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Implementation of adequate measures to assess and monitor droughts is recognized as a major matter challenging researchers
involved in water resources management. The objective of this study is to assess the hydrologic drought characteristics from the
historical rainfall records of Kuwait with arid environment by employing the criterion of Standardized Precipitation Index (SPI). A
wide range of monthly total precipitation data from January 1967 to December 2009 is used for the assessment.The computation of
the SPI series is performed for intermediate- and long-time scales of 3, 6, 12, and 24 months.The drought severity and duration are
also estimated. The bivariate probability distribution for these two drought characteristics is constructed by using Clayton copula.
It has been shown that the drought SPI series for the time scales examined have no systematic trend component but a seasonal
pattern related to rainfall data. The results are used to perform univariate and bivariate frequency analyses for the drought events.
The study will help evaluating the risk of future droughts in the region, assessing their consequences on economy, environment,
and society, and adopting measures for mitigating the effect of droughts.

1. Introduction

Drought is a phenomenon, which may affect areas located in
wet or dry environments, resulting in insufficient moisture
caused by a deficit in precipitation over some time period [1].
A thorough review of drought definitions was provided by
Wilhite and Glantz [2] who classified drought into six overall
categories of meteorological, climatological, atmospheric,
agricultural, and hydrologic and water management aspects.
The time scale over which precipitation deficits accumulate
is important to highlight these classifications. For example,
agricultural droughts have typically a short-time scale of one
month when soil moisture and rainfall are inadequate to sup-
port crop growth leading to the loss of yield, while hydrologic
droughts have intermediate- and long-time scales of 3, 6,
and 12 months or higher with marked depletion of surface
and subsurface water such as lakes, streams, reservoirs, and
groundwater [3, 4].The reduced surface and subsurface water
amounts due to hydrologic droughts increase the risk of water
shortage, especially when the water demand increases in all

major use sectors due to growth in population and economic
activities.

Many indices were developed to assess and monitor
drought characteristics quantitatively. Among them is the
Palmer Drought Index [5], which is based on the concept
of water balance. The computation of this index involves
calibrating parameters including precipitation, evapotranspi-
ration, runoff, and soil moisture. This index is applied within
the United States but has little acceptance elsewhere [6]. One
explanation for this is provided by Guttman [7] and Ray and
Shewale [8], who suggested that in humid areas this index
represents more of agricultural drought, whereas in semiarid
and arid areas it represents hydrologic drought.

Another widely acceptable index based on probability
concept is the Standardized Precipitation Index (SPI) [1,
9]. Precipitation anomalies are a naturally recurring feature
of global climate [10], affecting various components of the
hydrologic cycle to produce a drought. This index, which
considers only precipitation for its computation, provides a
better representation of abnormal wetness and dryness than
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the Palmer Index [11]. SPI represents the difference of pre-
cipitation from the mean divided by the standard deviation,
where these two statistical parameters are determined from
past continuous records, ideally of at least 30 years ago [1].
Owing to the reason that this index is standardized, it can
be used to assess the drought impact worldwide (e.g., [4, 12–
14]). For a given location, the SPI may also be computed for
any time scale whether short, intermediate, or long by simply
estimating the probability distribution function for the time
scale selected. This will be useful to address the impact of the
different drought categories mentioned earlier.

The effects of drought often accumulate over time. Two
important drought characteristics widely used in the litera-
ture to assess the cumulative effect are severity and duration
(e.g., [15, 16]). Drought severity is defined as the cumulative
deviation for SPI values below a threshold level, while the
time period when this occurs is termed as the drought dura-
tion (e.g., [17]).The threshold level for drought severity can be
taken as a constant SPI value or a function varying with time
[18]. Both drought characteristics of severity and duration
are correlated variates, where different combination values of
them may generate quite different drought effects. Therefore,
for drought risk assessment, it is useful to construct a joint
probability distribution from these two variates and perform
frequency analysis.

The aim of this research is to investigate droughts
observed in the historical rainfall records of Kuwait using
the Standardized Precipitation Index criterion. The compu-
tation of SPI values will consider the time scales of 3, 6,
12, and 24 months. This will be useful for intermediate-
and long-term assessments of hydrologic droughts affecting,
for example, groundwater recharge ability in the country
and increasing the risk of water shortage. A short-term
scale assessment of one month is not relevant here due to
the desert environment of Kuwait, by which the country
does not rely on rainfall to support agricultural surfaces,
and rather it depends on nonconventional water resources
such as seawater desalination and wastewater treatment
and reuse. The drought characteristics of both severity and
duration will also be estimated in this study. The 3-month
SPI scale will be used as an example of employing these
two drought characteristics to perform bivariate frequency
analysis.

2. Case Study

The climate of Kuwait is of arid environment, where rain-
storms are infrequent with short duration but torrential. The
average depth of annual evaporation is high approaching
a value of 4000mm, while the annual depth of rainfall is
low varying from 35mm to 242mm. Temperature during
summer (winter) reaches an average daily high temperature
of 43∘C (15∘C), with the average daily low temperature falling
to 23∘C (5∘C). Summer temperatures can be even higher
when hot winds blow from the desert. Winter temperatures
can be classified as mild but occasionally become cold when
northerly or northwesterly winds bring cold air from the
north.
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Figure 1: Location of the weather station.

The arid environment of Kuwait causes a water shortage
problem. Essentially, the only existing conventional water
resource is fresh groundwater with relatively limited quan-
tities. The limited groundwater quantities are due to the
few areas of actual surface water runoff and accumulation
as evaporation always exceeds available precipitation. Fresh
groundwater is found in the depressions of Rawdatain and
Umm Al-Aish, which are located in the northern area of
Kuwait [19]. The freshwater of Rawdatain is kept as a reserve
and some amount is marketed as bottledmineral water, while
the water of UmmAl-Aish has been contaminated frommas-
sive crude oil spillage by the retreating Iraqi army during the
1990 Gulf War [20]. Nonconventional water resources have
become important in helping overcome the existing water
shortage problem in the country. Two alternatives have been
employed, which are seawater desalination and wastewater
treatment and reuse. However, the water production cost is
considered relatively high for these two alternatives, and the
seawater desalination which relies on multistage flash suffers
from environmental issues [21].

The monthly total rainfall data of Kuwait will be used
in this study to perform the drought analysis, which would
help monitoring the fresh groundwater available. Owing to
the relatively small area of Kuwait, which is about 18,000 km2,
rainfall data collected for a point estimate can be considered
spatially representative [22]. Accordingly, monthly total rain-
fall data readily available from the weather station located
in Kuwait International Airport can be employed for the
analysis (Figure 1). The rainfall data is plotted in Figure 2 for
the time duration from January 1967 to December 2009, with
516 monthly observations. This is the widest range of rainfall
records available in Kuwait at the weather station. It should be
mentioned that the data measurements from August 1990 to
June 1991 were not recorded by the weather station because of
the Iraqi invasion of Kuwait. To maintain continuity in terms
of time, this lack of information has been handled here by
averaging the data by considering the seasonalmean resulting
from adding the value of the same month but for the year
before and after and then dividing by two.
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Figure 2: Rainfall data available from the weather station located
at Kuwait International Airport for the time duration from January
1967 (month number 1) to December 2009 (month number 516).
The two dashed lines are used to divide the rainfall data into three
distinct equal time intervals, at April 1981 (month number 172) and
August 1995 (month number 344).

3. SPI Calculation and Results

The SPI is equivalent to the 𝑍-score often used in statistics.
However, for a series of rainfall measurements with a time
scale of 12 months or less, the distribution of the data is
usually considered skewed.Thom [23] found that the gamma
distribution fits the rainfall data more appropriately. The
probability density function for the gamma distribution 𝑔(𝑥)

is defined as follows:

𝑔 (𝑥) =
1
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, (1)

where 𝛼 > 0 is shape parameter, 𝛽 > 0 is scale parameter, and
𝑥 is rainfall measurement. The gamma function Γ(𝛼) in the
above equation is defined as
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Fitting the gamma distribution to the rainfall data requires
estimating 𝛼 and 𝛽. Edwards and McKee [24] suggested
estimating these parameters by using the approximation of
Thom [23] for maximum likelihood to obtain
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where
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𝑛 is number of rainfall measurements, and 𝑥 is the mean of
𝑥.

Integrating 𝑔(𝑥) with respect to 𝑥 and inserting the
estimates of 𝛼 and 𝛽 yield the expression for the cumulative
distribution 𝐺(𝑥) for a given month and time scale:
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Assuming that 𝑡 = 𝑥/𝛽, this cumulative distribution becomes
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Since the gamma function is undefined for 𝑥 = 0 and the
rainfall data may contain zero measurements, the cumulative
distribution may be conveniently expressed as

𝐻(𝑥) = 𝑞 − (1 − 𝑞)𝐺 (𝑥) , (7)

where 𝑞 is the probability of a zero. That is, if 𝑚 is the
number of zero measurements in a rainfall time series,Thom
[23] states that 𝑞 can be estimated by 𝑚/𝑛. The cumulative
distribution 𝐻(𝑥) is then transformed into the standard
normal random variable 𝑍 by employing the approximate
conversion provided by Abramowitz and Stegun [25] as
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where
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1
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2
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(9)

The coefficients in (8) are equal to 𝑐
0

= 2.515517, 𝑐
1

=

0.802853, 𝑐
2
= 0.010328, 𝑑

1
= 1.432788, 𝑑

2
= 0.189269, and

𝑑
3
= 0.001308.
The above criterion was used here to estimate the SPI

values for the rainfall data of Kuwait. Figure 3 shows the
results presented as probability distribution functions for the
time scales 3, 6, 12, and 24 months. Here, the SPI values are
termed correspondingly as SPI3, SPI6, SPI12, and SPI24. It
is seen that the probability distributions are very close to
normal, verified by using the Anderson-Darling normality
test resulting in small statistics by which the hypothesis
of normality was not rejected for the 𝑃 value at the 0.05
significance level. The SPI classifications with regard to dry
and wet events and the percentage available in each category
in the time scales selected for the data of Kuwait are shown
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Table 1: SPI values classification and the percentage available in the theoretical standard normal distribution and in the time scales selected
for the data of Kuwait.

Class SPI valuea Percentage in category (%)
SNDb 3-month scale 6-month scale 12-month scale 24-month scale

Extreme wet >2.0 2.28 1.94 2.13 0.78 0.39
Very wet 1.5 to 1.99 4.4 5.43 6.01 7.75 8.33
Moderate wet 1.0 to 1.49 9.19 6.78 7.75 8.72 10.27
Near normal 0.99 to −0.99 68.26 76.55 70.35 67.64 63.57
Moderate drought −1.0 to −1.49 9.19 6.01 8.14 6.4 10.27
Severe drought −1.5 to −1.99 4.4 1.55 3.68 6 6.98
Extreme drought <−2.0 2.28 1.74 1.94 2.71 0.19
aSPI categories adopted from Bordi et al. [30].
bStandard normal distribution.
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Figure 3: Standardized Precipitation Index (SPI) for the rainfall data plotted as probability distribution functions for the time scales of 3, 6,
12, and 24 months.The dashed curve represents the theoretical cumulative distribution, and the solid curve is the fitted empirical cumulative
distribution. AD corresponds to Anderson-Darling statistic.

in Table 1. The SPI values are divided here arbitrarily into
categories ranging from extreme wet (relative to the mean
and standard deviation of the data) to extreme drought.
The percentage available in the theoretical standard normal
distribution is also presented in the table for a comparison
with the categories for the data of Kuwait.

The temporal behavior of the SPI values is presented in
Figure 4. On a small scale such as that for the SPI3 series,
the drought intensities are highly variable and become less
than −1.0 and greater than 1.0 on several occasions. This
variation is due to a seasonal component found in the rainfall
data. It is worth mentioning that the characteristics of the
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Figure 4: Standardized Precipitation Index (SPI) for the rainfall data plotted for the time scales of 3, 6, 12, and 24 months. The time duration
of the data is from January 1967 (month number 1) to December 2009 (month number 516).

four seasons of spring, summer, autumn, and winter are not
distinct in the arid environment of Kuwait, which can rather
be classified into rainy and dry months. As it can be seen
in Figure 2, the rainy months in Kuwait, on average, are
November, December, January, February, March, and April.
The drought patterns appear mainly after those months and
become worse during summer, that is, June, July, and August.
However, on a larger scale such as that for SPI24 series, the
drought becomes less frequent and of longer duration. If the
rainfall data in Figure 2 is divided into three distinct equal
time intervals of 172 months, it can show that the interval in
themiddle has a rainfall amount lower than that of the others;
the total rainfall amounts from the first to the third intervals
are equal to 1870, 1420, and 2160mm, respectively. One long-
term drought that can be observed clearly in the SPI24 series
has a total duration equal to about 10 years, occurring from
month number 192 (December 1982) to 313 (January 1993).
This drought event resulted obviously from the low rainfall
amount of 1420mm within the second time interval.

On the other hand, for all time scales shown in Figure 4,
there is no long-term trend component recognized. This
can be tested by fitting a linear regression trend to the
observations resulting in slope and intercept values nearly
equal to zero. Justifying the absence of a long-term trend
of drought requires, however, testing a sufficiently wider
historical rainfall data series, which is not available at this
weather station. This justification would be useful to tell, for
example, whether a phenomenon such as global warming
affects somehow the severity or frequency of drought at this
location.

AdroughteventendswhentheSPIvaluebecomespositive.
The drought severity is then the cumulative of SPI values

within the drought duration. Figure 4 can be used to estimate
the drought severity and duration. For convenience, the
drought severity is taken to be positive as

𝑠 = −

𝑑

∑

𝑖=1

SPI
𝑖
, (10)

where 𝑠 is drought severity and 𝑖 starts with the first month
of a drought and continues until the end of the drought
duration 𝑑. This relationship suggests that the longer the
drought persists the worse the magnitude is [1]. As seen
in Figure 5, the 3-month scale has the highest number of
droughts among the other scales. While the 24-month scale
has only five drought events, the magnitudes for these events
are relatively large compared to those for the other scales.The
worst drought event for this time scale is equal to 𝑠 = 122,
which is the one occurring from month number 192 to 313
mentioned earlier.

4. Frequency Analysis for Drought Events

To provide a comprehensive evaluation for droughts, one
single variable such as drought severity is insufficient for
the analysis. Instead, the bivariate characteristics of drought
severity and duration can be used to derive a joint probability
distribution. The drawback of bivariate distributions is the
difficult mathematical derivations needed for fitting param-
eters from observed data. In recent years, copulas have been
used for multivariate hydrological analysis to overcome such
difficulties [26, 27]. A copula function offers great flexibility
to select univariate distributions well fitted to observed data
and construct a suitable multivariate distribution. It is worth
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Figure 5: Drought severity for SPI3, SPI6, SPI12, and SPI24. The spikes represent the successful drought events. The numbers in the
parentheses represent the drought durations. The time duration of the data is from January 1967 (month number 1) to December 2009
(month number 516). The two dashed lines are used to divide the data into three distinct equal time intervals corresponding to those found
in Figure 2.

noting that, in Figure 5, as the time scale is increased the
number of spikes corresponding to successful drought events
decreases. Accordingly, as the time scale is increased, it
becomes less accurate to use severity-duration data points to
fit a suitable probability distribution. However, to provide an
example for fitting a joint probability distribution, the SPI3
series may be chosen here as it contains the largest number of
severity-duration data points.

The Clayton copula can be used in this study to construct
the bivariate distribution of drought severity and duration.
The Clayton copula is an asymmetric Archimedean cop-
ula, which is considered appropriate in drought simulation
because it is known to reflect tail structure of droughts well
[15]. The Clayton copula function is given by

𝐶
𝜃
(𝑢, V) = max [(𝑢

−𝜃

+ V−𝜃 − 1)
−1/𝜃

, 0] , (11)

where the parameter 𝜃 is used to measure the degree of
association between 𝑢 and V. It is given by

𝜃 =
2𝜏

1 − 𝜏
, (12)

where 𝜏 is Kendall’s tau. Typically, 𝜃 ∈ [−1,∞) \ {0}. For
this study, 0 < 𝜃 < ∞ by which the above equation can be
simplified to

𝐶
𝜃
(𝑢, V) = (𝑢

−𝜃

+ V−𝜃 − 1)
−1/𝜃

, 𝜃 ∈ (0,∞) . (13)

The joint probability distribution for the univariate distribu-
tions of drought severity (𝐹

𝑆
) and duration (𝐹

𝐷
) can thus be

expressed as

𝐶
𝜃
(𝐹
𝑆
(𝑠) , 𝐹
𝐷

(𝑑)) = (𝐹
𝑆
(𝑠)
−𝜃

+ 𝐹
𝐷

(𝑑)
−𝜃

− 1)
−1/𝜃

, 𝜃 > 0.

(14)

The severity-duration data can then be used to determine
the best fitting probability distribution functions for 𝐹

𝑆
and

𝐹
𝐷
. The distributions most commonly used in the literature

for such application are the gamma, Weibull, log-normal,
and exponential. Among them, the log-normal distribution
was found here with the best Anderson-Darling statistic.
The cumulative log-normal distribution, however, needs a
numeric approximation. Because the log-logistic distribu-
tion, which can be solved analytically, is similar to the log-
normal, it can be used instead. The probability plots for
the log-logistic distribution of drought severity and duration
for the SPI3 series are shown in Figure 6. The log-logistic
distribution is expressed as

𝐹
𝑋

(𝑥; 𝜇; 𝑏) = [𝑒
−(ln 𝑥−𝜇)/𝑏

+ 1]
−1

, (15)

where 𝜇 is location parameter, 𝑏 = √3𝜎 is scale parameter,
and 𝜎 is standard deviation. The values for the location and
scale parameters for both functions 𝐹

𝑆
and 𝐹

𝐷
are shown

in Figure 6. The probability plot shows also the associated
confidence intervals based on the parameters estimated from
the data.
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Figure 6: The probability plots for the log-logistic distribution of drought severity and duration for SPI3 series. The upper and lower solid
curves represent the confidence intervals based on the location and scale parameters estimated from the data. AD corresponds to Anderson-
Darling statistic.

The bivariate correlation between drought severity and
duration for the SPI3 series is shown in Figure 7. A pos-
itive correlation exists between the two drought variables.
According to Pearson and Spearman’s rho, the correlation is
considered high, more than 0.8. Kendall’s tau though is equal
to 𝜏 = 0.649, which yields 𝜃 = 3.7 from (12). The copula
becomes

𝐶
𝜃
(𝐹
𝑆
(𝑠) , 𝐹
𝐷

(𝑑)) = (𝐹
𝑆
(𝑠)
−3.7

+ 𝐹
𝐷

(𝑑)
−3.7

− 1)
−1/3.7 (16)

with

𝐹
𝑆
(𝑠) = [𝑒

−(ln 𝑠−1.407)/0.4
+ 1]
−1

,

𝐹
𝐷

(𝑑) = [𝑒
−(ln 𝑑−1.498)/0.344

+ 1]
−1

.

(17)

Owing to the reason that various combinations of drought
severity and duration can result with the same occurrence
probability, the above equations are plotted as contour lines
in Figure 8(a). This figure can be used to obtain the different
combinations of drought severity and duration for a given
occurrence probability.

The return period of drought events, defined as the
average elapsed time between occurrences with a certain
or greater magnitude, is traditionally calculated using a
univariate distribution [28]. However, complex behaviors are
usually characterized by a multivariate or bivariate distri-
bution. For better assessment of drought, the distributions
for both severity and duration can be used to obtain the
bivariate return period. The univariate return period can
also be estimated for this case to provide comparison. The
single variable return period of drought in terms of year is
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Figure 7: Drought severity versus duration for SPI3 series. The
dashed line represents perfect agreement.

defined for the partial drought severity𝑇
𝑆
and partial drought

duration 𝑇
𝐷
as

𝑇
𝑆
=

1

𝛾𝑃 (𝑆 ≥ 𝑠)
=

1

𝛾 (1 − 𝐹
𝑆
(𝑠))

, (18)

𝑇
𝐷

=
1

𝛾𝑃 (𝐷 ≥ 𝑑)
=

1

𝛾 (1 − 𝐹
𝐷

(𝑑))
, (19)

where 𝛾 is the average number of drought events per year [18,
29], calculated from Figure 5 for the SPI3 series as 𝛾 = 0.465.
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Figure 8: Contours for the two variates of drought severity and duration, with the solid circles representing the severity-duration data for
SPI3 series: (a) joint probability distributions calculated by (16); (b) joint return periods calculated by (20).
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𝑆

(18) and duration
𝑇
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(19) in terms of year plotted together with the bivariate severity
and duration return period 𝑇
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(20) in terms of year for SPI3 series.

The bivariate return period of drought 𝑇
𝑆𝐷

in terms of year
can be derived as

𝑇
𝑆𝐷

=
1

𝛾 (𝑃 (𝑆 ≥ 𝑠 or 𝐷 ≥ 𝑑))
=

1

𝛾 (1 − 𝐹
𝑆,𝐷

(𝑠, 𝑑))

=
1

𝛾 (1 − 𝐶
𝜃
(𝐹
𝑆
(𝑠) , 𝐹
𝐷

(𝑑)))
.

(20)

The above three equations can be plotted together in
Figure 9. Here, in order to plot 𝑠 and 𝑑 together in a single
axis, it is assumed that they are identical in magnitude. This
assumption is possible because of the nearly equivalent values
observed in Figure 7. This is due to the fact that most of
the SPI3 values are sufficiently close to −1.0, rendering 𝑠

calculated by (10) very close in magnitude to 𝑑. It can be

seen that, given a return period, 𝑠 and 𝑑 values obtained,
respectively, by (18) and (19) are smaller than those obtained
by (20). This implies that if one ignores the close correlation
between 𝑠 and 𝑑 and employs a single variable return period,
then the influence of drought event will be underestimated.
The contours derived from (20) are plotted in Figure 8(b).The
solid circles in the figure represent the severity-duration data
points for SPI3 series. It is seen that the estimated bivariate
return periods𝑇

𝑆𝐷
range from 2.3 to 11.6 years corresponding

to occurrence probabilities from 0.065 to 0.815 shown in
Figure 8(a).

5. Conclusions

This study assessed droughts observed in the desert environ-
ment of Kuwait by using the Standardized Precipitation Index
criterion. It has been found for the given rainfall data that
there is no long-term trend of drought, but only a seasonal
variation pattern of time series component. Justifying the
absence of the long-term trend requires though a sufficiently
wider historical rainfall data series, which will be useful to
examine whether a phenomenon such as global warming
affects somehow the severity or frequency of drought at this
location.This study also estimated the bivariate return period
of the two severity and duration drought characteristics.
A comparison presented in Figure 9 has shown that the
bivariate return period is smaller than the univariate return
period relying on either severity or duration. One may con-
clude accordingly that considering the bivariate frequency
analysis for the assessment of drought data will help to avoid
underestimating drought impact.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.



The Scientific World Journal 9

Acknowledgments

The author is grateful to the Directorate General of Civil
Aviation of Kuwait for providing the rainfall data. This work
was supported by Kuwait University, Research Grant no.
EV09/13.

References

[1] T. B. McKee, N. J. Doesken, and J. Kleist, “The relationship of
drought frequency and duration to time scales,” in Proceedings
of the 8th Conference onApplied Climatology, vol. 17, pp. 179–183,
American Meteorological Society, Boston, Mass, USA, 1993.

[2] D. A. Wilhite and M. H. Glantz, “Understanding the drought
phenomenon: the role of definitions,” Water International, vol.
10, no. 3, pp. 111–120, 1985.

[3] S. Szalai, C. Szinell, and J. Zoboki, “Drought monitoring in
Hungary,” in Early Warning Systems for Drought Preparedness
and Drought Management, pp. 161–176, World Meteorological
Organization, Geneva, Switzerland, 2000.

[4] A. K. Mishra and V. P. Singh, “A review of drought concepts,”
Journal of Hydrology, vol. 391, no. 1-2, pp. 202–216, 2010.

[5] W. C. Palmer, Meteorological Drought, US Department of
Commerce, Weather Bureau, Washington, DC, USA, 1965.

[6] F. N. Kogan, “Droughts of the late 1980s in the United States
as derived from NOAA polar-orbiting satellite data,” Bulletin of
the American Meteorological Society, vol. 76, no. 5, pp. 655–668,
1995.

[7] N. B. Guttman, “Comparing the palmer drought index and
the standardized precipitation index,” Journal of the American
Water Resources Association, vol. 34, no. 1, pp. 113–121, 1998.

[8] K. C. S. Ray and M. P. Shewale, “Probability of occurrence of
drought in various sub-divisions of India,”Mausam, vol. 52, no.
3, pp. 541–546, 2001.

[9] T. B. McKee, N. J. Doesken, and J. Kleist, “Drought monitoring
with multiple time scales,” in Proceedings of the 9th AMS
Conference on Applied Climatology, American Meteorological
Society, Boston, Mass, USA, January 1995.

[10] M. N. Efstathiou and C. A. Varotsos, “Intrinsic properties
of Sahel precipitation anomalies and rainfall,” Theoretical and
Applied Climatology, vol. 109, no. 3-4, pp. 627–633, 2012.

[11] N. B. Guttman, “Accepting the standardized precipitation
index: a calculation algorithm,” Journal of the American Water
Resources Association, vol. 35, no. 2, pp. 311–322, 1999.

[12] D. Manatsa, G. Mukwada, E. Siziba, and T. Chinyanganya,
“Analysis of multidimensional aspects of agricultural droughts
in Zimbabwe using the Standardized Precipitation Index (SPI),”
Theoretical and Applied Climatology, vol. 102, no. 3, pp. 287–305,
2010.

[13] M. N. Kumar, C. S. Murthy, M. V. R. Sesha Sai, and P. S. Roy,
“Spatiotemporal analysis of meteorological drought variability
in the Indian region using standardized precipitation index,”
Meteorological Applications, vol. 19, no. 2, pp. 256–264, 2012.

[14] J. Du, J. Fang, W. Xu, and P. Shi, “Analysis of dry/wet conditions
using the standardized precipitation index and its potential
usefulness for drought/flood monitoring in Hunan Province,
China,” Stochastic Environmental Research and Risk Assessment,
vol. 27, no. 2, pp. 377–387, 2013.

[15] J. T. Shiau and R. Modarres, “Copula-based drought severity-
duration-frequency analysis in Iran,” Meteorological Applica-
tions, vol. 16, no. 4, pp. 481–489, 2009.

[16] J.-T. Shiau, R. Modarres, and S. Nadarajah, “Assessing multi-
site drought connections in Iran using empirical copula,”
Environmental Modeling and Assessment, vol. 17, no. 5, pp. 469–
482, 2012.

[17] J. W. Kwak, Y. S. Kim, J. S. Lee, and H. S. Kim, “Analysis of
drought characteristics using copula theory,” in Proceedings of
the World Environmental and Water Resources Congress, pp.
1762–1771, Albuquerque, NM, USA, May 2012.

[18] J.-T. Shiau, S. Feng, and S. Nadarajah, “Assessment of hydro-
logical droughts for the Yellow River, China, using copulas,”
Hydrological Processes, vol. 21, no. 16, pp. 2157–2163, 2007.

[19] A. Y. Kwarteng, M. N. Viswanathan, M. N. Al-Senafy, and T.
Rashid, “Formation of fresh ground-water lenses in northern
Kuwait,” Journal of Arid Environments, vol. 46, no. 2, pp. 137–
155, 2000.

[20] A. Mukhopadhyay, E. Al-Awadi, M. Quinn, A. Akber, M. Al-
Senafy, and T. Rashid, “Ground water contamination in Kuwait
resulting from the 1991 Gulf War: a preliminary assessment,”
GroundWater Monitoring & Remediation, vol. 28, no. 2, pp. 81–
93, 2008.

[21] M. A. Darwish and F. M. Al Awadhi, “The need for integrated
water management in Kuwait,” Desalination and Water Treat-
ment, vol. 11, no. 1–3, pp. 204–214, 2009.

[22] J. Almedeij, “Modeling rainfall variability over urban areas: a
case study for Kuwait,” The Scientific World Journal, vol. 2012,
Article ID 980738, 8 pages, 2012.

[23] H. C. S. Thom, “A note on the gamma distribution,” Weather
Review, vol. 86, no. 4, pp. 117–122, 1958.

[24] D. D. Edwards and T. B. McKee, Characteristics of 20th century
drought in the United States at multiple time series [M.S. thesis],
Colorado State University, Fort Collins, Colo, USA, 1997.

[25] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables,
Courier Dover Publications, New York, NY, USA, 2012.

[26] C. Genest and A.-C. Favre, “Everything you always wanted to
know about copula modeling but were afraid to ask,” Journal of
Hydrologic Engineering, vol. 12, no. 4, pp. 347–368, 2007.

[27] G. Salvadori and C. de Michele, “On the use of copulas in
hydrology: theory and practice,” Journal of Hydrologic Engineer-
ing, vol. 12, no. 4, pp. 369–380, 2007.

[28] C. T. Haan, Statistical Methods in Hydrology, The Iowa State
University Press, Ames, Iowa, USA, 2002.

[29] J. T. Shiau, “Return period of bivariate distributed extreme
hydrological events,” Stochastic Environmental Research and
Risk Assessment, vol. 17, no. 1-2, pp. 42–57, 2003.

[30] I. Bordi, S. Frigio, P. Parenti, A. Speranza, and A. Sutera,
“The analysis of the standardized precipitation index in the
mediterranean area: large-scale patterns,” Annals of Geophysics,
vol. 44, no. 5-6, pp. 965–978, 2001.


