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Abstract: The current translation of peptides identified through the one-bead one-compound (OBOC)
technology into positron emission tomography (PET) imaging agents is a slow process, with a major
delay between ligand identification and subsequent lead optimization. This work aims to streamline
the development process of 18F-peptide based PET imaging agents to target the integrin αvβ6. By
directly identify αvβ6–targeting peptides from a 9-mer 4-fluorobenzoyl peptide library using the
on-bead two-color (OBTC) cell-screening assay, a total of 185 peptide beads were identified and 5
beads sequenced for further evaluation. The lead peptide 1 (VGDLTYLKK(FB), IC50 = 0.45 ± 0.06 µM,
25% stable in serum at 1 h) was further modified at the N-, C-, and bi-termini. C-terminal PEGylation
increased the metabolic stability (>95% stable), but decreased binding affinity (IC50 = 3.7 ± 1 µM) was
noted. C-terminal extension (1i, VGDLTYLKK(FB)KVART) significantly increased binding affinity for
integrin αvβ6 (IC50 = 0.021 ± 0.002 µM), binding selectivity for αvβ6-expressing cells (3.1 ± 0.8:1), and
the serum stability (>99% stable). Our results demonstrate the challenges in optimizing OBOC-derived
peptides, indicate both termini of 1 are sensitive to modifications, and show that further modification
of 1 is necessary to demonstrate utility as an 18F-peptide imaging agent.

Keywords: one-bead one-compound (OBOC); integrin αvβ6; library screening; positron emission
tomography (PET); Fluorine-18; solid-phase radiolabeling; affinity; selectivity

1. Introduction

The expanding use of positron emission tomography (PET) imaging in oncology to aid in early
detection, more accurate diagnosis, and patient treatment stratification has led to an increased demand
of novel peptide-based molecular imaging agents [1]. Peptides are attractive as imaging agents for
several reasons, including favorable pharmacokinetic properties, such as high target affinity, good
tumor penetration, rapid non-specific clearance, and minimal immunogenicity [2]. Additionally, once
peptide sequences are identified, they can be readily synthesized to high purity and are amenable
to chemical modifications to alter affinity, charge, hydrophobicity, solubility, and stability [3]. The
biological half-life of peptides ideally matches with many clinically used radionuclides, such as the
short-lived positron emitting fluorine-18 (t1/2 = 109.7 min) that possesses favorable nuclear properties
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(e.g., 97% positron emission), and the ease of production with high yield and molar activity for PET
imaging [4].

Combinatorial libraries, such as the one-bead one-compound (OBOC) and phage display, have
provided indispensable tools for rapid identification of peptides for a given biological target, especially
those expressed on the cell surface [5]. OBOC libraries display randomized peptide sequences
on solid-support beads, which can be screened against either purified proteins or whole cells to
identify receptor-specific peptides [6]. We, and others, have utilized the OBOC approach to identify
peptides for the development of PET imaging agents [6,7]. However, to date, only a handful of
OBOC-derived peptides, notably the α5β1–targeting OA02 peptide [8] and the α4β1-targeting LLP2A
peptidomimetic [9,10], have been evaluated for preclinical in vivo imaging. Clearly, the current
translation of OBOC-derived peptides from bench to bedside remains a slow process [11].

To ensure target-specificity of the identified peptides, on-bead library screening requires multiple
rounds of screening to eliminate false positive (non-specific binders) [12]. This stringent and iterative
screening of OBOC libraries for target-selective peptides is a lengthy, time-consuming, and inefficient
process. For OBOC-derived peptides to be utilized as PET imaging agents, a positron-emitting isotope,
such as fluorine-18, needs to be attached to the peptide. The introduction of the radioisotope, typically
via a prosthetic group post-identification from the OBOC library, can have a negative impact on
the pharmacokinetic properties and binding affinity of the original peptide, as it adds mass, alters
hydrophobicity, and changes the charge of the peptide [13]. In addition, once a peptide sequence
has been successfully identified, it typically requires further optimization before it can be used as
an imaging agent, as peptides are susceptible to proteolytic degradation in serum in vivo, and are
often eliminated rapidly from the system [14]. Therefore, chemical modifications of the OBOC-derived
peptides are carried out to improve their in vivo stability to make them suitable for PET imaging.

In this work, we proposed to address some of the aforementioned limitations and describe the
developmental process for the identification and optimization of integrin αvβ6-targeting peptide
PET imaging agents, using OBOC and on-bead two-color (OBTC) technologies. The integrin αvβ6

is an epithelial-specific cell surface receptor that is undetectable in healthy adult epithelium, but
is upregulated in many aggressive cancers, such as ovarian, colon, pancreatic, and breast, and
its expression level has been linked to poor prognosis, making it an interesting target for both
diagnostic and therapeutic agents [15]. Notable examples of integrin αvβ6-targeting peptides that
have been used as imaging agents include the A20FMDV2 [16] and Cystine Knot R01 peptides [17].
Both peptides contain the known αvβ6-targeting motif (DLXXL), originally identified from phage
display [18], and they have been radiolabeled with 18F and 64Cu for in vivo imaging in small animal
models [7,16,17,19,20]. In a proof of concept effort, Gagnon et al. reported the use of combinatorial
libraries, solid-phase radiolabeling, and high throughput in vivo screening to evaluate an OBOC library
featuring the DLXXL motif, and discovered 42 lead peptides in 11 consecutive days [7]. However, the
identified lead peptides still required substantial optimization.

Herein, we designed an OBOC library containing the known integrin αvβ6-binding motif
(DLXXL) [18] and the nonradioactive substitute of the commonly used 18F-radiolabeling prosthetic
group, 4-fluorobenzoic acid ([19F]FBA) at the C-terminal lysine (XXDLXXLXK([19F]FB, 9-mer).
To facilitate the direct identification of integrin αvβ6-binding peptides in a single step, an OBTC
cell screen assay [21], utilizing transfected fluorescent DX3puroβ6mCherry (αvβ6+, red) and
DX3puroEmGFP (αvβ6−, green) cell lines, was investigated. Competitive binding ELISAs with
purified integrins (αvβ1, αvβ3, αvβ5, αvβ6, and αvβ8) were performed to evaluate the binding profiles
of lead peptides. Furthermore, efforts focused on optimizing the most promising peptide via N-,
C-, and bi-terminal chemical modifications such as methylation, acetylation, 4-fluorobenzoylation,
and PEGylation, as well as C-terminal extension for improved binding affinity, binding selectivity,
and metabolic stability. Peptides were radiolabeled on solid-phase using 4-[18F]fluorobenzoic acid
([18F]FBA) for evaluation of cell binding and serum stability.
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2. Results

2.1. Design and Synthesis of 4-Fluorobenzoyl OBOC Library

Using standard solid-phase peptide synthesis (SPPS) and the split-mix approach, the 9-mer
peptide library of sequence “XXDLXXLXK([19F]FB)” was built containing the integrin αvβ6-targeting
motif (DLXXL) and the nonradioactive [19F]FBA, coupled to the sidechain of the built-in C-terminal
lysine (K) at gram scale to yield approxmately 2.5 million unique sequences (theoretical permutation
of 2.47 × 106 peptides) (Scheme 1).
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Scheme 1. Design and synthesis of integrin αvβ6-targeting 4-fluorobenzoyl-peptide library.

2.2. On-Bead Two-Color (OBTC) Fluorescent Cell Screening Assay

Dx3puroβ6mCherry (αvβ6+, red) and DX3puroEmGFP (αvβ6−, green) cells (500,000 total) were
premixed in a petri dish for an hour prior to incubating with library beads (150,000) (Figure 1). A total
of 185 beads were manually identified as integrin αvβ6-specific (i.e., beads that were coated exclusively
with the red cells (αvβ6+)) and were isolated from the assay over 5 days. The first 5 beads isolated
from the assay (1–5) were sequenced by Edman degradation and their sequences are shown in Table 1.
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Figure 1. Schematic representation of the On-Bead Two-Color (OBTC) cell screening utilizing fluorescent
DX3puroβ6mCherry (αvβ6+, red) and DX3puroEmGFP (αvβ6−, green) cells.
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Table 1. ELISA data showing the relative binding affinity and selectivity of lead peptides measured by
IC50 values (n = 3).

ID Sequence
IC50 (µM)

αvβ1 αvβ3 αvβ5 αvβ6 αvβ8

1 VGDLTYLKK(FB) >100 >100 >100 0.45 ± 0.06 5.3 ± 0.14
2 RGDLMKLAK(FB) 0.9 ± 0.12 2.2 ± 0.83 >100 0.95 ± 0.17 2.6 ± 0.35
3 RGDLADLRK(FB) 0.6 ± 0.15 0.5 ± 0.08 >100 0.42 ± 0.07 0.2 ± 0.02
4 GIDLTSLTK(FB) ND >100 ND >100 ND
5 RGDLRELAK(FB) 1.9 ± 0.3 0.3 ± 0.02 >100 0.89 ± 0.14 2.6 ± 0.29

ND = not determined.

2.3. On-Bead Validation of the Identified Peptide Sequences

In the mixed cell assay, all peptides showed good binding to the DX3puroβ6mCherry (αvβ6+,
red) cells and minimal cross binding to DX3puroEmGFP (αvβ6−, green) cells, except 4. In the single
cell assay, 1 showed high selectivity for αvβ6+, red cells with little binding to αvβ6−, green cells,
whereas 4 showed no binding to either cell line (Figure 2). 2, 3, and 5 also showed noticeable binding
to DX3puroEmGFP (αvβ6−, green) cells in the single cell assay.

Molecules 2019, 24, x  4  of  16 

 

Figure  1.  Schematic  representation  of  the  On‐Bead  Two‐Color  (OBTC)  cell  screening  utilizing 

fluorescent DX3puroβ6mCherry (αvβ6+, red) and DX3puroEmGFP (αvβ6−, green) cells. 

2.3. On‐Bead Validation of the Identified Peptide Sequences 

In  the mixed cell assay, all peptides showed good binding  to  the DX3puroβ6mCherry  (αvβ6+, 

red) cells and minimal cross binding to DX3puroEmGFP (αvβ6−, green) cells, except 4. In the single 

cell  assay,  1  showed high  selectivity  for  αvβ6+,  red  cells with  little  binding  to  αvβ6−, green  cells, 

whereas 4 showed no binding to either cell line (Figure 2). 2, 3, and 5 also showed noticeable binding 

to DX3puroEmGFP (αvβ6−, green) cells in the single cell assay.   

 

Figure  2.  Representative  pictures  of  1–5  incubated with  (a) DX3puroβ6mCherry  (αvβ6+,  red),  (b) 

DX3puroEmGFP  (αvβ6−,  green),  and  (c)  mixed  DX3puroβ6mCherry  (αvβ6+,  red),  and 

DX3puroEmGFP (αvβ6−, green) cells 3 h post‐incubation. 

2.4. Competitive Binding ELISAs. 

As summarized in Table 1, all lead peptides, except for 4, showed low micromolar IC50 values 

for  αvβ6,  i.e., moderate  to  good  binding  to  purified  integrin  αvβ6.  In  summary,  1 was  the most 

selective for  integrin αvβ6 (IC50 = 0.45 ± 0.06 μM), demonstrating a selectivity ratio of >200:1 when 

compared to the other integrins (αvβ1, αvβ3, and αvβ5), and with some binding to integrin αvβ8 (IC50 = 

5.3 ± 0.14 μM, 20:1). The peptides containing  the RGD motif  (2, 3, and 5) all showed comparable 

affinity for integrin αvβ6 (IC50 = 0.95 ± 0.17, 0.42 ± 0.07, and 0.89 ± 0.14 μM, respectively), however, 

with  poor  selectivity  towards  other  integrins  (αvβ1,  αvβ3,  and  αvβ8,  except  for  αvβ5  (>100:1)). 

Meanwhile, 4 consistently showed little to no binding to integrins αvβ6 and αvβ3, only achieving an 

IC50 > 100 μM. 

Table 1. ELISA data showing the relative binding affinity and selectivity of lead peptides measured 

by IC50 values (n = 3). 

ID  Sequence 
IC50 (μM) 

αvβ1  αvβ3  αvβ5  αvβ6  αvβ8 

1  VGDLTYLKK(FB)  >100  >100  >100  0.45 ± 0.06  5.3 ± 0.14 

2  RGDLMKLAK(FB)  0.9 ± 0.12  2.2 ± 0.83  >100  0.95 ± 0.17  2.6 ± 0.35 

3  RGDLADLRK(FB)  0.6 ± 0.15  0.5 ± 0.08  >100  0.42 ± 0.07  0.2 ± 0.02   

Figure 2. Representative pictures of 1–5 incubated with (a) DX3puroβ6mCherry (αvβ6+, red); (b)
DX3puroEmGFP (αvβ6−, green); and (c) mixed DX3puroβ6mCherry (αvβ6+, red), and DX3puroEmGFP
(αvβ6−, green) cells 3 h post-incubation.

2.4. Competitive Binding ELISAs

As summarized in Table 1, all lead peptides, except for 4, showed low micromolar IC50 values
for αvβ6, i.e., moderate to good binding to purified integrin αvβ6. In summary, 1 was the most
selective for integrin αvβ6 (IC50 = 0.45 ± 0.06 µM), demonstrating a selectivity ratio of >200:1 when
compared to the other integrins (αvβ1, αvβ3, and αvβ5), and with some binding to integrin αvβ8

(IC50 = 5.3 ± 0.14 µM, 20:1). The peptides containing the RGD motif (2, 3, and 5) all showed comparable
affinity for integrinαvβ6 (IC50 = 0.95± 0.17, 0.42± 0.07, and 0.89± 0.14µM, respectively), however, with
poor selectivity towards other integrins (αvβ1, αvβ3, and αvβ8, except for αvβ5 (>100:1)). Meanwhile,
4 consistently showed little to no binding to integrins αvβ6 and αvβ3, only achieving an IC50 > 100 µM.
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2.5. Modifications of 1

Peptide 1 was selected for further optimization (Table 2). First, a series of N-terminal modifications
were explored, including moving the 4-fluorobenzoyl moiety from the C-terminal lysine to the
N-terminus (1a, IC50 = 0.81 ± 0.09 µM), N-terminal acetylation (1b, IC50 > 100 µM), N-terminal
methylation (1c, IC50 > 5 µM), N-terminal PEGylation (1d, IC50 > 100 µM), and containing both the
C- and N-terminal 4-fluorobenzoylation (1e, IC50 = 0.84 ± 0.36 µM). Modification of the C-terminus
was also done via PEGylation (1f, IC50 = 3.7 ± 1 µM). In addition, the C-terminal PEGylated
peptides were also synthesized as the N-acetylated (1g, IC50 > 100 µM) and N-fluorobenzoylated
(1h, IC50 = 1.47 ± 0.23 µM) analogs. The C-terminus of 1 was also further extended by five amino acids,
KVART, (1i, IC50 = 0.021 ± 0.002 µM).

Table 2. ELISA data showing the relative binding affinity of derivatives of 1 to integrin αvβ6 measured
by IC50 values (n = 3).

ID Sequence IC50 (µM) αvβ6

1 * VGDLTYLKK(FB) 0.45 ± 0.06
1a * FB-VGDLTYLKK 0.81 ± 0.09
1b Ac-VGDLTYLKK(FB) >100
1c Me-VGDLTYLKK(FB) >5
1d PEG12-VGDLTYLKK(FB) >100
1e FB-VGDLTYLKK(FB) 0.84 ± 0.36

1f * VGDLTYLKK(FB)-PEG28 3.7 ± 1
1g Ac-VGDLTYLKK(FB)-PEG28 >100

1h * FB-VGDLTYLKK(FB)-PEG28 1.47 ± 0.23
1i * VGDLTYLKK(FB)KVART 0.021 ± 0.002

Note: * peptides that were 18F-radiolabeled for cell binding and serum stability studies.

2.6. Radiochemical Synthesis of 18F-Radiolabeled Peptides

All radiolabeled peptides were obtained with molar activity of >37 GBq/µmol and radiochemical
purity of >99% after semi-prep RP-HPLC purification, except for 2 (Table 3). Peptide 2 exhibited
decomposition and formation of a radioactive by-product (22%) preceding the product peak (78%), as
observed by analytical radio-RP-HPLC, even after semi-prep RP-HPLC purification (Figure S3). This
by-product increased over time and as such 2 was not further evaluated.

Table 3. Analytical data of all 18F-radiolabeled peptides evaluated in cell binding and serum
stability experiments.

ID Sequence dc RCY (%) RCP (%) Retention Time (min)

[18F]1 VGDLTYLKK([18F]FB) 5.4 ± 1.2 >99 14.2
[18F]2 RGDLMKLAK([18F]FB) 4 78 13.6
[18F]3 RGDLADLRK([18F]FB) 13.4 >99 12.5
[18F]5 RGDLRELAK([18F]FB) 13.2 ± 10.1 >99 12.7
[18F]1a [18F]FB-VGDLTYLKK 6.5 >99 15.7
[18F]1f VGDLTYLKK([18F]FB)-PEG28 12.8 >95 16.7
[18F]1h FB-VGDLTYLKK([18F]FB)-PEG28 10.9 >99 19.8
[18F]1i VGDLTYLKK([18F]FB)KVART 2.8 >99 12.8

2.7. In Vitro Evaluation of 18F-Radiolabeled Peptides

2.7.1. In Vitro Cell Binding of 18F-Radiolabeled Peptides

The control peptide [18F]FB-PEG28-A20FMDV2-K16R-PEG28 showed a typical binding level to
DX3puroβ6 (αvβ6+) cells (77.1 ± 0.1%) with minimal binding to DX3puro (αvβ6−) cells (1.5 ± 0.1%),
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confirming the integrity of the binding assay (Figure 3) [22]. The % binding of [18F]1, [18F]3, and
[18F]5 to DX3puroβ6 (αvβ6+) cells was 12.8 ± 1.9%, 7.7 ± 3.8%, 6.4 ± 0.1%, respectively. The
% binding of [18F]1, [18F]3, and [18F]5 to DX3puro (αvβ6−) cells was 11.7 ± 2.2%, 5.3 ± 2.8%,
and 5.9 ± 0.8%, respectively. Unfortunately, all three peptides exhibited non-favorable selectivity
towards the DX3puroβ6 (αvβ6+) cells, as demonstrated by low DX3puroβ6/DX3puro binding ratios
([18F]1 = 1.1 ± 0.1:1, [18F]3 = 1.4 ± 0.2:1, and [18F]5 = 1.1 ± 0.1:1). Further, [18F]1a, [18F]1f, and [18F]1h
all showed less than 2% binding to both DX3puroβ6 (αvβ6+) and DX3puro (αvβ6−) cell lines, and
[18F]1i demonstrated 5.0 ± 0.5% binding to DX3puroβ6 (αvβ6+) cells with a significant improvement
in binding selectivity ratio of 3.1 ± 0.8:1 (p < 0.05).
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Figure 3. In vitro binding results of [18F]1, [18F]3, [18F]5, [18F]1a, [18F]1f, [18F]1h, [18F]1i and the control
peptide after 60 min incubation with either DX3puroβ6 (αvβ6+) or DX3puro (αvβ6−) cell line (n = 3).
*** paired Student t-test gives p < 0.05.

2.7.2. Serum Stability of 18F-Radiolabeled Peptides

As summarized in Table 4, [18F]1 remained 25% intact, but both [18F]3 and [18F]5 exhibited 100%
degradation at 1 h post-incubation in mouse serum.

Table 4. Summary of the metabolic stability of 18F-radiolabeled lead peptides evaluated in mouse
serum 1 h post-incubation.

ID Sequence % Intact (1 h)

[18F]1 VGDLTYLKK([18F]FB) 25
[18F]3 RGDLMKLAK([18F]FB) 0
[18F]5 RGDLADLRK([18F]FB) 0

2.7.3. Serum Stability of 18F-Radiolabeled Modified Derivatives of 1

As indicated by radio-RP-HPLC, upon incubating with mouse serum for 1 h [18F]1a was completely
metabolized; however, both [18F]1f and [18F]1h were >95% intact (Figure 4a–c), and [18F]1i remained
>99% intact (Figure 4d).
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2.8. Evaluation of Secondary Structure of 1, 1i, and the Control Peptide Using Circular Dichroism (CD)
Spectroscopy

CD data revealed that all three peptides exhibited random coil conformation in CD buffer (red).
However, α-helices were observed when 30% 2,2,2-trifluoroethanol (TFE) was added to CD buffer for
1i (Figure 5b, black curve) and the control peptide (Figure 5c, black curve), whereas the parent peptide
1 did not form the helix under the same condition (Figure 5a).
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3. Discussion

The OBOC technology has been successfully utilized to identify cancer-targeting peptides [6–8],
yet the approach remains painstakingly slow, with clear delays between on-bead ligand identification
and subsequent optimization to a potential imaging agent [7,11]. The aim of this work was to combine
multiple strategies to streamline the development of integrin αvβ6-targeting peptide-based imaging
agents for PET. This included (1) OBOC chemistry to produce large peptide libraries, (2) elimination of
setbacks due to post-screening modifications of peptides by incorporating 4-[19F]fluorobenzoic acid
(FBA) into the peptide library design, (3) utilizing the OBTC fluorescent cell screening assay to expedite
the on-bead library screening process (combine three rounds of screening into a single step), and (4)
structural-based modifications to optimize OBOC-derived peptides for improved serum stability and
pharmacokinetics properties.

The incorporation of a prosthetic group or a chelator into a peptide sequence post-identification
from a library can often have a negative impact on the binding properties [13]. To avoid this, the
OBOC library was designed to contain the nonradioactive prosthetic group [19F]FBA pre-attached
at the C-terminal lysine’s side chain. The placement of the prosthetic group at the C-terminus was
designed to allow for Edman sequencing of the beads identified as selective binders to the cells that
express integrin αvβ6. In addition, the library contained the αvβ6-targeting motif DLXXL, a motif
originally discovered from a phage display library as an important binding sequence for the integrin
αvβ6 [18,23]. Stringent and iterative screening of OBOC libraries for target-selective peptides is lengthy,
time-consuming, and not highly efficient. Traditionally, the OBOC libraries are screened against either
purified proteins or whole cells, and positive beads (i.e., bound to protein or cells) are visualized under
a microscope, and manually isolated [24]. To ensure target-specificity of the peptides, this process is
often carried out in multiple rounds [24], with multiple washing cycles between subsequent rounds
of screening, which often leads to broken or damaged beads. To streamline the screening, the OBTC
cell-screening assay developed by Udagamasooriya et al. was adopted [21]. Using a mixed pool of
two-color fluorescent cells differing only in the expression of integrin αvβ6, beads that were recognized
by the DX3puroβ6mCherry (αvβ6+, red) cells were directly retrieved from the assay in one round
of screening. This approach resulted in the rapid identification of 185 αvβ6-positive beads from the
entire 4-fluorobenzoyl peptide library (~2.5 million compounds), which otherwise would be difficult to
achieve using the traditional screening approach. Conventionally, sequence determination of on-resin
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peptide is commonly carried out with Edman degradation [25–27]; however, this method is rather
time consuming (hours to a day to sequence one peptide) and expensive (~$300/peptide) [28]. With
these limitations in mind for the purpose of this work only, the first five beads identified from the first
aliquot of screening were sequenced by Edman degradation for further evaluations.

Of the five beads sequenced, three contained the three amino acids RGD sequence, a motif known
to mediate cell adhesion and binds to αv integrins, including integrin αvβ6 [29]. The remaining two
sequences did not share any homology and had the unique VGD and GID motifs. Qualitative on-bead
cell binding with DX3puroβ6mCherry (αvβ6+, red) cells confirmed binding of four of the five peptides.
The three RGD containing peptides also showed some interactions with the negative cell line, which
was likely due to recognition of the RGD motif by other RGD-binding integrins also expressed on the
DX3puroEmGFP (αvβ6−, green) cell line. This was corroborated by the ELISA data, where binding to
all αv-integrins except for αvβ5 was observed. The GID containing peptide did not bind to either cell
line or αv-integrins by ELISA, and was possibly an outlier picked by mistake during the manual bead
picking process.

Based on the initial in vitro data, 1 (VGDLTYLKK(FB)) was selected for further optimization.
Modifications at the N-terminus with various chemical moieties, including aliphatic (e.g., acetyl,
methyl, PEG12) and aromatic (e.g., FBA) groups, PEGylation (e.g., PEG28) at the C-terminus, as well as
a combination of both, were performed. Unfortunately, none of the modifications resulted in a new
analog with a better binding affinity or selectivity for the integrin αvβ6, as indicated by the ELISA and
cell binding data. Interestingly, the N-terminus of the peptide appeared to be more tolerant towards
modifications with the aromatic FBA than the aliphatic methyl, acetyl, and PEG moieties, which all
showed poor binding (IC50 > 5–100 µM). These results suggest that the presence of the FB at the
N-terminus of the peptide could possibly have favorable interactions with the protein residues in an
existing binding pocket. A similar observation has been recently reported for a series of 18F-radiolabeled
phosphoamidate peptidomimetic inhibitors for prostate specific membrane antigen (PSMA), where the
FB ring of one of the analogues in the series engaged in an “arene-binding” interaction with the surface
of the protein, and thus contributing to its high affinity in vitro and in vivo [30]. Future molecular
docking studies or co-crystallization of these peptides with integrin αvβ6 are necessary to provide
better understanding of the peptide-integrin interaction.

Although peptides possess many favorable pharmacokinetics properties, such as high target
affinity, good tumor penetration, and rapid non-specific clearance, they are prone to proteolytic
degradation in vivo. PEGylation has been a widely adopted strategy to improve the pharmacokinetics
properties of both small molecules and biopharmaceuticals (e.g., peptides, proteins, and antibodies,
etc.) [31]. Based on our previous experience, the addition of PEG moieties to the N- and C-termini
of the highly αvβ6-selective A20FMDV2 peptide successfully prolonged the biological half-life,
improved metabolic stability and enhanced tumor retention of the [18F]FB-PEG28-A20FMDV2,
[18F]FB-(PEG28)2-A20FMDV2, and [18F]FB-PEG28-A20FMDV2-PEG28 in human tumor xenograft
models [16,19,20]. Of the numerous peptides evaluated, 1 demonstrated the highest serum stability.
To further improve the stability, C-terminal PEGylation of 1 was explored. Our results demonstrated
that C-terminal PEGylation of the peptide (with and without N-terminal FBA, 1h, and 1f, respectively)
indeed did significantly improve the metabolic stability of the peptide, with >95% intact peptide
observed at 1 h post-incubation in mouse serum. Despite having excellent serum stability, both
analogs showed significant reduction in binding affinity (<2% binding to DX3puroβ6 (αvβ6+) cells).
Our data suggests that the introduction of a PEG moiety at the C-terminus of the peptide could
effectively shield the peptide from proteases, which is consistent with the trend observed for our
[18F]FB-A20FMDV2-PEG28 (76% intact at 1 h) [19], comparing to the first generation [18F]FB-A20FMDV2
(0% intact) [16]. However, the introduction of the relatively large PEG moiety (MW = 1.5 kDa) to the
relatively short peptide (MW = 1.1 kDa) resulted in a drastic loss in binding of 1f and 1h to integrinαvβ6.
A possible explanation is that the relatively large PEG chain length could have imposed some steric
shielding effect on the peptide (i.e., PEG wrap around and shield the binding domain from interacting
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with the receptor), and in turn negatively affected the binding affinity of the resulting PEGylated
peptides. This steric shielding effect of PEG on drug conjugates was previously reported by Mu et al.
in a study investigating the impact of PEG chain length and PEGylation site on the bioactivity of the
therapeutic protein Staphylokinase, using both experimental assays and computational simulations [32].
Future work entails the investigation of C-terminal PEGylation of 1 with shorter PEG chain length to
further test this hypothesis.

Since 1 (VGDLTYLKK(FB)) is a relatively small peptide, it is possible that modifications at either
terminus of the peptide could negatively affect the binding affinity due to the close proximity to the
binding domain. Furthermore, a co-crystal structure of the integrin αvβ6 with pro-TGFβ3 peptide
revealed that integrin αvβ6 not only recognizes the RGD motif but also binds preferentially to the
LXXL/I motif that folds into an amphipathic α-helix, fitting into a hydrophobic pocket composed solely
from residues of the β6 subunit [33]. As reported previously, the αvβ6-binding A20FMDV2 peptide has
been confirmed to have a post-RGD α-helix, contributing to its high affinity and selectivity for integrin
αvβ6 [34]. Additionally, other αvβ6-selective peptides reported in the literature, such as the R01
peptide [17] and the H2009.1 peptide [23], are relatively larger, composing of 30- and 20-amino acids,
respectively. To that end, we suspected that the lack of binding affinity and selectivity of our peptide 1
(9-mer) to integrin αvβ6 could be attributed to its inability to form a stabilized α-helix to fit the binding
pocket tightly. This led us to explore extending the C-terminus of 1 to improve its binding affinity and
selectivity for integrin αvβ6. Indeed, extension of the C-terminus of 1 with the KVART sequence from
the known integrin αvβ6-binding A20FMDV2 (NAVPNLRGDLQVLAQKVART) resulted in a 14-mer
peptide with improved binding affinity and a 3-fold increase in binding selectivity for DX3puroβ6

(αvβ6+) cells, and excellent serum stability (>99% intact at 1 h). The CD results demonstrated that both
the control A20FDMV2 and the 14-mer 1i peptides could form an α-helix in 30% TFE/buffer, while
the parent peptide 1 could not under the same condition, which supported our hypothesis on the
importance of peptide secondary structure on binding affinity and selectivity for integrin αvβ6.

4. Materials and Methods

General Experimental Information. All the Fmoc-protected amino acids were purchased from GL
Biochem (Shanghai, China). TentaGel S NH2 resin (90 µm) was purchased from RAPP Polymere GmbH
(Tuebingen, Germany) and NovaSyn TGR resin was purchased from NovaBiochem (Burlington, MA,
USA). All other reagents were purchased from Sigma Aldrich (St. Louis, MO, USA) and Fluka (Mexico
City, Mexico), unless otherwise specified. A reverse-phase high performance liquid chromatography
(RP-HPLC) Beckman Coulter Gold system (Brea, CA, USA) was used for peptide characterization
(Phenomenex Jupiter 4 µ Proteo 90 Å column, Torrance, CA, USA) and purification (Phenomenex
Jupiter 10 µ C18 300 Å column). The mobile phase used was 0.05% trifluoroacetic acid (TFA) in water
(v/v; solvent A) and 100% acetonitrile (solvent B); solvent B isocratic 9% for 2 min followed by a
linear gradient to 81% over 30 min at a flow rate of 1.5 mL/min (analytical RP-HPLC) and 3 mL/min
(semi-prep RP-HPLC). All peptides were characterized using a UltraFlextreme (Bruker, Billerica, MA,
USA) Matrix-assisted laser desorption-ionization time of flight/time of flight (MALDI TOF/TOF) mass
spectrometer with a matrix of sinapinic acid or α-cyano-4-hydroxycinnamic acid.

4.1. OBOC Library Synthesis

The peptide library was assembled on TentaGel resin using the “split-mix” technique and
standard Fmoc-based solid phase peptide synthesis (SPPS), utilizing all l-amino acids except l-cysteine.
Briefly, the resin was first divided into 19 aliquots; each was coupled with a single amino acid
(3 equiv.) using O-(7-azabenzotriazol-1-yl)-N,N,N′,N′-tetramethyluronium hexafluorophosphate
(HATU, 2.7 equiv.) as a coupling agent and N,N-diisopropylethylamine (DIPEA, 3 equiv.) as a base in
N,N-dimethylformamide (DMF) at room temperature for 1.5 h. At the end of each coupling, the resin was
re-pooled, mixed, and split for the next coupling step. Fluorenylmethyloxycarbonyl (Fmoc)-protecting
group was removed with 20% piperidine in DMF, and allyloxycarbonyl (Alloc)-protecting group was



Molecules 2019, 24, 309 11 of 16

removed with tetrakis(triphenylphosphine)palladium(0) (Pd(PPh3)4, 0.5 equiv.), and phenylsilane
(PhSiH3, 20 equiv.) in dichloromethane (DCM). Global deprotection was achieved with trifluoroacetic
acid (TFA) mixture with triisopropylsilane (TIPS) and water (95:2.5:2.5 v/v/v) for 3 h. Finally, the resin
was washed thoroughly with DMF, water, and methanol (10× each) and stored in 70% ethanol at 4 ◦C
until screening.

4.2. Peptide Synthesis

All peptides were synthesized manually on NovaSyn TGR resin (0.25 mmol/g, Burlington, MA,
USA) using standard Fmoc-based SPPS yielding C-terminal amides. Starting with N-α-Fmoc-N-ε-1-
(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)-3-methylbutyl-l-lysine (Fmoc-Lys(ivDde)-OH), orthogonal
protecting group for site-specific labeling, each amino acid was coupled using HATU (2.7 equiv.) as a
coupling agent and DIPEA (3 equiv.) as a base in DMF at room temperature for 1.5 h. The removal of
the Fmoc- and ivDde-protecting groups was facilitated with 20% piperidine in DMF and 2% hydrazine
in DMF, respectively. Peptides were cleaved off the resin using a mixture of TFA, water, and TIPS
(95:2.5:2.5 v/v/v) for 3 h. The resin was washed with fresh TFA and the filtrate was collected then
evaporated under reduced pressure. Crude peptides were precipitated in diethyl ether and extracted
from the water/ether bilayer. All crude peptides were purified on the semi-prep HPLC. The purified
peptides were analyzed on the analytical HPLC and characterized by MALDI-TOF/MS.

4.3. Cell Lines

DX3Puro (αvβ6−) and DX3Puroβ6 (αvβ6+) have been described previously [35,36] and were a
generous gift from Dr. John Marshall. To generate DX3puroEmGFP and DX3puroβ6mCherry, DX3Puro
and DX3Puroβ6 cells were transduced with lentivirus carrying EmGFP or mCherry (under control of
an EF1α promoter) and the blasticidin resistance gene (under control of a hybrid SV40/EM7 promoter).
Transduced cells were cultured at ultra-low density in Dulbecco’s Modified Eagle Medium (DMEM,
Gibco, Waltham, MA, USA), supplemented with 10% FBS and blasticidin (10 µg/mL) at 37 ◦C in the
presence of 5% CO2 for 21 days. Clonal populations of DX3puroEmGFP and DX3puroβ6mCherry
were then isolated, expanded, and screened for fluorescence, and in the case of DX3puroβ6mCherry,
retention of ITGβ6 expression. Integrin expression was determined by flow cytometry.

4.4. Flow Cytometry

Subconfluent cells were washed with PBS and harvested with Trypsin-EDTA (0.25%, Phenol-red,
Gibco). Cells were treated once with PBS containing 0.1% BSA and 0.1% sodium azide (wash buffer),
counted by trypan blue exclusion and resuspended at 6 × 106 cells/mL. Aliquots of cells (50 µL) were
treated with primary antibody clone 10D5 (Millipore Sigma, Burlington, MA, USA, at 10 µg/mL in
serum free DMEM, 50 µL) for 60 min at 4 ◦C and washed twice with wash buffer (WB). AlexaFluor488
goat anti-mouse secondary antibody (ThermoFisher, Waltham, MA, USA, 1:50 dilution in serum free
DMEM, 50 µL) was applied to the cells for 30 min at 4 ◦C. Cells were washed twice, resuspended in
0.5 mL WB, and scanned on the LSRFortesa Flow Cytometer (Becton Dickinson, Franklin Lakes, NJ,
USA) and analyzed using FACSDiva software (8.02, San Jose, CA, USA), acquiring 1 × 104 events.

4.5. Library Screening

4.5.1. Library Beads Preparation

Prior to screening with cells, the beads were thoroughly washed to remove all traces of ethanol.
An aliquot of beads (200 µL, equivalent to approximately 150,000 beads) was dried overnight, washed
over vacuum with deionized water (10×), allowed to swell in water for 2 to 4 h at room temperature,
followed by washing with PBS (5×), and suspended in PBS for 15 min.
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4.5.2. OBTC Fluorescent Cell Screening

DX3puroEmGFP (αvβ6−) and DX3puroβ6mCherry (αvβ6+) cells were cultured in DMEM
supplemented with 10% FBS, 1% PSG, and blasticidin (10 µg/mL) as adherent monolayers at 37 ◦C in
the presence of 5% CO2 in a humidified incubator for 3 days. At 80% confluency, cells were harvested,
counted, and re-suspended in 10% fetal bovine serum (FBS) phenol red–free DMEM for screening.
Briefly, cells (500,000 cells/cell line) were mixed in 20 mL phenol red-free DMEM in a non-treated
tissue culture petri dish (100 mm; Spectrum Chemicals and Laboratory Products) for 1 h. Library
beads (150,000) were added to the mixed cells and incubated at 37 ◦C with gentle mixing for 3 h.
After incubation, the beads were analyzed under a fluorescent microscope. Beads that were >80%
covered in DX3puroβ6mCherry cells (αvβ6-specific) were manually selected with a micropipette. The
αvβ6-specific beads isolated from the assay were sequenced using Edman degradation.

4.6. Competitive Binding ELISAs

Competitive binding ELISAs were performed to evaluate the binding affinity of each
peptide relative to each integrin’s biotinylated natural ligand (transforming growth factor beta 1
latency-associated peptide or TGFβ1-LAP (G&P Biosciences, Santa Clara, CA, USA) for integrins αvβ6

and αvβ8, fibronectin (Thermo Fisher, Waltham, MA, USA) for integrin αvβ1, and vitronectin (Thermo
Fisher) for integrins αvβ3 and αvβ5), as previously described [22]. In brief, anti-αv antibody (P2W7,
5 µg/mL, Abcam) was plated (50 µL/well) at 37 ◦C for 1 h, washed with PBS (3×), and blocked overnight
with blocking buffer (300 µL/well, 5% bovine serum albumin (BSA), 1% Tween 20, in PBS), followed by
washing with PBS (3×). Purified integrin (R&D Systems, Minneapolis, MN, USA) in conjugate buffer
(50 µL/well, 20mM Tris, 1mM MnCl2, 150 mM NaCl, 0.1% Tween, 1% BSA in water) was then added
to each well, incubated at 37 ◦C for 1 h, followed by washing using wash buffer (20 mM Tris, 1 mM
MnCl2, 150 mM NaCl, 0.1% Tween in water, 3×). Serial dilutions of each peptide (10 µM–10 pM or 100
µM–100 pM in conjugate buffer) and each integrin’s respective biotinylated natural ligand was added
to each well (a total volume of 50 µL/well). The plate was incubated at 37 ◦C for 1 h, then washed with
wash buffer (3×). A 1:1000 dilution of ExtrAvidin Horseradish Peroxidase (HRP) was added to each
well (50 µL/well), incubated at 37 ◦C for 1 h, and then washed with wash buffer (3×). The ExtrAvidin
HRP was detected with 3,3′,5,5′-tetramethylbenzidine (50 µL/well, Promega, Madison, WI, USA) for
10–15 min at room temperature. The reaction was stopped by adding 1N H2SO4 (50 µL/well) and the
absorbance was measured in a Multiscan Ascent plate reader (Thermo Fisher) at 450 nm. Half-maximal
inhibitory concentration (IC50) of peptides was determined fitting to sigmoidal dose-response model
in GraphPad Prism 5.0 (San Diego, CA, USA).

4.7. Radiochemical Synthesis

All peptides were radiolabeled with [18F]fluorobenzoic acid ([18F]FBA) on resin following
our well-established solid-phase radiolabeling protocols [16,20,37]. Briefly, [18F]fluoride was
reacted with ethyl-4-(trimethylammonium triflate)benzoate in the presence of 4,7,13,16,21,24-hexaoxa-
1,10-diazabicyclo [8.8.8]hexacosane (KryptofixTM [K2.2.2], (Sigma Aldrich, St. Louis, MO, USA) and
potassium carbonate at 100 ◦C in dimethylsulfoxide (DMSO) for 15 min, followed by saponification of
the ethyl ester protect group to yield [18F]FBA. The [18F]FBA was re-dissolved in DMF and coupled
to the peptide (~5 mg resin) using HATU (5 mg)/DIPEA (10 µL). The 18F-radiolabeled peptide on
resin was cleaved and globally deprotected with trifluoroacetic acid/triisopropylsilane/water 95:2.5:2.5
(v/v/v) mixture for 30 min at room temperature. The crude peptide was purified by semi-prep
radio-RP-HPLC (C18-column) and formulated in PBS for in vitro assays. The purity and molar
activity of the 18F-radiolabeled peptide was confirmed via analytical radio-RP-HPLC. Identity of
the 18F-radiolabeled peptide was confirmed by co-injection of the 19F-peptide, and all analytical
radio-RP-HPLC analysis was performed for each 18F-radiolabeled peptide prior to use.
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4.8. The 18F-Radiolabeled Peptide Cell Binding Assay

Cell binding assay was performed as previously described [19,20]. In brief, each cell line was
suspended at a concentration of 75 × 106 cells/mL in serum-free medium and aliquots of each cell line
(3.75 × 106 cells in 50 µL) was added to 1.5 mL microcentrifuge tubes previously blocked with 5%
BSA in PBS for 10 min at room temperature. The 18F-radiolabeled peptide was prepared in a stock
solution of 148 kBq in 1 mL PBS (pH 7.2). Aliquots of each 18F-radiolabeled peptide (50 µL, 7.4 kBq
per sample) were added to each cell sample and incubated at 37 ◦C for 1 h with frequent suspension.
After incubation, each sample was centrifuged and the supernatant was collected. The cell pellet
was washed with 500 µL PBS, centrifuged, and the supernatant was combined with the previously
collected supernatant samples. The cell pellet was resuspended in 600 µL PBS and transferred to
gamma counter tubes. All pellet and supernatant samples were measured in a Wizard 1470 gamma
counter (Perkin Elmer, Waltham, MA, USA). Cell binding percentage for each cell line was calculated
as the radioactivity associated, with pellet divided by the total radioactivity associated with both the
pellet and supernatant.

4.9. Serum Stability Assay

Peptide stability was evaluated in mouse serum as previously described [19,20]. In brief,
formulated 18F-radiolabeled peptide (~3.7 MBq in PBS) was incubated with mouse serum (500 µL,
Sigma Aldrich, St. Louis, MO) at 37 ◦C for 1 h. An aliquot of 18F-radiolabeled peptide in mouse serum
(100 µL) was taken at 1 h, mixed with absolute ethanol (500 µL, 4 ◦C), and centrifuged to precipitate
serum protein. The supernatant was diluted with HPLC solvent A before radio-HPLC analysis to
determine the fraction of intact 18F-radiolabeled peptide.

4.10. Circular Dichroism (CD) Spectroscopy

CD spectroscopy was performed on a Jasco J-810 spectropolarimeter equipped with a Jasco
CDF-426S Peltier set to 25 ◦C (Easton, MD, USA). Lyophilized peptide was diluted to 0.2 mg/mL in
buffer (final concentration was 25 mM phosphate + 100 mM NaF in PBS, pH 7.4), with or without 30%
TFE (v/v), placed in a quartz cuvette (1 mm), and after extensive purging with nitrogen, scanned in the
region 190–260 nm (scan speed was 20 nm/min). An average of five scans were baseline-subtracted
(buffer, 25 mM phosphate + 100 mM NaF in PBS).

4.11. Data and Statistical Analysis

Statistical analysis and comparisons between groups were performed using the student t test.
A p value of 0.05 or less was considered statistically significant.

5. Conclusions

In conclusion, this work utilized the OBOC technology, applied the OBTC fluorescent cell
screening assay, and provided a framework for optimization of OBOC-derived peptides to streamline
the development of 18F-peptide based imaging agents for PET. To expedite the development of peptide
identified from OBOC library into useful imaging agents, we eliminated the need of post-screening
modification by designing a 4-fluorobenzoyl peptide library, improved the traditional on-bead manual
library screening using OBTC fluorescent cell-screening, and further improved the binding affinity,
selectivity, and serum stability of the lead peptide using numerous strategies, including N-, C-, and
bi-terminal modifications. Chemical modifications for the optimization of an identified peptide
sequence have many challenges, as the outcome of each modification will depend on the peptide
sequence and the target receptor, and their behavior cannot be predicted. It is fair to conclude that
optimizing multiple parameters (i.e., binding affinity, selectivity, and serum stability) of a peptide
identified from a library to be used as an imaging agent remains a daunting task.
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