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Abstract: Lewis Y antigen, a glycan highly expressed on most epithelial cancers, was targeted for
cancer treatment but lacked satisfactory results in some intractable and refractory cancers. Thus, it
is highly desirable to develop an effective therapy against these cancers, hopefully based on this
target. In this work, we constructed a novel T cell-engaging bispecific antibody targeting Lewis
Y and CD3 (m3s193 BsAb) with the IgG-[L]-scfv format. In vitro activity of m3s193 BsAb was
evaluated by affinity assay to target cells, cytotoxicity assay, cytokines releasing assay, and T cells
proliferation and recruiting assays. Anti-tumor activity against gastric cancer was evaluated in vivo
by subcutaneous huPBMCs/tumor cells co-grafting model and huPBMCs intravenous injecting
model. In vitro, m3s193 BsAb appeared to have a high binding affinity to Lewis Y positive cells and
Jurkat cells. The BsAb showed stronger activity than its parent mAb in T cell recruiting, activation,
proliferation, cytokine release, and cytotoxicity. In vivo, m3s193 BsAb not only demonstrated higher
therapeutic efficacy in the huPBMCs/tumor co-grafting gastric carcinoma model than the parent
mAb but also eliminated tumors in the model of intravenous injection with huPBMCs. Strong
anti-tumor activity of m3s193 BsAb revealed that Lewis Y could be targeted in T cell-engaging BsAb
for gastric cancer therapy.

Keywords: Lewis Y; T cell-engaging bispecific antibody; m3s193 BsAb; cancer therapy

1. Introduction

Bispecific antibody (BsAb) has achieved a great accomplishment in fighting against
diseases, including cancers. To date, three BsAbs have been on the market, and many
others are in clinical research for different diseases [1]. Among them, T cell-engaging
BsAbs were focused on the therapy for various cancers due to their potent activity by
activating the immune system [2–4]. Typically, a BsAb has two arms that may target tumor
association antigens on tumor cells and CD3 on T cells, which could recruit T cells into the
tumor micro-environment as well as activate T cells to release cytokines, granzyme, and
perforin [4].

Many cancer cell surface antigens, such as CD19, Her2, and GD2, were targeted
through T cell-engaging BsAbs, showing potent anti-tumor activity [5–7]. Lewis Y, as a
tumor-associated glycan antigen, is a type 2 blood group-related difucosylated oligosac-
charide with the chemical structure [Fucα1→2Galβ1→4(Fucα1→3) GlcNAcβ1→R], and
fucosylated by α1,2-fucosyltransferase at the end of glycan chain [8,9]. It was also targeted
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for anti-tumor treatment [10,11]. The primary expression of Lewis Y was in the embryonic
period, and there was limited expression on the surface of granulocytes and epithelium in
adults under the physiological condition [12]. Many studies also found that Lewis Y was in
a form of glycolipid on the plasma membrane or conjugated to other cell receptors, such as
EGFR, CD47, CD44, and CD147 [13–16]. Nevertheless, Lewis Y was highly expressed in the
majority of carcinomas, including breast, ovary, colon, stomach, and liver cancers [17,18].
Additionally, its expression was often related to clinical stage and progression [19,20].
Several studies revealed that expression of Lewis Y on ovarian cancers could promote
cancer cell proliferation by regulating expression and phosphorylation of the molecules in
EGFR/PI3K/Akt signaling pathways [21,22] and as a part of integrin αv, β3, and α5β1 to
enhance the adhesion and migration of ovarian cancer cells [23–25]. Besides ovarian cancer,
44% of cases of breast carcinomas were Lewis Y positive, and over-expression of Lewis Y
was associated with a significantly decreased patient survival rate [19]. A clinical study on
gastric cancer also revealed that 40–50% of cases were Lewis Y reactive and a significant
strong expression on signet-ring cell carcinomas of the stomach [26].

Antibody targeting Lewis Y not only inhibited tumor growth but also enhanced
anti-tumor activity when combined with taxol chemotherapy in breast cancer xenograft
studies [11,27]. Anti-Lewis Y antibody also enhanced the therapeutic efficacy of celecoxib
against gastric cancer by downregulation of MAPKs/COX-2 signaling pathway [28]. Re-
searchers found that knockdown of FUT1 (gene of α1,2-fucosyltransferase), a key enzyme
for Lewis Y synthesis, could down-regulate HER2 signaling via EGFR down-regulation
to inhibit the proliferation of the gastric cancer cell line (NCI-N87) [29]. All these stud-
ies suggested that Lewis Y was a promising target for the therapy of epithelial cancers
including ovarian, breast, and gastric cancers. Lewis Y has been evaluated as a target in
several clinical trials using monoclonal antibody (mAb), antibody-drug conjugate (ADC),
and chimeric antigen receptor T-Cell immunotherapy (CAR-T); however, a limited clinical
benefit has been achieved so far from these trials [30,31].

T cell-engaging BsAbs have many advantages with different formats produced by
various platforms [1,32]. Among them, IgG-[L]-scfv-like T cell-engaging BsAbs had potent
anti-tumor activity to different tumor cell lines by targeting tumor association antigens
and CD3 [6,33,34], which was confirmed by another anti-tumor BsAb in our laboratory
(data not shown). Brian H. Santich et al. also reported that the IgG-[L]-scfv structure
had stronger anti-tumor activity than either the IgG-like or BiTE structure for the GD2
target with appropriate inter-domain spacing and spatial configuration [7]. Thus, we were
inspired by the successful reports and designed m3s193 BsAb with an IgG-[L]-scfv structure
to evaluate in vitro and in vivo anti-tumor activity. Here, we report that this BsAb had an
excellent curative effect against Lewis Y positive gastric cancer, showing the potential to be
a new therapeutic regent in clinical applications.

2. Materials and Methods
2.1. Vectors Construction

The variable heavy chain (VH) sequences and variable light chain (VL) sequences of
anti-Lewis Y antibody and Lewis Y-BsAb were derived from murine monoclonal antibody
3S193 (United States Patent 5874060) [9] and synthesized by GenScript® company (Nanjing,
China). VH and VL were constructed into the human IgG1, κ framework by PCR technology
to obtain monoclonal antibody anti-Lewis Y, named m3s193 mAb. Furthermore, Lewis
Y-BsAb was constructed by VH and VL of m3s193 into the human IgG1, κ framework
with mutations of L234A, L235A, and P329G (LALA-PG) to eliminate Fc receptor and
complement binding activities [35]. Anti-CD3 scfv derived from the VH and VL domains
of huOKT3 [36] was fused to the C-terminal of each light chain by a linker of three G4S1
domains to form T cell-engaging BsAb, named m3s193 BsAb. An additional six G4S1
domains were added as a linker between the VH and VL domains of the scfv. For the
negative control with similar IgG-[L]-scfv BsAb format, VH and VL of anti-CD22 sequence
derived from M971 (United States Patent 9598492) [37] were synthesized and constructed
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by the same method, named M971 BsAb. All coding sequences of heavy/light chains were
constructed into pcDNA3.4 vector by homologous recombination.

2.2. Proteins Purification

The constructed vectors were transfected into HEK293F cells using transient gene
expression (TGE) technology following published protocols [38–40]. After 6–7 days’ culture,
when the cell viability dropped to 50–60%, the supernatant was harvested and purified
by MabSelect SuRe affinity chromatography. Purified mAb and BsAbs were detected by
SDS-PAGE to verify the molecule weight under non-reducing and reducing conditions. All
purified proteins were dialyzed overnight in phosphate-buffered saline (PBS) buffer and
sterilized by filtration using a 0.22 µm filter and frozen in −80 ◦C freezer.

2.3. Binding Activity to the Target Cells

Four Lewis Y positive tumor cell lines were selected for the binding activity assay
by flow cytometry. In brief, 0.2 million MCF-7, T47D, MDA-MA-231, and NCI-N87 cells
were incubated with 5 µg of purified mAb and BsAb, respectively, in 4 ◦C for 30 min. After
incubation, cells were washed twice with FACS buffer (2% FBS in PBS) and then incubated
with FITC-conjugated goat anti-human IgG (H + L) secondary antibody (TheromFisherTM,
Shanghai, China, Cat no. A18806) in 4 ◦C for 30 min. Finally, cells were washed twice
with FACS buffer and analyzed with CytoFLEX cytometry (Beckman Coulter, Inc, Brea,
CA, USA model number: CytoFLEX). Binding histograms were exported by CytExpert
software (Beckman Coulter, Inc., Version: 2.3.0.84).

2.4. Binding Affinity to the Target Cells

In this assay, target cells were harvested and washed twice with FACS buffer and were
equalized into round 96-well cell culture plates with 2E5 cells/well. Antibody m3s193 mAb
or m3s193 BsAb was diluted 5 times, then incubated with target cells in 4 ◦C for 30 min
under a final concentration from 500 nM to 0.0064 nM. For Jurkat cells, instead of T cells
due to CD3 expression on its surface, 0.2 million cells were incubated with m3s193 BsAb
diluted from 500 nM to 0.032 nM in 4 ◦C for 30 min. After incubation, all cells were washed
and incubated with secondary antibody FITC as previously described and then detected by
CytoFLEX cytometry. Finally, median fluorescence intensity was counted for each sample
and analyzed by GraphPad Prism.

2.5. In Vitro Cytotoxicity Mediated by huPBMCs

Target cells were seeded on 96-well cell culture plates with culture medium (no phenol
RPMI 1640 (Gibco, Cat no. 11835030) + 5% FBS (Gibco, Shanghai, China, Cat no. 10100147))
overnight. Purified antibodies were added with various concentrations (10-fold dilution)
diluted by the culture medium (no phenol RPMI 1640 + 2% FBS). Fresh isolated huPBMCs
were added with a 10:1 E/T ratio. After incubation, the supernatant was collected, and
the lactate dehydrogenase activity was measured using Cytotoxic 96® Non-Radioactive
Cytotoxicity Assay Kit (Promega, Madison, WI, USA Cat no. G1780). All measurements
were in triplicate. The percentage of cytotoxicity was calculated as follows: cytotoxicity% =
(experimental lysis − spontaneous effector lysis − spontaneous target lysis)/(maximum
target lysis − spontaneous target lysis) × 100, and data were analyzed by GraphPad Prism.

2.6. T Cells Activation with CD69 and CD25 Expression

Lewis Y positive NCI-N87 cells were seeded on 96-well cell culture plates (2E4
cells/well) overnight. On the second day, cells were incubated with fresh isolated huPBMCs
(E:T = 10:1) under various concentrations of diluted antibodies and then incubated for
20 h or 90 h at 37 ◦C. After 20 h incubation, the cell mixture (target cells and huPBMCs)
was collected and plated on round 96-well cell culture plates and then analyzed by flow
cytometry using CD8-FITC, CD4-PE (Sino Biological, Beijing, China), and CD69-APC mAbs
(BD Biosciences, San Jose, CA, USA) to detect the expression of CD69 on CD8+ and CD4+ T
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cells. In another similar assay, after 90 h incubation, the cell mixture was analyzed with the
same method using CD8-FITC, CD4-PE, and CD25-APC mAbs (Sino Biological) to detect
the expression of CD25 on CD8+ and CD4+ T cells. Finally, CD69+ and CD25+ percentage
and median fluorescence intensity on CD8+ and CD4+ T cells were counted for each sample
and analyzed by GraphPad Prism.

2.7. Detection of Cytokine Release

NCI-N87 cells were seeded on 96-well cell culture plates (2E4 cells/well) overnight.
On the second day, cells were incubated with fresh isolated huPBMCs (E/T = 10:1) and
treated with various concentrations of diluted antibodies at 37 ◦C. After 20 or 25 h of
incubation, cells were centrifugalized with 1500 rpm (10 min), and the supernatant was
harvested and frozen in −80 ◦C freezer immediately. Cytokine detection was performed by
ELISA assay kit (R&D SYSTEM®, Minneapolis, MN, USA) following manual instruction.
In brief, detection antibodies of IL-2 and IFN-γ were coated on ELISA high-adsorption
plate with working concentration overnight. After incubation, plates were washed and
blocked for 1 h. Next, IL-2, IFN-γ, and thawed supernatant were diluted, respectively, with
appropriate concentrations followed by incubation for 2 h. Finally, detection antibodies
of IL-2 and IFN-γ were added with working concentration for 2 h, followed by adding
streptavidin-HRP, substrate solution, and stop solution as instructed by manual. The OD at
450 nm was measured with micro-plate reader (Infinite M200 Pro, Tecan, Shanghai, China),
and data were analyzed by GraphPad Prism.

2.8. T Cell Proliferation Assay

HuPBMCs were labeled with CellTrace CFSE dye at a final concentration of 1 µM,
and then CFSE-labeled huPBMCs were co-cultured with NCI-N87 cells with a 10:1 E/T
ratio. This mixture was then treated with 100 ng/mL m3s193 mAb or BsAb at 37 ◦C.
After incubation, the mixture was harvested daily from day 1 to day 4 with labeling of
mouse anti-human CD3 APC-labeled (Sino Biological) mAbs and then analyzed by flow
cytometry. Percentage of T cell proliferation was calculated by quantitation of the low
CFSE fluorescence intensity contributed by proliferated CD3+ T cells.

2.9. Cell–Cell Association Mediated by m3s193 BsAb

Lewis Y positive NCI-N87 cells were labeled with CellTrace CFSE (Invitrogen, Shang-
hai, China) at a final concentration of 0.5 µM. The CD3-expressing Jurkat cells were labeled
by PKH26 dye using a cell membrane labeling kit (Sigma; PKH26GL) according to the
manufacturer’s protocols. Labeled cells (1 × 106/mL) were mixed at equal ratio in the
presence or absence of mAb or BsAb (10, 100 and 1000 ng/mL) in a 4 ◦C incubator for
30 min referring to previous report [32]. Population of cell–cell association was measured
using flow cytometry and was quantified as the percentage of double-positive cells in the
upper right quadrant of FITC-A compared with PE-A, representing the CFSE+PKH26+
cell assembly.

2.10. In Vivo Activity of m3s193 BsAb with huPBMCs/Tumor Cells Co-Grafting Model

Female NOD/SCID mice (6–8 weeks, Charles River Labs) were purchased and fed
in accordance with guidelines from the Institutional Animal Care and Use Commit-
tee of the School of Pharmacy of Shanghai Jiao Tong University (SJTU). NCI-N87 cells
(5E6 cells) were admixed with freshly isolated huPBMCs at the indicated E/T ratios of
1:3. HuPBMCs/tumor cell mixture was co-grafted (injected) s.c. (subcutaneously) in
NOD/SCID mice in a total volume of 0.1 mL in RPMI medium. After co-grafting, therapy
administration i.v. (intravenously) (200 µL) was performed either day 0 at the indicated
doses and schedules twice a week or was continuously dosed from day 0 to day 6 every
day. Tumor size was measured twice a week with a vernier caliper, and tumor volume
was calculated using the approximated formula V = 0.5 × (length × width × width). Mice
were euthanized when the tumor size reached 1000 mm3. After the mice were sacrificed,
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the tumor weight was detected by the electronic analytical balance and stripped tumors
were photographed.

2.11. In Vivo Activity of m3s193 BsAb with huPBMCs Intravenous Injection Model

Female NOG mice (6–8 weeks, Charles River Labs) were injected s.c. with NCI-N87
cells (5E6 cells) and tumor volume was measured every 3 days. Mice were randomized into
two groups for PBS and m3s193 BsAb (n = 8) when the tumor volume achieved 100 mm3

and injected with huPBMCs i.v. (5E6 cells). Therapy administration started 3 days after
huPBMCs transfer, with i.v. injection of 100 µg m3s193 BsAb or 200 µL PBS (vehicle) every
3 days. Mice were sacrificed when GVHD happened. For huPBMCs reconstruction assay,
single-cell suspension derived from mice peripheral blood after huPBMCs injected for
14 days was stained with anti-huCD45 antibody (Sino Biological), and percentage of human
CD45+ cells was calculated and analyzed by GraphPad Prism.

2.12. Histologic Analysis

Tumor tissues from termination animals were fixed in 4% PFA (paraformaldehyde)
overnight and embedded in paraffin. Briefly, 4µm sections were cut using a microtome
(Leica) and mounted on glass slides. Samples were deparaffinized, and heat antigen
retrieval was performed before immune-staining for human CD3, CD4, and CD8 using
corresponding mAbs (Servicebio). The sections were counterstained with hematoxylin
(Servicebio), and slides were scanned using OLYMPUS-BX53.

3. Results
3.1. Expression and Purification of the Antibodies

Bispecific antibody (m3s193 BsAb) was designed and constructed as an IgG-[L]-scfv
structure, and two constructs for experimental controls were m3s193 mAb and M971
BsAb (Table 1). All three antibodies were expressed in HEK293F cells and purified by
MabSelect SuRe affinity chromatography. IgG-[L]-scfv BsAb had a symmetrical structure
with a normal heavy chain and a light chain with a C-terminal linker (G4S1)3 followed by
huOKT3 scfv (Figure 1a). After expression in HEK293F cells, all proteins were purified and
analyzed by SDS-PAGE to verify both quality and quantity. Two banes appeared in the
antibody m3s193 mAb under the reducing condition, representing the heavy chain (about
50 kDa) and light chain (about 25 kDa) (Figure 1b). The m3s193 BsAb showed one bane
at about 200 kDa under the non-reducing condition and one bane at about 50 kDa under
the reducing condition (Figure 1c), which was consistent with the theoretical molecular
weight of heavy and light chains of m3s193 BsAb. For the negative control M971 BsAb,
two separate banes under the reducing condition were observed by SDS-PAGE analysis
(Figure 1d), due to size differences of heavy and light chains. From these results, it was
concluded that all three proteins were well expressed in mammalian cell line HEK293F
with reasonable yield. After one-step purification, product purity could reach above 95%
for BsAb that met the requirement for in vitro and in vivo assays (Table 1, Figure S1).

Table 1. Antibodies used in this study.

Name Structure Fc Mutation Target SEC-HPLC Purity (%)

m3s193 mAb IgG1 No Lewis Y 92.63%
m3s193 BsAb IgG-[L]-scfv LALA-PG Lewis Y and CD3 98.44%
M971 BsAb IgG-[L]-scfv LALA-PG CD22 and CD3 98.79%
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3.2. Binding Activity of Purified Proteins

Previous studies revealed that Lewis Y was expressed on breast and gastric cancers [19,26].
Three breast cancer cell lines (MCF-7, T47D, MDA-MB-231) and one gastric cancer cell
line (NCI-N87) were used to detect the expression of Lewis Y and to analyze the binding
activity of purified antibodies. We found that all cancer cell lines selected expressed Lewis
Y and had bound m3s193 mAb and m3s193 BsAb in the flow cytometry assay (Figure 2a).
On the MDA-MB-231 cell line, m3s193 BsAb had a slightly higher fluorescence intensity
than the m3s193 mAb. For the negative control M971 BsAb, no binding to the NCI-N87 cell
line was observed (Figure 2a). Next, we detected the binding affinity of m3s193 mAb and
m3s193 BsAb to the target tumor cells and found that both antibodies had a similar binding
affinity curve to Lewis Y positive tumor cell lines, suggesting that BsAb maintained the
high affinity of parent mAb (Figure 2b). The result of binding to the Jurkat cell line also
revealed that m3s193 BsAb had a high binding affinity to Jurkat cells with a low EC50
value (1.035 nM) (Figure 2b), indicating that the bivalent binding model of the IgG-[L]-scfv
structure possibly maintained the high affinity of BsAb to target cells.
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3.3. T Cell Cytotoxicity Mediated by m3s193 BsAbs

We designed the bispecific antibody as an IgG-[L]-scfv structure and observed potent
T cell redirecting cytotoxicity to target tumor cells, as previously reported [7]. To MCF-7
and T47D cells, potent cytotoxicity was observed with m3s193 mAb, potentially due to their
sensitivity to ADCC activity by m3s193 mAb. M3s193 BsAb achieved similar cytotoxicity
as m3s193 mAb with a comparable EC50 value and a slightly higher potency (Table 2,
Figure 2c). To MDA-MB-231 and NCI-N87 cells, in contrast, m3s193 BsAb had much better
T cell-mediated cytotoxicity than m3s193 mAb, with a lower cytotoxicity EC50 value and a
remarkably higher cytotoxicity in cell killing percentage. These results demonstrated that
m3s193 BsAb had better in vitro activity than m3s193 mAb. In an independent cytotoxicity
comparison study between the two BsAbs, no cytotoxicity was observed with M971 BsAb
except basal noise, while m3s193 BsAb reproducibly exhibited low cell killing EC50 at
2.673 ng/mL. This suggested that T cell-mediated tumor cell killing by the IgG-[L]-scfv
was dependent on the target expression on tumor cells. M3s193 BsAb would be expected
to have less non-specific toxicity and minimum cytotoxicity to Lewis Y negative expression
tissues in the body. The slight EC50 differences (9.315 and 2.673 ng/mL) in two experiments
observed in NCI-N87 cytotoxicity mediated by m3s193 BsAb might be due to the differences
of huPBMCs donors.

Table 2. Cytotoxicity EC50 (ng/mL) mediated by the antibodies.

Proteins
Cells

MCF-7 T47D MDA-MB-231 NCI-N87 NCI-N87

m3s193 mAb 6.689 62.52 2.296E + 15 162.5
m3s193 BsAb 162.5 35.89 23.98 9.315 2.673
M971 BsAb ND*

ND*: No cytotoxicity was observed.

3.4. T Cell Activation Mediated by m3s193 BsAb

T cell-engaging BsAbs could activate T cells with the expression of CD69 and CD25
as previously reported [41]. By flow cytometry assay, CD69 expression on T cells was
activated by m3s193 BsAb but not by m3s193 mAb. The percentage of CD8+CD69+ in CD8+

and CD4+CD69+ in CD4+ achieved nearly 100% (Figure 3a). MFI data further proved the
potent activation of T cells by m3s193 BsAb with high CD69 expression at the concentration
from 100 to 10,000 ng/mL, while no CD69 expression on CD8+ and CD4+ T cells was
detected for the control mAb even at a high concentration. This observation was further
confirmed by the negative control M971 BsAb (Figure 3b). This suggested that m3s193 BsAb
but not m3s193 mAb could activate T cells, and the activation was dependent on antigen
expression on the tumor cells. By the detection of CD25, a later activation marker on T
cells, we found that a similar result was observed as CD69 expression on CD8+ and CD4+ T
cells mediated by m3s193 BsAb and M971 BsAb (Figure 3c), demonstrating the continuous
activation of CD8+ and CD4+ T cells by m3s193 BsAb from the early to later phase but not
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the control mAb and M971 BsAb. To eliminate the impact from huPBMCs’ auto-activation,
a quantity of CD69 positive T cells in CD8+ and CD4+ cells was detected with the mixture
of huPBMCs and m3s193 BsAb. The result showed that only less than 0.4% CD69-positive
T cells in CD8+ and CD4+ T cells was detected even at a concentration of 1000 ng/mL of
m3s193 BsAb (Figure S2a,b). Both CD8+ and CD4+ T cells play critical roles in preventing
the body from pathogens in the immune system. Thus, m3s193 BsAb rather than m3s193
mAb and M971 BsAb could activate the T cells to lead potent in vitro cytotoxicity.
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3.5. Cytokine Release, Proliferation, and Recruiting Mediated by m3s193 BsAb

Cancer immunotherapy by cytokines has been confirmed by a number of reports [42,43].
To evaluate if cytokines were released upon T cell activation by m3s193 BsAb, IL-2 and
IFN-γ detection assays were performed after T cell activation. Compared with control
mAb and M971 BsAb, m3s193 BsAb could induce IL-2 and IFN-γ release but not controls
(Figure 4a,b). This result also proved that m3s193 BsAb had a strong anti-tumor activity by
the release of IL-2 and IFN-γ from huPBMCs to proliferate T cells and kill tumor cells. In
contrast, there was no non-specific cytokine release and cell killing to Lewis Y negative
expression cells (Figures 2c and 4b).
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Figure 4. Cytokines release, proliferation, and recruiting mediated by m3s193 BsAb. (a) Cytokines
release after 20 h incubation. (b) Cytokines release after 25 h incubation. (c) Proliferation of CD3+ T
cells with 100 ng/mL of m3s193 BsAb or mAb. (d) Cell–cell association mediated by m3s193 BsAb or
mAb. Data are shown as means ± SD with three duplicates.

We also found that m3s193 BsAb could induce CD3+ T cell proliferation from 10%
to 40% after 2 to 4 days of incubation, while the control mAb only reached less than 5%
proliferation percentage even at the fourth day (Figure 4c). This might be due to the
proliferation signaling to T cells mediated by IL-2 which were released by T cell-engaging
BsAb activation [44].

T cell-engaging BsAb could recruit T cells into the tumor micro-environment to form
the immune synapse and then activate T cells to release cytokines, granzyme, and perforin
to kill tumor cells [45]. Thus, we used Jurkat cells instead of T cells due to CD3 expression
on its surface to evaluate the recruiting ability of m3s193 BsAb. We found that m3s193 BsAb
could mediate strong cell–cell association from the concentration of 10 to 1000 ng/mL,
while m3s193 mAb appeared similar to the group of “No addition” (Figure 4d). This result
indicated that m3s193 BsAb rather than m3s193 mAb could recruit T cells to tumor cells in
the in vitro activity assessment, which provided the potential of T cell infiltration into the
tumor micro-environment in vivo.
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3.6. In Vivo Anti-Tumor Activity
3.6.1. Tumor Inhibitory Activity of m3s193 BsAb

To evaluate anti-tumor activity in vivo, the gastric cancer cell line NCI-N87 was
inoculated in the huPBMCs/tumor co-grafting model with two drug delivery procedures
in the assessment of m3s193 BsAb. From this initial study, we found that m3s193 BsAb
had excellent anti-tumor activity compared with control group PBS in both drug delivery
procedures (Figure 5a,e). In the first, twice a week delivery, the body weight of mice had
no fluctuation between mice in both the testing group and control group (Figure 5b). In
the second, continuous delivery, body weight fluctuations both in PBS and m3s193 BsAb
groups were observed (Figure 5f). The differences in the changes of weight in mice due
to continuous drug delivery suggested interval drug delivery for the following in vivo
activity evaluation. Tumor size and weight in the m3s193 BsAb group also proved potent
anti-tumor activity in both delivery procedures (Figure 5c,d,g,h). All these data suggested
that m3s193 BsAb had strong anti-tumor activity for eliminating tumors with no obvious
toxicity in mice.
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Figure 5. In vivo anti-tumor activity of m3s193 BsAb. Mice were treated i.v. with PBS (n = 3) and
100 µg dosage of m3s193 BsAb (n = 5). (a–d) Mice were treated on day 0, twice a week, 5 times.
(e–h) Mice were treated on day 0–6, 7 times. (a,e) Tumor growth curve plotted according to tumor
volume and time. Black arrows indicate the time of therapy. (b,f) Mice body weight variation with
time course. (c,g) The digital image of stripped tumors at study termination. (d,h) Tumor weight in
two groups. Data are presented as mean ± SD.
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3.6.2. Remarkable Tumor Inhibitory Activity of m3s193 BsAb

In vivo anti-tumor activity was further evaluated with various dosages of m3s193
BsAb compared with m3s193 mAb. BsAb m3s193 could significantly inhibit tumor growth
with dose dependency (Figure 6a), while m3s193 mAb did not inhibit tumor growth at
20 µg dosage close to the “PBS group” (p > 0.05) (Figure 6b). Mean tumor growth curve and
tumor size image also revealed potent anti-tumor activity of m3s193 BsAb under various
dosages with significant p value (Figure 6b,c). There were no body weight differences
among five groups, suggesting that m3s193 BsAb had a minimum toxicity (Figure 6d).
On the other hand, tumor weight reducing in the BsAb group showed better inhibitory
tumor activity of m3s193 BsAb than the parent mAb (Figure 6e). These data illustrated that
systematic administration of m3s193 BsAb could inhibit the Lewis Y-expressing NCI-N87
xenograft tumor growth compared with the parent mAb. By immune-histochemical assay,
there was no existence of CD8+ and CD4+ T cells in the tumor micro-environment in the
PBS and mAb (20 µg) groups, but there was existence in the BsAb (20 µg) group (Figure 6f),
which suggested that T cells, particularly for CD8+ and CD4+ T cells, could survive for a
long time when activated by m3s193 BsAb. This could be one of the reasons for inhibiting
tumor growth in the m3s193 BsAb group.
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3.6.3. M3s193 BsAb Had Potent Anti-Tumor Activity in Therapeutic Study

In the tumor/huPBMCs co-grafting animal model, m3s193 BsAb could inhibit tumor
growth and had much stronger anti-tumor activity than m3s193 mAb. In this model,
huPBMCs were mixed with tumor cells and were forcedly infiltrated by human factor.
Under normal physiological conditions, in the tumor micro-environment where some
tumors, especially non-immunoreactive tumors, were, T cells only had a very low level or
almost did not exist [46,47]. To mimic this condition, we performed the therapeutic study
by only subcutaneously implanting tumor cells into mice before huPBMCs and therapy
administration were injected. First, we detected the reconstruction of huPBMCs in NOG
mice and found that all mice (n = 16) were successfully reconstructed with about 20–60% of
huCD45 cells in mice peripheral blood after fourteen days of huPBMCs transfer (Figure 7a),
which ensured that all mice could be used for the effectiveness evaluation of m3s193 BsAb.
From the tumor growth curve, m3s193 BsAb could eliminate tumors even though the
tumor volume reached about 600 mm3 (Figure 7b,c). All tumors in the m3s193 BsAb group
were much smaller when tumors were stripped after study termination (Figure 7d). The
mean weight of stripped tumors in the m3s193 BsAb group further confirmed this result
(Figure 7e). These data suggested that m3s193 BsAb could eliminate tumors in vivo by
huPBMCs reconstruction in mice. Immune-histochemical results revealed that CD3+ T cells
existed in the PBS group and were mainly around tumor stroma (red oval circle) (Figure 7f).
In the m3s193 BsAb group, there was only a small residual tumor tissue (yellow oval circle)
surrounded by T cells, which illustrated that m3s193 BsAb could mediate the infiltration
of T cells derived from peripheral blood into the tumor micro-environment. This result
could explain the reason for tumor elimination in the m3s193 BaAb group by mediating
T cell infiltration.
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4. Discussion

Bispecific antibody (BsAb) plays an important role in immunotherapy for cancer
and other diseases. In this report, we constructed a novel T cell-engaging BsAb targeting
Lewis Y and CD3 antigen to evaluate anti-tumor activity for the first time. The BsAb
(m3s193 BsAb) had similar binding affinity to Lewis Y positive cancer cell lines compared
to its parent mAb, due to the IgG-[L]-scfv structure keeping two Fab binding domains of
normal antibody. Experimental results revealed that m3s193 BsAb could activate CD69 and
CD25 expression on T cells and induced cytokine release to mediate cytotoxicity in vitro.
Although Lewis Y was expressed on granulocytes in peripheral blood, m3s193 BsAb could
not activate CD8+ and CD4+ T cells with CD69 expression when only co-incubated with
huPBMCs in the absence of target cells (Figure S2 a,b). These data further indicated the
specificity of IgG-[L]-scfv-derived T cell-engaging BsAbs with two binding scfvs of anti-
CD3. Besides activation, m3s193 BsAb, rather than the control mAb, could mediate cell–cell
association, which validated the basic function of T cell-engaging BsAbs, as reported
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previously [48]. By shortening distance between T cells and tumor cells, T cell-engaging
BsAbs could mediate the formation of an immune synapse to activate T cells [49]. Thus, a
closer distance is mandatory for a proper induction of T cell activation [50].

In both drug delivery procedures in the animal in vivo study, m3s193 BsAb could
significantly inhibit tumor growth with no body weight fluctuation in a twice-a-week
delivery procedure, suggesting that interval therapy was suitable in the following in vivo
experiment (Figure 5). In following the tumor/huPBMCs co-grafting model, m3s193 BsAb
performed a similar tumor inhibitory activity with dose dependency, while the control
mAb did not show activity at the high dosage, which was due to the existence of CD8+ and
CD4+ T cells in the tumor micro-environment mediated by BsAb (Figure 6). M3s193 BsAb
also eliminated large size tumors (600 mm3) in mice by inducing CD3+ T cell infiltration,
as previously reported in a similar solid tumor treatment by carcinoembryoin antigen
T cell-engaging BsAb [51,52].

Targeting tumor-association glycan would be a potential therapy strategy due to
its fundamental and crucial physiological functions in the genesis and development of
cancers [53]. In addition to Lewis Y, several therapies targeting glycan neo-antigens have
been in clinical trials, such as monosialodihexosylganglioside (GM3 containing Neu5Gc),
gangliosides (GD3 and GD2), and Tn glycoform of MUC1 [54–57]. Thus, this work not only
provided a new therapy targeting Lewis Y to make up for the deficiency of mAb therapy
but also illustrated that targeting tumor glycan-antigen would contribute to a new era of
cancer-targeted therapy where BsAbs may play a potentially crucial role.

5. Conclusions

Our findings provide more meaningful evidence for the treatment of gastric cancer by
targeting a tumor-associated glycan-antigen. All these data support the idea that the Lewis
Y target could be developed into a preclinical anti-tumor study by redirecting T cells to
activate the immune response.
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