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Abstract: There has been a lot of interest in sufficient dimension reduction (SDR) methodologies, as
well as nonlinear extensions in the statistics literature. The SDR methodology has previously been
motivated by several considerations: (a) finding data-driven subspaces that capture the essential
facets of regression relationships; (b) analyzing data in a ‘model-free’ manner. In this article, we
develop an approach to interpreting SDR techniques using information theory. Such a framework
leads to a more assumption-lean understanding of what SDR methods do and also allows for some
connections to results in the information theory literature.

Keywords: central subspace; information bottleneck; single-index model

1. Introduction

In statistical modeling, a key challenge is to determine appropriate transformations
of the data that can reduce its dimension while at the same time capturing the essential
information in the regression relationship between a set of covariates and a response
variable. To this end, there has been a field of statistics, termed sufficient dimension
reduction (SDR), that has sought to develop a methodology with this goal in mind. Broadly
speaking, sufficient dimension reduction represents a class of ‘model-free’ methodologies
that seek to find directions in the data that can capture the essential information in the
regression relationship previously mentioned. An excellent recent monograph on the topic
can be found in [1].

Historically, the basis for sufficient dimension reduction methods was the observa-
tion by authors, such as Brillinger [2] and Li and Duan [3], that regression parameters
estimated by ordinary least squares were consistent, up to a constant, for their population
counterparts in a generalized single-index model. This result required an assumption
on the covariates being elliptically symmetric, which has been reframed into the current
sufficient dimension reduction literature as the so-called linearity assumption. More recent
formulations for sufficient dimension reduction have postulated the existence of a central
subspace; subsequently, the goal of sufficient dimension reduction methods is to estimate
the basis vectors of the central subspace. There now exists a wide variety of techniques
available for estimation in sufficient dimension reduction; we will provide a review of such
methods in Section 2.1.

In this article, we propose a new interpretation for sufficient dimension reduction
based on conditional independence assumptions. Using graphical models, we are able
to connect sufficient dimension reduction methods to information bottleneck theory [4].
The information bottleneck methodology was pioneered by the late Naftali Tishby and
seeks to develop a ‘short code for X that preserves the maximum information about Y’ [4].
Information bottleneck typically formulates an optimization problem that seeks to find
a compressed representation that minimizes information loss while imposing a penalty
related to the expected distortion of the compression. The compression is the ‘bottleneck’ in
the term ‘information bottleneck’. The optimization is solved using calculus of variations
and leads to a set of self-consistent equations for finding optimal codes that are related to
proposals by Blahut [5] and Arimoto [6]. The information bottleneck approach has been
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applied to a variety of problems in machine learning, such as document clustering [7,8],
multivariate density estimation [9] and deep learning [10,11].

The interpretation developed in this paper allows us to demonstrate the following:

(a). We can view sufficient dimension reduction as a means of preserving information that
is relevant to a response variable. It can be interpreted as performing the information
bottleneck in two directions.

(b). Conversely, we will see that the information bottleneck is performing sufficient di-
mension reduction in a certain sense.

(c). By moving to mutual information, we can relax some of the distributional assumptions
needed for sufficient dimension reduction in a manner different from that in [12–16].
This direction is a departure from the viewpoint that SDR serves as a means to estimate
a target parameter, typically the span of basis vectors of the central subspace.

(d). In the case of Gaussian variables, we can develop a method for identifying ‘phase
transitions’ in the structural dimension of central subspaces by expanding the work
of [17] to handle sufficient dimension reduction procedures.

While many of the information-theoretic results are well-known to the information
theory community, their embedding and merging with the literature on sufficient dimension
reduction will be novel to statisticians.

The closest statistical work in nature to ours is that of Wang et al. [18]. They leverage
the Hellinger integral of order two [19], which is related to the Kullback–Leibler divergence,
an important quantity in information theory. Wang et al. [18] define subspace-based
information measures using the Hellinger integral and demonstrate that a central subspace
preserves information on this scale. For its estimation, they use a nonparametric regression
approach that bears a resemblance to the minimum average variance estimation approach
of Xia et al. [12]. The idea of using the Kullback–Leibler divergence for the optimization and
estimation of the central subspace and other measures of association was used by Yin and
co-authors in a series of papers [20–23]. We will also note work by Cook and Ni [24], who
use a minimum discrepancy approach for finding the central subspace, and the work of Yao
et al. [25], who developed a sufficient reduction procedure using the Fisher information
metric, which can also be shown to be connected to Kullback–Leibler divergence. Finally, a
device we use in the paper is graphical models, and we note recent work by [26].

The outline of this paper is as follows. We review the literature on sufficient dimension
reduction, as well as pointing out some limitations, in Section 2. Section 3 seeks to develop
connections between sufficient dimension reduction and information theory using graphical
models. We focus on the Gaussian information bottleneck [17] and its relationship to SDR
in Section 4. We illustrate the methodology with application to a dataset in Section 5.
Section 6 concludes with some discussion.

2. Background and Preliminaries
2.1. Data Structures and Review of Dimension Reduction Methods

Much of the material presented here is expounded upon in the monograph by Li [1].
Let the data be represented as (Yi, Zi), i = 1, . . . , n, a random sample from the joint
distribution (Y, Z), where Y denotes the response of interest and Z is a p-dimensional
vector of covariates. Suppose we formulate the following regression model for Y given Z:

E(Y | Z) = g(β′1Z, β′2Z, . . . , β′kZ, u), (1)

where β j (j = 1, . . . , k) are p-dimensional vectors of unknown regression coefficients, u is
an error term, and g is an unspecified monotonic link function. Because of the presence of
the parametric components involving β j, as well as the nonparametric specification of the
link function, model (1) is semiparametric. Note that when k = 1, model (1) reduces to a
single-index model [27]. In addition, model (1) can accommodate non-homoskedasticity in
the error term if the variance depends on β′jZ.
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The starting point of dimension reduction methods is the conditional independence
of Y and Z given E(Y | Z). We define two random variables, A and B, to be conditionally
independent given C if

P(A|B, C) = P(A|C).

We will use the notation A ⊥⊥ B|C to represent conditional independence. An implication
of model (1) being true is that there exists a p× k matrix B, where

Y ⊥⊥ Z|B′Z. (2)

Another way of stating (2) is that the projection B′Z provides a sufficient data reduction and
contains the essential information about the relationship between Z and Y. More generally,
we can define a projection operator PB to be the symmetric and idempotent operator onto
the subspace spanned by the columns of B. Then, (2) can be re-expressed as

Y ⊥⊥ Z | PBZ. (3)

If (3) holds, then it also holds for any subspace of B̃ such that the span of B is the same as
the span of C̃. Let S(B) be the subspace generated by the columns of B. Let SY|Z denote
the intersection of all possible subspaces; if SY|Z also satisfies (3), then we will refer to
SY|Z as the central subspace [28]. We will assume throughout that the central subspace
exists [28–30]. In the classical presentation for sufficient dimension reduction methodology,
the parameter has been defined to be the span of SY|Z. In other words, if v1, . . . , vK denote
the basis vectors for SY|Z, then

SY|Z ≡ span(v1, . . . , vK)

is the target of sufficient dimension reduction procedures. Thus, there is an estimand that
is often targeted by sufficient dimension reduction procedures.

We assume, without a loss of generality, that Z has a mean zero vector and covariance
matrix equal to the identity matrix. One key assumption necessary for the implementation
of one class of sufficient dimension reduction procedures is that the distribution of Z,
conditional on PBZ, satisfies a conditional linearity in the mean, i.e.,

E(Z | PBZ) = PBZ. (4)

Assumption (4) pertains to the marginal distribution of Z and means that all the information
about Z is contained in its projection onto the subspace spanned by B. One class of
distributions that satisfies the linearity condition is the family of elliptically symmetric
distributions. This includes distributions, such as the multivariate normal distributions
and scale mixtures of multivariate normal distributions.

As mentioned in the Introduction, there are many algorithms available for estimating
the basis vectors of the central subspace. We describe the implementation of sliced inverse
regression proposed by Li [28].

(a). ‘Slice’ the response variable Y into J slices, denoted as Y1, . . . ,YJ ;
(b). Standardize the predictor observations as

Z̃i = Σ̂−1/2(Zi − µ̂), (i = 1, . . . , n),

where µ̂ and Σ̂ are the sample mean and covariance matrices of Z1, . . . , Zn;
(c). Calculate sample mean estimates within slices: Z̄j = nj

−1 ∑n
i=1 I(Yi ∈ Yj)Z̃i, where

nj = ∑n
i=1 I(Yi ∈ Yj), j = 1, . . . , J;

(d). Estimate the population covariance matrix of Z given Y by

Θ̂ =
J

∑
j=1

nj

n
Z̄jZ̄′j;
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(e). Compute the eigenvalues of Θ̂. These are the estimates of the basis vectors for the
central subspace.

This algorithm is termed ‘inverse regression’ because effectively, information on the
‘backwards regression’ E(Z | Y) is being estimated here rather than the ‘forward regression’
E(Y | Z). Li [28] argues that this approach circumvents the usual issue of the curse of
dimensionality. Other advantages of the sliced inverse regression algorithm are that it
avoids multivariate nonparametric smoothing and is quite easy to fit.

The validity of the sliced inverse regression algorithm for estimating the central
subspace relies on the linearity assumption. There has been much work on developing
alternative estimation procedures that seek to relax the linearity assumption. For example,
Xia et al. [12] propose the minimum average variance estimation procedure, which relies on
a combination of nonparametric smoothing with weighted least squares. Since it involves
nonparametric regression, its convergence depends on an appropriate rate of convergence
for the bandwidth in conjunction with the sample size converging to infinity. Cook and
Ni [24] proposed a minimum discrepancy method in which sufficient dimension reduction
is characterized using an objective function approach. This leads to an alternating least
squares algorithm for the estimation of the central subspace.

Many of the sufficient dimension-reduction methods can be viewed as solving the
following eigenvalue/eigenvector problem:

Abj = λjΣZbj, (5)

for j = 1, . . . , k, where ΣZ denotes the covariance matrix of Z, and (λj, bj) denotes the eigen-
value/eigenvector pairs. We say that the matrix pair (A, ΣZ) is a generalized eigenvalue
solution (GES) if it satisfies (5). This is discussed at length in the monograph by Li [1]. Note
that typically, the solutions to (5) are returned as

λ1 ≥ λ2 ≥ · · · ≥ λk,

and b′jΣZbj = 1 for j = 1, . . . , k. The choice of A in (5) depends on the particular sufficient
dimension reduction algorithm that is used. For example, in sliced inverse regression, A
would represent the covariance matrix of the slice means. For principal Hessians direc-
tions [31], A in (5) is taken to be a weighted covariance matrix of the response to Z.

The matrix formulation in (5) allows for immediate generalizations to nonlinear ver-
sions of sufficient dimension. This can be done by replacing A in (5) with a so-called ‘kernel-
ized’ matrix computed using inner products of covariates mapped to higher-dimensional
spaces. Such methods are related to the procedures in Wu et al. [32], Fukumizu et al. [14]
and Lee et al. [16].

2.2. Limitations of Sufficient Dimension Reduction

As mentioned above, one of the key assumptions in applying sufficient dimension
reduction methodology is termed the linearity condition. A sufficient condition for this to
hold is that the predictor variables of interest follow an elliptically contoured distribution.
Distributions that satisfy elliptical symmetry include the multivariate normal distribution
and the multivariate t-distribution. One of the main criticisms leveled against the sufficient
dimension reduction methods is that this assumption will not be satisfied in practice. For
example, if covariates are discrete, then this will violate the linearity condition. Many au-
thors invoke the theoretical results of Hall and Li [33], which suggests that in an asymptotic
framework, the linearity condition will hold. An alternative approach has been to develop
generalizations of the sufficient dimension reduction methodology that relax the linearity
condition. Such approaches can be found in proposals, such as Chiaromonte et al. [34],
Fukumizu et al. [13,14], Li et al. [15] and Lee et al. [16].

The other issue with sufficient dimension reduction methods involves the identifi-
cation of the basis of SY|Z, which is referred to as the directions of the central subspace.
These vectors are not estimable in the situation where the components of Z are discrete.
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Such variables arise routinely in biomedical, sociological and demographic studies (e.g.,
race/gender), and this limitation makes the use of sufficient dimension reduction methods
challenging. In an important work, Chiaromonte et al. [34] developed an approach to
sufficient dimension reduction with categorical predictors. The idea is to perform the sliced
averaging of the continuous covariates within each of the levels defined by the combination
of the categorical variables. Then, the level-specific covariance matrices are pooled, and the
directions are estimated using spectral decomposition, similar to the description of sliced
inverse regression in Section 2.1.

3. Graphical Models, Connections and Information Theoretic Results

To link sufficient dimension reduction methods to the information bottleneck, we will
now introduce some concepts from graph theory and graphical models [26,35]. A graph
G = (V, E) consists of a set of vertices V and a collection of edges E. Here, V ≡ {v1, . . . , vm}
denotes the collection of m vertices and the edges E consist of two-element subsets of the
power set of V that denote edges between vertices. To simplify the discussion, we will
assume that there are no edges from a vertex to itself, i.e., no self-loops. Graphs whose
edges have more than two elements are referred to as hypergraphs [36] and will not be
considered further in the paper. The vertices represent random variables, and the edges
are used to specify dependencies between the random variables. There are two types of
edges we will consider here between vertices v1 and v2. A directed edge is denoted by
v1 → v2 and implies that v1 affects v2 and not vice versa. An undirected edge is denoted
by v1 − v2 and is equivalent to v1 → v2 and v2 → v1. Thus for undirected edges, v1 and v2
simultaneously affect each other. We define the parents of a vertex v by

pa(v) = {u ∈ V : ∃ a directed edge from u to v}.

It is a well-known fact that for an acyclic directed graph [26,35], one can factorize the joint
distribution of random variables defined on the graph G as

f (Xu : u ∈ G) = ∏
v∈V

p(xv|xs, s ∈ pa(v)). (6)

The final graphical model concept we will need is that of d-separation [35]. If G is a directed
graph in which X, Y and Z. are a disjoint sets of vertices, then X and Y are d-separated by
Z in G if and only if every path from a vertex in X to a vertex in Y is intercepted by a vertex
in Z.

We can see that assumption (3) corresponds to the following graphs

Z → PBZ → Y

Z ← PBZ ← Y

Z → PBZ ← Y

Z ← PBZ → Y (7)

This follows from using the definition of undirected graphs and conditional independence.
Similarly, the information bottleneck approach works with the graph

Z → T → Y (8)

The comparison of (7) and (8) offers the following insights. First, the central subspace
performs d-separation of Z and Y. Similarly, the role of T in the information bottleneck
framework is to intercept paths between Z and Y. This leads us to the following result,
which will be new to statisticians:

Proposition 1. The central subspace can also serve as an information bottleneck.
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Proof. The proof of the proposition follows by observing that the graph in (8) is a subgraph
of the graphs in (7).

Remark 1. Returning to the work of Wang et al. [18], the graphical representation in (7) makes
sufficient dimension reduction integrating the forward and backward regressions. The graphs in
(7) are precisely the forward and backward regression that Wang and colleagues speak of. They can
also be viewed as ‘forward’ and ‘backward’ information bottlenecks. Thus, we see that sufficient
dimension reduction is attempting to simultaneously perform a forward and reverse information
bottleneck, while information bottlenecks themselves operate in the forward direction.

Based on the proposition, we observe that the role of the central subspace in sufficient dimension
reduction plays a role akin to the information bottleneck. Using the viewpoint of information theory,
we can interpret the goal of sufficient dimension reduction as one of information compression. This
allows the use of these methods even in situations when the central subspace will not be estimable.

To make the idea concrete, we will be interpreting PBZ as a random variable in the
rest of the section. We will further assume that Z and Y are discrete random variables that
are potentially multivariate. The entropy of Z is defined by

H(Z) = − log ∑
z∈Z

p(z) log p(z), (9)

where Z is the range of Z and p(z) denotes the probability mass function. Similarly, we
can define the mutual information of Z and Y as

I(Z; Y) = ∑
z,y

p(z, y) log
p(z, y)

p(z)p(y)
(10)

which extends upon (9) in a natural way. Mutual information measures the dependence
between two random variables. It has the following properties: (a) it is symmetric in Z and
Y; (b) it is nonnegative; (c) it is equal to zero if and only if Z and Y are independent.

A comprehensive overview of entropy and mutual information can be found in Cover
and Thomas [37]. To keep the discussion self-contained, we now provide a summary of
many basic properties of entropy and mutual information. Further details can be found in
Chapter 2 of Cover and Thomas [37].

Property 1.

1. I(Z; Y) = H(Z)− H(Z|Y), where H(Z|Y) = −∑z,y p(z, y) log p(z|y).
2. I(Z; Y) = H(Y)− H(Y|Z).
3. I(Z; Y) = I(Y; Z).
4. I(Z; Y) = H(Z) + H(Y)− H(X, Y).
5. H(X, Y) = H(X) + H(Y|X).

We note that the last property is typically referred to as the chain rule for entropy and
can be extended to more than two random variables.

For the graphs considered in (7) and (8), we need to consider conditional versions of
mutual information. This is given to us by Equation (2.61) of Cover and Thomas [37].

Definition 1. The conditional mutual information of Z and Y given W is defined as

I(Z; Y|W) = ∑
z,y,w

p(z, y, w) log
p(z, y|w)

p(z|w)p(y|w)
.

Finally, we will need one more definition from Chapter 2.8 of Cover and Thomas [37].

Definition 2 (p. 34 of [37]). Z, Y and W form a Markov Chain, denoted as Z → W → Y if the
conditional distribution of Y given W and Z only depends on Z.
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We assume a reversible Markov Chain so that Z → W → Y and Y → W → Z are
treated as equivalent. Thus, the reversibility of the Markov Chain allows us to conceptually
drop the directionality in DAGs, which becomes in line with the conditional indepen-
dence assumptions outlined in Section 2.1. We have the following celebrated result from
information theory, the data-processing inequality (p. 34 of [37]):

Theorem 1. If Z →W → Y, then I(W; Z) ≥ I(Y; Z).

The data processing inequality guarantees equality if and only if Z and Y are indepen-
dent given W. We can now take these results and apply them to the graphs for sufficient
dimension reduction.

Corollary 1. Assumption (3) is equivalent to I(Z; PBZ) = I(Z; Y). This corollary also relates to
Theorem 1 of Wang et al. [18]. This formalizes the proposition earlier in the paper.

Remark 2. Note that we have rephrased the central subspace as a random variable that attempts to
minimize an information-based criterion. Thus, we get away from the traditional viewpoint where
we view the goal of sufficient dimension reduction as targeting the span of the central subspace.
Doing so provides another justification for the use of sufficient dimension reduction. This is in the
spirit of ‘assumption-lean inference’ [38] in which the goal is to have available statistical methods
that can be useful even when a true model or parameter does not exist.

Remark 3. The mutual information is intimately related to the Kullback–Leibler divergence of two
probability measures. A nice overview of how Kullback–Leibler divergences are related to information
theoretic quantities can be found in [19]. We will explore the link between sufficient dimension
reduction methods and Kullback–Leibler divergences in future work.

4. The Case of Gaussian Variables

In most problems involving the information bottleneck, one can use the Blahut–
Arimoto algorithm [5,6], which is an iterative algorithm that involves repeated projection
operations. In this section, we study a noniterative information bottleneck algorithm by
Chechik et al. [17]. They deal with the situation of Z and Y having a joint Gaussian dis-
tribution and show that one can use an eigenvector/eigenvalue decomposition of certain
matrices to achieve an information bottleneck. We then show how to relate this to several
sufficient dimension reduction procedures.

Chechik et al. [17] considered the situation of (Z, Y) having a joint Gaussian or mul-
tivariate normal distribution. Without loss of generality, we will assume a mean of zero
throughout the section. The goal of the Gaussian information bottleneck is to find a map-
ping from Z to T, such that the information content of Z is sufficiently compressed while
at the same time maintaining its association with Y. Formally, the Gaussian information
bottleneck involves the minimization of

L ≡ I(Z; T)− βI(T; Y)

over matrices A and Σe, where

T = AZ + e, e ∼ MVN(0, Σe), (11)

and MVN(0, Σ) denotes a multivariate normal distribution with mean zero vector and
covariance matrix Σ. Note that in (11), we assume that e is independent of Z. Because of the
linearity of T in Z in (11), T will have a multivariate Gaussian distribution with mean zero
vector and covariance matrix AΣZA′ + Σe. Chechik et al. [17] prove the following theorem.
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Theorem 2 (Theorem 3.1. of [17]). The optimal solution to the Gausssian information bottleneck
problem (11) for a given β is given by Σopt

e = I and

A =


[0′ · · · 0′] if 0 ≤ β ≤ β∗1
[γ1v′1 0′ · · · ] if β∗1 < β ≤ β∗2
[γ1v′1 γ2v′2 0′ · · · ] if β∗2 < β ≤ β∗3
...

where γ1, . . . , γn are functions of the eigenvalues α1, . . . , αn of ΣZ|YΣ−1
Z , defined as

γi =

√
β(1− αi)− 1

αiri
,

ri = v′iΣZvi and
β∗i = (1− αi)

−1, i = 1, . . . , n.

Thus, the theorem demonstrates the tradeoff between compression and its associated cost. If β is
smaller than β∗1, then the cost is too high, and the optimal solution is the zero matrix. Otherwise, we
see that we can start to identify subspaces for larger values of β associated with the eigenvectors
of ΣZ|YΣ−1

Z . We also see a transition in terms of the dimensions of the subspaces spanned by vi as
β increases. There are also discrete jump points for β. We refer to the result of Theorem 2 as the
Gaussian Information Bottleneck Theorem.

Note that the theorem also involves solving the eigenvalue/eigenvector decomposition
via the equation

ΣZ|Yv = λΣZv.

Comparing the structure of this equation to (5), we see that (ΣZ|Y, ΣZ) can be viewed as
a GES. The difference between the typical GES solution with the result of Theorem 2 is
the order in which eigenvalues appear. For GES, they occur in descending order, while
for Theorem 2, they are in ascending order. Using the link of Theorem 2 to generalized
eigenvector solutions, we have the following result for sufficient dimension reduction
methodology [17] to demonstrate the following result.

Proposition 2. The result of the Gaussian information bottleneck theorem holds

(a). for sliced inverse regression with Cov{E(Z|Y), ΣZ} as a GES;
(b). for partial inverse regression with Cov{ΣZFΣ−1

FF ΣFZ, ΣZ} as a GES, where for a known
transformation of Y, F(Y),

ΣFF = VarF(Y)

ΣFZ = Cov{F(Y), Z}

(c). for sliced average variance estimation [12] with Cov{ΣZ −Var(Z|Y), ΣZ} as a GES;
(d). for principal Hessians directions [31] with Cov{ΣZZY, ΣZ} as a GES, where

ΣZZY = E(ZZ′Y)

Proof. All of these results follow by defining the GES equivalences as found in Li [1].

The proposition affords us new insights into how to view the information compres-
sion/basis calculation for several existing sufficient dimension reduction procedures from
the information bottleneck viewpoint.

We note that if we sort the eigenvectors in descending order, the problem of selecting
which index to stop is precisely that of selecting the dimension of the central subspace. This
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is an important problem for which there have been several approaches in the literature. Ye
and Weiss [39] proposed an approach to the selection using the nonparametric bootstrap.
Recently, Luo and Li [40] proposed the ladle approach, which used the bootstrap but
combined information from both the eigenvalues and the eigenvectors of the central
subspace to determine the dimension of the central subspace. Another recent innovation
by Luo and Li [41] was to augment the predictor matrix with noise variables, which is in
the spirit of the recent, popular ‘knockoffs’ approach in statistics [42]. One sees that the
problem of order determination of the central subspace is dual to the Gaussian information
bottleneck theorem. Equivalently, increasing the dimension of the central subspace will be
orthogonal to the goal of minimizing information compression.

5. Numerical Illustration

The example in this paper comes from a randomized trial of opioid-dependent par-
ticipants. Opioid addiction involving both heroin and diverted prescription opioid use
represents major public health epidemics in the United States [43]. Currently, two treat-
ments that are effective for opioid addition are agonist therapy with either buprenorphine
(BUP) or methadone (MET). The study by Saxon et al. [44] was to determine if there were
differences between BUP and MET with respect to liver function in subjects being treated
for opioid dependence. Subjects who met the study inclusion criteria were randomized
to BUP or MET; there was a total of n = 832 subjects in the analysis. Here, we will focus
on the change in weight from baseline to week 12 as the dependent variable. Predictor
variables include weight at baseline, treatment, gender and ethnicity. Assuming that the
central subspace is of dimension one, using sliced inverse regression [28], we estimate the
basis to be (−0.38,−0.75, 0.53, 0.03). Thus, we would estimate the first direction to be

− 0.38Tx− 0.75Gender + 0.53Ethn + 0.03BaseWt. (12)

Note that in the classical framework of sufficient dimension reduction, the interpre-
tation of the estimate is problematic. This is due to the fact that treatment, gender and
ethnicity are binary variables. This means that viewed as an estimand; the central subspace
formally does not exist. Having said this, the framework in this paper would view (12) as
the linear combination of the variables that achieves maximum information compression in
the predictors while simultaneously minimizing information loss between the covariates
with the outcome variable. Note that this interpretation does not require the existence of a
central subspace.

Naik and Tsai [45] proposed the use of partial least squares (PLS) as a means of
sufficient dimension reduction in the situation where the dimension of the central subspace
equals one. For these data, we would estimate a combination analogous to (12) based on
partial least squares by

0.0001Tx + 0.0003Gender− 0.0001Ethn− 0.0268BaseWt (13)

Comparing the magnitudes of (12) and (13), SIR estimates larger relative weights with the
exception of weight at baseline. Again, we can interpret the PLS estimate as the linear
combination of the variables that achieves maximum information compression in the
covariates while simultaneously minimizing information loss regarding their association
with the outcome variable. A Github repository illustrating these analyses can be found at
http://github.com/GhoshLab/ITSDR/.

6. Discussion

In this article, we have attempted to reinterpret the sufficient dimension reduction
methodology in the statistical literature using connections to information theory. This link,
and in particular to that of the theory of information bottleneck [4], allows for some new
insights and interpretations to occur:

http://github.com/GhoshLab/ITSDR/
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1. We can avoid the goal of SDR as estimating a parameter, namely the basis of the
central subspace, and view it instead as a means for information compression while
simultaneously preserving association with an outcome variable. This information-
theoretic view can allow for one to relax distributional assumptions in a way that is
different from the σ−field approach described in [16].

2. By recognizing that the Gaussian bottleneck information theorem (Theorem 3.1 of [17])
is identical to solving a generalized eigenvalue problem, we can extend the results
of [17] to a variety of sufficient dimension reduction methods. There, we see that the
goals of information compression and central subspace dimension estimation are dual
to each other.

Our hope is that this initial exploration of information theory with sufficient dimension
reduction will allow for the adaptation and extension of information theoretic concepts
into the SDR literature. We envision there being connections and development of method-
ologies for SDR in time series [46] and online [47,48] problems. This is currently under
investigation.
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