervical LNM compared to those with tumors < 
5 mm, which was consistent with the results of previ-
ous clinical studies and meta-analyses [24]. Age was an 
important risk factor for thyroid cancer. Children and 
young adults often present aggressive disease patterns 
and advanced stages, and had a relatively high rate of 
PTMC lymph node metastasis [28]. Thus, we put chil-
dren and young adults into the same category (< 25 years 
old) with a risk value of 1. Compared to this group，for 
adults, with every 5 years of age increasing, the risk 
of PTMC cervical lymph node metastasis gradually 
decreased. The OR values were: 0.586, 0.362, 0.26, and 
0.239 showing a relatively obvious and gradual decreas-
ing trend. Therefore, for older patients, the extent of 
surgery should be conservative and less frequent follow-
up was allowed. On the other hand, younger patients, 
especially children and adolescents, should be treated 
more aggressively and followed up closely to reduce the 
risk of recurrence. The multifocality of the tumor was 
also one of the factors closely related to PTMC cervi-
cal lymph node metastasis. Papillary thyroid carcinoma 

Fig. 3  ROC curves, forest plot and nomogram of the LR model for cervical LNM in PTMC. Note: A shows the ROC curves of the multivariate LR. B 
shows the forest plot of the multivariate LR model. C shows the risk nomogram of the multivariate LR model
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often occurs in the form of two or more independent 
lesions in the thyroid (18–87%) [29]. Multifocality may 
arise from intrathyroidal metastases from a single malig-
nant lesion or from multiple lesions of independent ori-
gin with intrathyroidal metastases [30]. In our study, 
the incidence of multifocal PTMC was 35.05%. It was a 
major risk factor in both the ML and the conventional LR 
models. The results were consistent with previous studies 

[31]. In contrast, although some previous studies had 
suggested that bilateral tumor was a risk factor for thy-
roid neck lymph node metastasis [29]. Our study found 
that laterality was not associated with cervical lymph 
node metastasis. There were no significant differences 
between unilateral or bilateral tumors in either univariate 
or multivariate analysis. Histopathological subtypes were 
also closely linked to the lymph nodes of PTMC. Some 

Fig. 4  Model performance evaluation of different ML methods. Note: A showed the ROC curve of 5 different ML models in training set; B showed 
the ROC curve of 5 different ML models in validation set; C showed the AUC score forest plot of each model; D showed the reliability curve of each 
model
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Table 3  Predictive performance comparison of the 5 types of machine learning classifiers in the training set and the validation set, 
(Mean ± SD)

Note: aindicated that the best performance of the ML classifier in the training set and validation sets was XGBoost (Ranked according to AUC)

Abbreviation:ML Machine learning, XGBoost Extreme gradient boosting, RF Random forest, AdaBoost Adaptive boosting, GNB Gaussian naive Bayes, MLP Multilayer 
perceptron, AUROC Area under the receiver operating characteristic curve, NPV Negative predictive value, CI Confidence interval

ML classifiers Accuracy(95%CI) Accuracy(95%CI) Sensitivity(95%CI) Specificity(95%CI) NPV (95%CI)

Training sets
  XGBoost 0.782(0.772–0.792)a 0.682(0.666–0.698) 0.746(0.726–0.767) 0.671(0.649–0.692) 0.957(0.955–0.959)

  RF 0.679(0.635–0.724) 0.679(0.635–0.724) 0.748(0.713–0.783) 0.640(0.595–0.684) 0.953(0.945–0.961)

  AdaBoost 0.648(0.612–0.685) 0.648(0.612–0.685) 0.785(0.735–0.835) 0.590(0.544–0.636) 0.953(0.945–0.962)

  GNB 0.662(0.655–0.669) 0.662(0.655–0.669) 0.692(0.658–0.726) 0.683(0.645–0.722) 0.953(0.949–0.956)

  MLP 0.683(0.670–0.695) 0.683(0.670–0.695) 0.711(0.658–0.764) 0.683(0.621–0.746) 0.953(0.948–0.958)

Validation sets
  XGBoost 0.777(0.757–0.797)a 0.678(0.663–0.694) 0.748(0.717–0.780) 0.660(0.614–0.706) 0.956(0949–0.962)

  RF 0.679(0.635–0.724) 0.679(0.635–0.724) 0.748(0.713–0.783) 0.640(0.595–0.684) 0.953(0.945–0.961)

  AdaBoost 0.648(0.612–0.685) 0.648(0.612–0.685) 0.785(0.735–0.835) 0.590(0.544–0.636) 0.953(0.945–0.962)

  GNB 0.662(0.655–0.669) 0.662(0.655–0.669) 0.692(0.658–0.726) 0.683(0.645–0.722) 0.953(0.949–0.956)

  MLP 0.683(0.670–0.695) 0.683(0.670–0.695) 0.711(0.658–0.764) 0.683(0.621–0.746) 0.953(0.948–0.958)

Fig. 5  Optimization and visualization of the XGBoost model. Note: A, B and D displayed the ROC curve of the train, validation and test of the 
XGBoost model by 10-fold cross-validation. C showed the learning curve of the XGBoost classifier. E showed the reliability curve of XGBoost model. 
F showed the summary plots of SHAP values for the XGBoost model. For each feature, one point corresponds to a single patient. A point’s position 
along the x axis represented the impact that feature had on the model’s output for that specific patient. Features were arranged along the y axis 
based on their importance, which was given by the mean of their absolute Shapley values. The higher the feature was positioned in the plot, the 
more important it was for the model



Page 11 of 13Huang et al. BMC Endocrine Disorders          (2022) 22:269 	

histological subtypes of PTC were classified as aggressive 
variants of PTC (AVPTC), which included columnar/tall-
cell variant (TCV), and diffuse sclerosis subtype [32]. In 
our study, results consistent with previous studies were 
also obtained. However, among the above risk factors of 
cervical LNM, histiocytic subtype was a factor that could 
not be determined before surgery. ETE and multifocal-
ity were often hard to find during preoperative routine 
inspection. They largely depended on the accuracy of 
intraoperative frozen section pathology analysis. This 
may limit the applicability of the machine learning model 
in preoperative clinical prediction.

The relationship between tumor prognosis and popu-
lation sociology has received increasing attention. In our 
study, in addition to age, patient gender was also found 
to be associated with cervical LNM in PTMC. It was well 
known that the prevalence of thyroid cancer in men was 
much lower than that in women, although men had a 
higher rate of cervical LNM and a poorer prognosis [33]. 
In our study, we found that male sex was also a risk factor 
for cervical LNM. Compared with women, the OR was 
2.279. The mechanism was unclear, although some stud-
ies suggested that estrogen might regulate the prolifera-
tion of thyroid cells by combining with estrogen receptor 
(ER) α and ERβ [34]. Since ER expression levels differ 
between males and females, this may be one of the rea-
sons for the difference in the sex ratio of cervical LNM in 
PTMC patients. Race and region of residence were also 
associated with the risk of cervical LNM in PTMC. Black 
race was a protective factor for cervical LNM (OR: 0.551) 
relative to white race, while other races were not sig-
nificantly different from white race. In a previous study 
on race and PTC prognosis in the SEER database, black 
Americans had lower overall survival than white Ameri-
cans (HR: 1.127). However, there were fewer lymph node 
metastases in classic papillary thyroid carcinoma (OR: 
0.476) and follicular subtype papillary thyroid carcinoma 
(OR: 0.522) in black Americans [35]. Genetic variation 
may be a possible mechanism for the differences. In 
addition, it is possible that the limitation in health care 
resources for black Americans might have leaded to less 
prophylactic neck dissections and/or less proper ultra-
sounds, causing an overt reduction in observed incidence 
rate. The distribution of PTMC varied by region in the 
United States. The Pacific coast accounts for the largest 
proportion (42.767%) and had the highest incidence of 
lymph node metastasis. (11.9%). This may be related to 
the uneven iodine intake and different racial distribution 
of residents. However the factors that effected the can-
cer disparities are complex, including lifestyle, income, 
health security and access to affordable health services of 
high quality [36]. One of the thought-provoking results 
in our study was the effect of marital status on cervical 

LNM in PTMC. We found that being single was the only 
marital- status related risk factor for the cervical LNM. 
Even the divorced, widowed or separated had a better 
outcome than the single. It is possible that spouses may 
encourage patients to seek medical attention for alarming 
symptoms thus resulting an early diagnosis of the tumor 
[37, 38]. In addition, the support of the family especially 
the spouse might help reduce the stress and depression in 
the patients which might help recovery from the disease. 
Our analysis showed that social and family relationship 
was an important factor affecting tumor prognosis.

Predictive model performance comparison
There were several ML algorithms commonly used in 
predictive model construction. Different ML approaches 
had different advantages and disadvantages. In this study, 
compared with the other four ML algorithms (AdaBoost, 
RF, GNB and MLP), XGboost was found to be the best 
model for predicting cervical LNM in PTMC using a 
dataset derived from the SEER database. In this study, we 
found the XGboost algorithm performance best both in 
AUC and in the accuracy of model construction. Its accu-
racy was improved in optimized procession.

Compared with conventional LR model, machine 
learning methods performance better in predicting cervi-
cal LNM outcomes. Though the advantage in AUC value 
was not so obvious. This may be attributable to the vari-
ables that were selected into the model. There were no 
correlation or collinearity among all variables. In addi-
tion, the variables selected were simple and there were 
not so many features. The fact that the machine learning 
method show only limited advantage in our study indi-
cates if the variables were simple and did not have any 
collinearity, conventional LR could also be a good choice 
for model construction. It was likely that only when there 
were complex, high-dimensional data available the ML 
method might show much more substantial advantages.

Visualization of feature importance
We visualize OR and 95%CI for variables identified by 
conventional LR in the form of nomogram and forest plot 
map to help understand the model [39]. Nomogram and 
forest plot clearly showed the ETE, larger tumor size, his-
tology of column cell, multifocality, male, single, and the 
region of Pacific Coast were all risk factors while older 
age, race of black and the histology of follicular variant 
and encapsulated were protective factors. ETE had the 
biggest OR ration. It was a very important positive risk 
factor in predicting the result of the cervical LNM in 
PTMC. In contrast, the feature of marital status and race 
were not as important as other factors.

For a long time the ML only provided a ranking of 
feature importance and did not specify whether each 
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important factors was protective or dangerous in the way 
LR did. The “black-box” characteristics of ML algorithms 
made it difficult to understand. In this study we lever-
age SHAP to illustrate the factors in the predict model 
constructed [23]. The map provided by SHAP helped to 
visualize the prediction power of valuables. With SHAP 
of XGboost, we can easily find that ETE, gender, multifo-
cality and tumor size were clearly the positive risk factors 
for the cervical LNM. ETE was the most important risk 
factor of the cervical LNM. This agreed with what was 
shown by nomogram and forest plot from LR modeling.

The main limitations of this study were as follows: First, 
this study was mainly limited by the retrospective nature 
of the analysis, so confounding is inevitable. Second, the 
identification of cervical LNM was primarily derived 
from the collection of data on cases where therapeutic 
lymph node dissection was performed. The incidence of 
cervical LNM in this study was much lower than it was 
in some other studies. This suggested that the incidence 
of cervical LNM may be underestimated. In addition, 
we did not differentiate the central and lateral LNM of 
cervical LNM. There may be different characteristics of 
these two kinds of LNM which is also important for clini-
cal strategy. Third, SEER database only included patients 
lived in the United States of America. The factor of resi-
dence in our model might only be representative of this 
particular cohort and reflected health care differences, 
such as access to proper prophylactic neck dissections 
and/or ultrasounds, existing in different geological loca-
tions in America. It was possible that the residence factor 
was either not relevant or contributed in a different way 
in other populations of the world. Fourth, some high-risk 
factors or characteristics associated with cervical LNM 
were not documented in the SEER database, such as 
autoimmune thyroid disease (AITD), preoperative ultra-
sound, imaging, fine-needle biopsy, or molecular analy-
sis. We hoped that in the future, prospective multicenter 
studies with long-term follow-up data will help obtain 
additional useful clinical or social characteristics to fur-
ther improve the model.

Conclusions
ETE, tumor size, multifocality and age were the most 
important risk features for the model. This argues that 
young patients, or patients with tumors that are multifo-
cal, or ETE, or size ≥5 mm be followed up closely.

In this study we found machine learning algorithm 
offering improvement over traditional LR in predicting 
cervical LNM of PTMC. We verified its utility in the 
specific use case and demonstrated its value in help-
ing the clinicians make the right decision. We believe 

that with its strong data processing ability and learn-
ing ability, ML will become a promising predictive tool 
when large, complex data become available.
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