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Abstract

Recently, gene set analysis (GSA) has been extended from use on gene expression data to use on
single-nucleotide polymorphism (SNP) data in genome-wide association studies. When GSA has
been demonstrated on SNP data, two popular statistics from gene expression data analysis (gene
set enrichment analysis [GSEA] and Fisher’s exact test [FET]) have been used. However, GSEA and
FET have shown a lack of power and robustness in the analysis of gene expression data. The
purpose of this work is to investigate whether the same issues are also true for the analysis of SNP
data. Ultimately, we conclude that GSEA and FET are not optimal for the analysis of SNP data when
compared with the SUMSTAT method. In analysis of real SNP data from the Framingham Heart
Study, we find that SUMSTAT finds many more gene sets to be significant when compared with
other methods. In an analysis of simulated data, SUMSTAT demonstrates high power and better
control of the type I error rate. GSA is a promising approach to the analysis of SNP data in GWAS
and use of the SUMSTAT statistic instead of GSEA or FET may increase power and robustness.

Background
Gene set analysis (GSA) methods of analyzing genome-
wide gene expression data (DNA microarray) are
increasingly popular [1-12]. GSA techniques view the
statistical significance of sets of genes, instead of
examining significance on a gene-by-gene basis. GSA is
purported to have more power to detect subtle, but
consistent, changes in expression levels than gene-by-
gene significance tests of gene expression data.

Recently, Wang et al. [13] and Chasman [14] have
proposed applying GSA methods to SNP data in
genome-wide association studies, providing a new
method to address one of the biggest challenges facing
genome-wide single-nucleotide polymorphism (SNP)
studies today: namely, a lack of sufficient power to
detect small effects as significant [15]. Instead of
focusing only on the SNPs that are most significant as
would be done in a standard analysis, GSA evaluates sets
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of SNPs for significance by first associating SNPs with
genes. Genes are then grouped into biologically mean-
ingful sets (e.g., genes in the same cytogenetic band or
pathway). Typically, many of the gene sets tested overlap
(i.e., genes, and thus SNPs, are in multiple gene sets).
The statistical significance of each set of SNPs/genes is
then computed. In their implementation of GSA, Wang
et al. [13] chose what is arguably the most popular of the
GSA statistics: the weighted Kolmogorov-Smirnov-like
running-sum statistic of gene set enrichment analysis
(GSEA) [2,3]. However, increasing evidence in the
analysis of gene expression data suggests that the GSEA
statistic may not be optimal compared with other
methods. Efron and Tibshirani [5], Dinu et al. [4], and
Tintle et al. [12] have all argued that GSEA has less power
than other test statistics. To address the shortcomings of
GSEA, Efron and Tibshirani proposed the MAXMEAN
statistic [5] and Dinu et al. proposed SAM-GS [4]. Tintle
et al. [12] compared these methods and found that the
MAXMEAN statistic provides increased power compared
with SAM-GS and GSEA. Chasman [14] followed similar
methods as Wang et al. [13] while also comparing GSEA
to the hyper-geometric distribution/Fisher’s exact test
(FET) method. Chasman [14] found that FET was more
powerful for sets containing a few highly significant
genes, while GSEA was more powerful for sets containing
many more weakly associated genes. However, FET has
been criticized by others due to a lack of robustness and
low power when compared with other statistics [9,12].

Because GSEA and FET have been demonstrated to be
less than optimal for gene expression data, in the
following analysis we compare alternative GSA statistics
(based on MAXMEAN and SAM-GS) following the
general outline of the Wang et al. method [13] using
SNP and phenotype (real and simulated) data available
from the Framingham Heart Study as part of Genetic
Analysis Workshop 16 (GAW16).

Methods
Obtaining gene sets
In general, we followed the methods of Wang et al. [13]
to assign SNPs to gene sets. Approximately 550,000
SNPs were available for analysis. SNPs were screened to
ensure a minor allele frequency >5%, consistency with
Hardy-Weinberg equilibrium (p-value for goodness of fit
test > 0.001), and less than 10% no calls. The remaining
SNPs were tested for association with each of the two
phenotypes of interest (diabetes and heart disease) using
a standard c2 test of association. We then used the
Ensembl database [16] to create a list of all known
human genes. Each SNP was assigned to the gene closest
to it, as long as the closest gene was within 500 kb of the
SNP. Each gene was then assigned a statistic equal to the

largest c2 statistic of the SNPs associated with that gene.
Gene sets (assignments of genes to biologically mean-
ingful groups) were then downloaded from the Broad
Institute’s MsigDB [3]. Gene sets considered here are a
portion of all those available from MsigDB. Specifically,
we consider 306 positional (cytogenetic band) gene sets
and all 396 gene sets based on the Gene Ontology’s
“molecular function” classification.

Statistical analysis
In order to evaluate the statistical significance of sets of
genes, we compared the GSEA statistic used by Wang
et al. [13] to three other statistics considered in the
literature. To aid in the description of the different
statistics, let t1, t2, ..., tr represent the c2 test statistics for
each of the r genes in the gene set. In order to compute
the GSEA-like test statistic we follow the method of
Subramanian et al. [3] and Wang et al. [13]. In essence,
the statistic is a weighted Kolmogorov-Smirnov-like
running sum statistic, where the “weight” is ti for the
ith gene. Two of the other gene set test statistics

considered were SUMSTAT ( t i
i

r

=
∑

1
) (based on MAX-

MEAN [5]) and SUMSQ ( t i
i

r
2

1=
∑ ) (based on SAM-GS [4]).

Lastly, the FET method was considered [14]. FET first
classifies each gene as either “significantly associated
with the phenotype” or not, and then compares the
proportion of significant genes in the set of interest with
the proportion of significant genes not in the set of
interest using Fisher’s exact test. In order to decide if a
gene was significantly associated with the phenotype, we
used c2 (1 d.f.) quantiles as cutoffs (5.992, 9.210,
13.816, and 18.421) for the individual gene test
statistics. Each statistic (GSEA, SUMSTAT, SUMSQ, and
FET) was then computed on each gene set for each of the
two phenotypes of interest. For GSEA, SUMSTAT, and
SUMSQ, the observed statistics were compared with the
same statistics computed on 1000 randomly selected
gene sets containing the same number of genes as the set
of interest. The p-value of each set was then computed as
the fraction of times the observed statistic was greater
than the statistic based on the random sets. Finally, a
false-discovery rate (FDR) procedure (5%) was used to
adjust for multiple testing of multiple gene sets.

Sample
Data on participants in the Framingham Heart Study was
analyzed using data from GAW16 Problems 2 and 3. To
simplify analyses, the sample provided was reduced to
unrelated individuals as described below. There were
6525 individuals for whom there was genotype and
phenotype information and who were also in pedigrees.
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We selected a single person to represent each pedigree.
To increase the number of cases in the sample, we
selected individuals to represent a family if they had
heart disease, diabetes, or were the oldest in the family
(in that order of preference), leaving 730 individuals. In
addition to the 6525 individuals in pedigrees, there were
227 genotyped and phenotyped individuals who were
singletons. We combined all genetically unrelated
individuals (730+227), leaving a total analysis sample
of 957. Of the 957 individuals, 158 have ever had a heart
disease diagnosis and 167 have ever had diabetes.

Results
Comparing different test statistics on Framingham Heart
Study data
After computing the p-value of each of the 706 gene sets
for each of the two phenotypes using the different
statistical methods (GSEA, SUMSTAT, SUMSQ, and FET),
a FDR of 5% was applied to determine significance.
Overall, the SUMSTAT method identified 70 sets as
significant, SUMSQ identified 27, GSEA identified 7, FET
with a 5.992 cutoff identified 8, and the FET with three
other cutoffs identified 0 sets as significant. As repre-
sented in Figure 1, 26 of the 27 significant sets identified
by SUMSQ, 7 of the 8 FET (5.992 cutoff), and all 7 of the
sets identified by GSEA as significant were also identified
as significant by the SUMSTAT method.

Comparing different test statistics on simulated data
Because simulated phenotype data were not available for
all individuals in the real data sample, in the simulated
data analysis there are 876 individuals. Of these, there
are 210 who have ever had a (simulated) myocardial
infarction and 666 who have not. Two types of gene sets
were considered in the analysis of the simulated data.
First, the cytogenetic band sets and the GO-Molecular
Function sets were used. Each set was identified as
containing no, some weak (1-9), many weak (10+)
genes, or one to two strongly associated gene. Second,
pseudo-gene sets were created to contain large numbers
of genes associated with the phenotype. Both the real
and pseudo-gene sets were then analyzed using the same
procedures as for the real data analysis. In the simulated
data analysis 2000 SNPs were weakly associated with
myocardial infarction or a related phenotype (e.g., high-
density lipoprotein cholesterol level), while 19 were
more strongly associated.

Table 1 shows that gene sets containing weakly
associated genes were more likely to be identified as
significant (p < 0.05; 1000 permutations) by the
SUMSTAT method than by SUMSQ, GSEA, or FET with
any cutoff, regardless of whether the gene sets were real
or pseudo-gene sets. Pseduo-gene sets containing
strongly associated genes were best identified by SUM-
STAT, SUMSQ, or FET with a cutoff of 18.421. None of
the methods performed well at finding major genes
when there was only one or two of them in a set. We
note that the optimal FET cutoff reverses when compar-
ing pseudo-gene sets containing weak or strongly
associated genes. All methods controlled type I error
rates for both pseudo-genes and real sets of genes.

Results of gene set analysis on Framingham data
Based on Figure 1, Table 1, and previous findings by
Efron and Tibshirani [5] and Tintle et al. [12], the
SUMSTAT method appears to provide the most powerful
and robust results, so we only provide a detailed set of
SUMSTAT findings here (Tables 2 and 3).

Conclusion
GSA offers a promising approach to genome-wide
studies. Recently, Wang et al. [13] and Chasman [14]
extended the GSA methodology from DNA microarrays
(gene expression data analysis) to genome-wide SNP
data. However, recent evidence suggests that the statistics
selected by Wang et al. (GSEA) [13] and Chasman [14]
(FET/GSEA) are less powerful and robust then other
methods when analyzing gene expression data. In this
paper we have presented evidence that this limitation
also holds true for analysis of real and simulated SNP
data. The SUMSTAT method found many more sets to be

Figure 1
Venn diagram of sets identified as significant by four
different GSA methods for Framingham Heart Study
data. The numbers represent the significant sets in each
non-overlapping region. Total number of sets depicted is
1412, which is 706 gene sets for each of the two phenotypes.
There were 1340 sets not identified as significant by any
method.
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significant than the other methods while controlling the
type I error rate. The FET method was also shown to lack
robustness to different types of sets (strong or weakly
associated genes), an inherent limitation of an approach
that requires choosing an arbitrary cutoff.

As pointed out by Wang et al. [13], the method used here
to assess significance (random gene sets) is inherently
biased due to assignment of the maximum SNP statistic
to the gene. However, the analysis here, the results of
Wang et al. [13], as well as results in other papers [12],
all find that assessing significance with random gene sets
provides reasonable results. In addition to the random
set approach, Wang et al. [13] use a more traditional
subject permutation strategy to assess significance. Goe-
man and Buhlman [10] as well as Efron and Tibshirani

Table 1: Percent of sets found as significant for the simulated data

FET

5.9 9.2 13.8 18.4 GSEA SUMSQ SUMSTAT

Pseudo-gene sets
No associated genes 1.4 2.8 0.0 0.9 3.2 3.7 3.7
1-9 weakly associated genes 9.8 3.3 1.6 3.3 8.5 8.2 8.2
10+ weakly associated genes 10.6 7.7 1.9 1.9 11.5 11.5 15.4
1-2 strongly associated genes, but no weakly associated genes 0.0 0.0 5.3 0.0 0.0 0.0 0.0

Real gene sets
Many weakly associated genes 51.7 49.2 13.3 5.0 58.3 60.0 70.8
Some strongly associated genes 2.5 3.8 7.5 33.8 6.3 36.3 23.8
Null sets (no associated genes) 0.0 6.7 1.7 3.3 1.7 5.0 3.3

Table 2: The cytogenetic band sets found to be significant by
SUMSTAT (FDR 5%)

Diabetes
2q34
2q36
3p14
3p26
4q22
4q32
5q14
5q23
5p14
9p24
9q21
10p14
10p15
11q21
12p12
12q23
13q12
13q22
14q13
18q12
18q21
18q22
Heart Disease
1p31
2q24
3p26
4p15
5p13
6p24
6p25
9p24
9q
9q21
10p12
10p15
12q15
18q21
18q22
20p12
21q21

Table 3: The molecular function gene sets found to be significant
by SUMSTAT (FDR 5%)

Heart Disease
Cation Transmembrane Transporter Activity
Glutamate Receptor Activity
Hematopoietin Interferon Class D200 Domain Cytokine Receptor
Activity
Ionotropic Glutamate Receptor Activity
Low density lipoprotein activity
Sialyltransferase Activity
Transmembrane receptor protein kinase activity
Diabetes
Cyclic nucleotide phosphodiesterase activity
G-protein coupled receptor activity
Gated Channel activity
Glutamate receptor activity
GTPase regulator activity
Guanyl nucleotide exchange factor activity
Ionotropic glutamate receptor activity
Lipoprotein binding
Low-density lipoprotein binding
Phosphoric diester hydrolase activity
Phosphoric ester hydrolase activity
Transmembrane receptor protein phosphate activity
3-5-cyclic nucleotide phosphodiesterase activity
Cation channel activity
Interleukin binding
GTPase activator activity
Ion transmembrane transport activity
Phosphoprotein phosphatase activity
Gaba receptor activity
Metal ion transmembrane transporter activity
Protein tyrosine phosphatase activity
Growth factor binding
Metabotropic glutamate gaba-b like receptor activity
Delayed rectifier potassium channel activity
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[5] provide clear and helpful discussions of the implica-
tions of the different strategies for assessing significance
in GSA.

A potential concern in GSA is the linkage disequilibrium
structure of the genes in the set. GSA, as implemented for
genome-wide association studies, ignores gene-gene
correlation. However, as argued by Wang et al. [13],
this is only an issue if the genes overlap the same linkage
disequilibrium block or have an epistatic interaction. In
these cases GSA will overestimate significance of gene
sets.

Lastly, in the analysis presented here, sample sizes are
relatively small. Larger sample sizes would increase the
precision of initial SNP association tests and, thus,
increase the power of the related tests. In addition to
sample size, the power of tests in GSA is related to the
number of genes in the gene set and the size of the shift
in distribution of statistics between the genes in the set
compared with those not in the set. Further work is
necessary to fully explore potential modifications to the
current methods of GSA in order to maximize their
power in analyzing genome-wide association data.

The analysis presented here provides additional evidence
that the use of GSEA for pathway-based testing in SNP
genome-wide association studies is less than optimal.
Using the SUMSTAT statistic in lieu of the GSEA statistic
offers a promising step forward in GSA of genome-wide
SNP data.
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