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Summary 
~" and r/chains of the T cell antigen receptor (TCR) complex and the y chain of Fc receptors 
(FcRy) constitute a family of proteins important for the expression of, and signal transduction 
through, these receptors in hematopoietic cells. In ~'-deficient mice, TCR expression was reduced 
in most T cells. By contrast, CD8oto~ + TCR-~//5 + intestinal intraepithelial lymphocytes in these 
mice expressed a normal level of TCR. Biochemical analysis of the TCR complex in these cells 
from ~'-deficient as well as normal mice revealed the predominant usage of FcRy. Furthermore, 
y / 5  + T cells in epithelia of the skin and female reproductive organs from g'-deficient mice also 
showed relatively high TCR expression, indicating the usage of FcRq/. These observations 
demonstrate the preferential usage of FcR3' by 3'/c5 § T cells localized in epithelia of normal mice. 

T cells recognize antigen bound to the products of MHC 
on APC through TCR, and are activated to exert var- 

ious effector functions (1, 2). The TCR complex is a multi- 
meric complex composed of three groups of proteins; the 
TCR-c~/fl (or -y/5) dimer, the CD3 complex, and the ~" 
family of disulfide-linked dimers (3). TCR dimers are respon- 
sible for antigen binding, whereas the other molecules are 
thought to be important for transmembrane signaling. 

The ~" family has three known members, g', ~/, and FcR~/ 
(4-6). In thymocytes and peripheral T cells, most of TCR 
complexes contain ~-homodimers, whereas 5-10% of TCRs 
associate with the g'-7/heterodimer. On the other hand, the 
TCR complex in a minor population of T cells has ~" and 
~/as a form of heterodimers with FcRy (4, 5). Moreover, 
it is reported that FcR3' was exclusively associated with TCR 
in in vitro cultured large granular lymphocytes (6). 

A considerable body of evidence shows the importance of 
~'both in assembly and surface expression of the TCR com- 
plex and in receptor-mediated signal transduction (7-13). Cy- 
toplasmic tails of ~" family as well as CD3 molecules have 
consensus motifs important for intracellular signal transduc- 
tion (14, 15). Recent studies indicate that the TCR complex 
has two signal transduction modules, the ~" family dimer and 
the CD3 complex, and that the two modules could trans- 
duce distinct signals into the cells (15, 16). In addition, it 
has been reported that the TCR complex containing FcR3' 
has a different signaling capacity from those containing ~" 

(17-19). Consequently, differential usage of ~" family mole- 
cules by distinct subsets of T cells may reflect difference in 
lineage and/or function of these cells. 

Recently, we and others demonstrated that ~" is critical for 
normal T cell development and function, using mice deficient 
in the expression of ~" (20, 21). We also showed that ~ is 
not so efficient in assembly and surface expression of TCR 
complexes as ~" (20). Biochemical analysis of T hybridoma 
ceils revealed that this was caused by retention in the en- 
doplasmic reticulum of q-containing TCR complexes (22). 
Taking advantage of the mice lacking ~" (sr'T/~'T mice) (20), 
we evaluated FcRy usage by various subsets of T cells. 

Materials and Methods 
Mice. C57BL/6 and KSN nu/nu mice (23) were purchased from 

Japan SLC, Inc. (Hamamatsu, Japan). ~q" mice (20) were bred in 
our facility. 

Cell Preparation. Single cell suspensions of thymocytes and 
splenocytes were prepared in RPMI 1640 supplemented with 10% 
heat-inactivated FCS, 2 mM glutamine, 50/xM 2-ME, and 100 
#g/mI kanamycin. Splenocytes were depleted of erythrocytes by 
lysis. For enrichment of CD4-8- double-negative (DN) thymo- 
cytes, thymocytes were incubated with culture supernatant of anti- 
CD4 mAb (MT4), plated on plastic dishes precoated with rabbit 
anti-mouse immunoglobulin (Cappel Laboratories, Cochranville, 
PA), and nonadherent cells were collected as DN thymo- 
cytes-enriched population. Intestinal intraepithelial lymphocytes 
(i-IEL), hepatic lymphocytes, lymphocytes in mucosal epithelia of 
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Figure 1. Expression ofTCR-cdB and-'y/8 
dimers on thymocytes, splenocytes, and i-IEL 
from ffr/~'T mice. (.4) CD3e and TCR/3 or 
TCR8 expression on the surface of thymocytes, 
splenocytes, and i-IEL were examined as de- 
scribed in Materials and Methods. (B) CD4, 
CD8, and TCR(5 expression on the surface of 
i-IEL were analyzed. CD4/CDfc~ or CDfc~/ 
CDf/~ were used to divide i-IEL into four sub- 
populations (top). The histograms shown below 
represent the fluorescence intensity for TCR-(5 
detected by the third fluorescence, within each 
quadrant. 

the female reproductive tract (r-IEL), and Thy-1 + dendritic 
epidermal T cells (DETC) were isolated as previously described 
(24-27). 

Flow Cytometric Analysis. Cells from the thymus, spleen, pe- 
ripheral blood, liver, i-IEL, DETC, and r-IEL were stained with 
mAbs recognizing CD3e, TCR-c~//~, TCR-y/(5, CD4, CD8c~, 
CD8/~, and IL-2R/3, and the surface expression of these molecules 
was analyzed on a FACScan | flow cytometer (Becton Dickinson 
& Co., Mountain View, CA). The following mAbs were used: PE- 
conjugated anti-CD4 (GK1.5) and FITC-labeled anti-CD8c~ (53- 
6.7), purchased from Becton Dickinson & Co., FITC-conjugated 
or biotinylated anti-CD3e (145-2Cll); biotinylated anti-TCR-/~ 
(H57-597), biotinylated anti-TCR-y/~i (GL3); and PE-labeled anti- 
CD45R/B220 (RA3-6B2) from PharMingen (San Diego, CA); bi- 
otinylated anti-IL-2R~ (TM-/31) was kindly provided by Dr. M. 
Miyasaka (Tokyo Metropolitan Institute of Medical Science, Tokyo, 
Japan). Biotinylated mAbs were developed with streptavidin-PE 
(Becton Dickinson & Co.) or streptavidin-Tri-Color | (Caltag Labora- 
tories, San Francisco, CA). Dead cells were excluded by staining 
with propidium iodide. Cells in the lymphocyte gate defined by 
light scatter were collected. 

Cell Surface Biotinylation, Immunoprecipitation, and Two-dimensional 
SDS-PAGE Analysis. Cell surface biotinylation was performed as 

previously described (28). Cells were then solubilized in lysis buffer 
(1% digitonin, 50 mM Tris-HC1, pH 7.6,300 mM NaC1, 10/~g/ml 
aprotinin, 10/xg/ml leupeptin, 1 mM PMSF, 10 mM iodoaceta- 
mide) at a concentration of 10 s cells/ml. Immunoprecipitation was 
performed with anti-TCR-~ mAb (3A10), anti-TCR-/~ mAb (H57- 
597), anti-~" mAb (H146.698-A), and anti-FcR'y antiserum, which 
were kindly provided by Drs. S. Tonegawa (Massachusetts Insti- 
tute of Technology, Boston, MA), R. Kubo (Cytel Corporation, 
San Diego, CA), and C. Ra (Juntendo University, Tokyo, Japan), 
respectively. Immunoprecipitates were resolved by two-dimensional 
nonreducing-reducing SDS-PAGE (14% for the first dimension and 
16% for the second dimension), transferred onto polyvinylidene 
fluoride membrane (Immobirom-P~; Millipore Corp., Bedford, 
MA). Membranes were soaked in skim-milk in PBS, and biotinylated 
proteins were detected using streptavidin-peroxidase (VECTA- 
STAIN | Elite ABC kit; Vector Laboratories Inc., Burlingame, CA) 
and ECL | system (Amersham International, Buckinghamshire, 
England). 

Results and Discussion 

The expression levels of T C R  on thymocytes and periph- 
eral T cells were significantly reduced in s~T/sr'I ' mice (20). 
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Figure 2. Biochemical analysis of the surface TCR composition. 
(A) Total and (B) DN-enriched thymocytes from wild type mice, 
i-IEL from (C and D) C57BL/6 (+/+) mice, (E) KSN nu/nu mice, 
and (F) ~'T/~'T mice were surface biotinylated, lysed, and the TCR. 
complex was immunoprecipitated with (A and C) anti-TCR-/~ mAB 
(H57-597), or B, D, E, and F) anti-TCR-8 mAb (3A10). Im- 
munoprecipitates were separated by two-dimensional nonreducing- 
reducing SDS-PAGE, transferred onto PVDF membrane, and bi- 
otinylated proteins were detected as described in Materials and 
Methods. Positions of ~'-~" (t), ]'-FcR~ ( i ), and FcRT-FcR7 (A) 
dlmers are indicated. Note that heterodimers of 1,12 (35. and Kuwabara, 
I., and Saito, T., manuscript in preparation) with ~" and FcR 7 are 
observed in some panels. In three experiments (including E), den- 
sitometric analysis showed that the mean of the FcR7 of ~'-FcR7 
dimers/FcR3, of FcRT-FcR. Y dimers is 1:11.9. Considering that the 
molar ratio of ~" and FcR7 in ~'-FcR7 dimers is 1, the expression 
level of FcR7 molecules is 13 times more than that of ~'. 

This was observed in both oe/3  + and 3,/8 + thymocytes as 
well as splenic T cells (Fig. 1 A). These data indicate that 
those cells predominantly express ~" as a component of the 
TCR complex, and extended to normal T cells the previous 
observation on in vitro cell lines that the expression of ~" is 
critical for a normal level of surface TCR expression (7-10). 

When we analyzed i-IEL, however, a striking difference 
was observed (Fig. 1 A) (20). Similar to thymocytes and pe- 
ripheral T cells, surface TCR expression of oe/3 + i-IEL was 
impaired by the ~'T mutation. By contrast, surface TCR. level 
of 9//8 + i-IEL from ~'T/~'T mice was comparable with that 
of 9//8 + i-IEL from wild type mice. In 9//8 + i-IEL, two dis- 
tinct subpopulations are known; the major population of 
CD8~oe-bearing cells and the minor DN cells. The former 
is thought to differentiate extrathymicaUy, whereas the latter 
is believed to derive from the thymus (29). Whether TCR 
expression of both 7/8  + i-IEL populations was resistant to 
the ~'T mutation was analyzed by three-color flow cytom- 
etry. As shown in Fig. 1 B, the expression level of surface 
TCR in CD8otot + 9/18 + i-IEL from ~'T/~'T mice remained 
normal, but that in DN 9//8 + i-IEL was reduced. These 
observations suggest that, in CD8otc~ + 3, /8  § i-IEL, ~" family 
molecules other than ~" were predominantly associated 
with TCR.. 

To test this possibility, various preparations of T cells were 
analyzed for their composition of TCR complexes by a sen- 
sitive surface biotinylation (28) and two-dimensional non- 
reducing-reducing SDS-PAGE. TCR on o l / 3  + and 7 1 8  + 
thymocytes as well as c~/B + i-IEL from wild type mice was 

predominantly associated with ~'-~" homodimers (Fig. 2, A-C). 
By contrast, analysis of TCR complexes on 7 /8  + i-IEL re- 
vealed that, on these cells, both ~" and FcR3, contribute for 
TCR constitution (Fig. 2 D). Identification of ~" and FcR9/ 
was confirmed by direct precipitation of these molecules with 
anti-~" mAb (H146.968A) and anti-FcR3" antiserum, respec- 
tively (data not shown). Existence of two subpopulations in 
7/8  + i-IEL from normal mice as mentioned above may 
complicate the analysis. To avoid this complexity, we utilized 
3,/8 + i-IEL from nude mice, which consist exclusively of 
CD8olo~ + cells (Ohno, H., unpublished observation). The 
result was more striking; these cells predominantly utilize 
FcR7 as TCR subunits, and ~" homodimers were hardly seen 
(Fig. 2 E). Assuming that the labeling efficiency of FcR3" 
is comparable between FcR9/homodimers and FcRT-~" het- 
erodimers, these cells express 13 times more FcR7 molecules 
than ~- in TCR (see legend to Fig. 2). It is likely that DN 
7 1 8  + i-IEL, like 718 + thymocytes, predominantly utilize ~" 
based on the following reasons: the amount of precipitated 
~" from 7/8 + i-IEL from normal mice was much higher than 
that from nude mice; and TCI~ expression in DN 3,/8 + 
i-IEL from ~'T/~'T mice was reduced. We further examined 
whether the predominance of FcR3, in CD8oeot + 3, /8  + 
i-IEL is also observed in ~'T/~'T mice. Fig. 2 F shows that 
this was the case. Collectively, these data indicate that the 
normal level of TCR expression in CD8oe~ + 3, /8  + i-IEL 
from ~'T/~'T mice correlates the predominant usage of FcR3, 
by TCR in this subset. 

The preferential usage of FcR3, as a TCR component in 
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Figure 3. Expression of TCR on hepatic lymphocytes, r-IEL, and DETC 
from ~T/~T mice. (A) CD3e and IL-2R3 expression on hepatic lympho- 
cytes was analyzed as described in Materials and Methods. CD3i.qL-2R3 hi 
cells, which are thought to develop extrathymically in the liver (30), are 
indicated with squares. (B) CD3E and TCR(5 expression on peripheral blood 
cells, r-IEL, and DETC were examined as described in Materials and 
Methods. 

CD8otcr + TCR 3,/(5 + i-IEL propelled us to analyze other 
T cell subsets for their usage of FcR3,. For this purpose, we 
examined the expression levels of TCR in T cells from ~'T/s~'T 
mice and compared them with those in T cells from wild 
type mice. Since r/is far less efficient in assembly and surface 
expression of TCR compared with ~" (20, 22), it is reason- 
able to assume that T cells whose TCR expression is resis- 
tant to the ~'T mutation utilize FcR3' as a component of the 
TCR complex. Similar to thymocytes and peripheral T cells, 
TCR on CD3inqL-2R3 hi hepatic lymphocytes (30) were re- 
duced in ~'T/~'T mice (Fig. 3 A). By contrast, surface TCR 
expression of r-IEL and DETC from ~'T/~'T mice remained 
higher than that of peripheral T cells, indicating the predom- 
inant usage of FcR7 in these cells (Fig. 3 B). 

The present study demonstrates that in mice, certain subsets 
of T cells preferentially utilize FcR3,, of ~" family molecules, 
as a component of the TCR complex. These include 
CD8oec~ + 3,/8 + i-IEL, r-IEL, and DETC. It is of note that 
all these T cells express the TCR-y /5  dimer and are local- 

ized in epithelia. In addition, these cells express a higher level 
of TCR compared with peripheral T cells. These three subsets 
of y/8+ T cells are thought to be phylogenically old and 
to play a part in the surveillance of body surfaces that are 
exposed to the environment (26, 31, 32). In this respect, it 
is of particular interest that these T cells commonly utilize 
FcRy as a component of their TCR complexes. FcR'y has 
one signaling motif in the cytoplasmic portion, whereas ~" 
has three motifs, which are supposed to be generated by in- 
tramolecular duplication. Furthermore, FcR3, is also expressed 
in NK cells, which are proposed to be the ancestor of T cells 
(33). Taken together, FcR3~ may be a prototype of ~" family 
molecules. 

Differential usage of ~" and FcR'y by distinct T cell subsets 
likely represents differences in lineage and/or function of these 
cells. Recently, evidence supporting the idea that TCR with 
FcRy is functionally distinct from TCR with ~" is increasing. 
First, in vitro kinase assay on immunoprecipitates of TCR 
complexes containing FcR3~ displayed a distinct phosphory- 
lation pattern from that of TCR complexes containing ~" in 
T hybridoma cells (17). Second, the cytoplasmic tail of ~'but 
not FcR 3, can transduce signals mediated through Thy-1 mol- 
ecules (18). Third, ~'is replaced by FcR3, in T cells from tumor- 
bearing mice as well as cancer patients, and the change is 
accompanied with immune incompetence including an im- 
paired antitumor response (19). Concerning the functional 
difference between distinct T cell subsets, an interesting re- 
sult was reported in mucosal immunity (34); y/8+ i-IEL 
from mice orally immunized with antigen abrogates toler- 
ance induced in recipient mice by oral administration of the 
same antigen when transferred, while ot/3 + i-IEL provides 
helper function for antibody production in vitro. These func- 
tional differences may reflect differential usage of ~" family 
molecules by "y/8+ and ot/fl + i-IEL. Further study should 
shed light on the physiological role o f T  cell subsets bearing 
TCR with different ~" family molecules. 
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