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The hydroxyl radical (OH) is the primary oxidant in the tropo-
sphere, and the impact of its fluctuations on the methane budget
has been disputed in recent years, however measurements of
OH are insufficient to characterize global interannual fluctuations
relevant for methane. Here, we use a 6,000-y control simula-
tion of preindustrial conditions with a chemistry-climate model
to quantify the natural variability in OH and internal feedbacks
governing that variability. We find that, even in the absence
of external forcing, maximum OH changes are 3.8±0.8% over
a decade, which is large in the context of the recent methane
growth from 2007–2017. We show that the OH variability is not
a white-noise process. A wavelet analysis indicates that OH vari-
ability exhibits significant feedbacks with the same periodicity
as the El Niño–Southern Oscillation (ENSO). We find intrinsi-
cally generated modulation of the OH variability, suggesting
that OH may show periods of rapid or no change in future
decades that are solely due to the internal climate dynamics (as
opposed to external forcings). An empirical orthogonal function
analysis further indicates that ENSO is the dominant mode of
OH variability, with the modulation of OH occurring primarily
through lightning NOx . La Niña is associated with an increase
in convection in the Tropical Pacific, which increases the simu-
lated occurrence of lightning and allows for more OH production.
Understanding this link between OH and ENSO may improve the
predictability of the oxidative capacity of the troposphere and
assist in elucidating the causes of current and historical trends
in methane.
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The hydroxyl radical (OH) is the primary oxidant for many
non-CO2 greenhouse gases (GHGs), such as methane, as

well as a number of ozone-depleting substances (1, 2). As such,
the burden and distribution of OH dictates the lifetime of many
important atmospheric trace gases and will affect the global
warming potential of many GHGs. However, we currently lack
a predictive understanding of OH variability on decadal-to-
centennial timescales, evidenced by the disagreement between
global models in their simulation of OH trends (e.g., ref. 3).
For example, Naik et al. (3) found large intermodel diversity in
both the sign and magnitude of preindustrial to present-day OH
changes, ranging from −12% to +14%.

Efforts to characterize the factors that control global mean
OH have generally focused on the ozone photolysis frequency
(JO3), specific humidity (q), sources of reactive nitrogen (SN ;
i.e., NOx ), and sources of reactive carbon (SC ; e.g., methane,
CO, and NMVOCs) (e.g., refs. 5–7). Specifically, Murray et al.
(7) compared simulations of preindustrial and present-day
conditions to derive the following relationship:

[OH]∝ JO3q
SN

S
3/2
C

. [1]

The dependence on JO3 and q is because production of OH on
global scales is due to the photolysis of ozone in the presence
of water vapor, dependence on SN is because increases in NOx

result in faster recycling of OH via reaction of HO2 or RO2 with
NO, and OH is inversely related with SC because the dominant
loss process for OH involves reactions with CO, methane, and
NMVOCs. This relationship from Murray et al. (7) highlights the
major factors that could drive changes in global mean OH.

Previous work from Turner et al. (8) and Rigby et al. (9)
has shown how relatively small variations in OH (on the order
of ∼3% over a 10-y period) can explain present trends in
atmospheric methane; however, direct measurements of OH
are neither sufficiently precise nor spatially dense enough to
characterize global OH variations of this magnitude. Instead,
previous work has used measurements of methyl chloroform
(CH3CCl3) to indirectly estimate the global OH burden, since
OH is the primary oxidant for methyl chloroform and the oxi-
dation is slow enough to represent a global integral (e.g., refs.
10–13). Many of these previous studies have found OH to be
well buffered (e.g., refs. 13–15). This has led to a number
of recent studies assuming that OH is time-invariant (i.e., no
interannual variability) when analyzing methane trends (e.g.,
refs. 16 and 17).

Previous work has identified the importance of the El Niño–
Southern Oscillation (ENSO) in tropospheric ozone (e.g., refs.
18–20); however, there has been little work discussing the rela-
tionship between ENSO and OH. A notable exception is the
work of Prinn et al. (10, 11), who discuss how ENSO may have
impacted their methyl chloroform measurements at Samoa due
to its location in the Western Pacific. They suggest a tentative
link between warm, cloudy El Niño events and low OH. Krol and
Lelieveld (21) also mention the impact of biomass burning on
OH during El Niño. Here we use a coupled chemistry-climate
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model to demonstrate how ENSO can induce OH variability
and trends that are large enough to explain present trends in
atmospheric methane even in the absence of changes in methane
emissions.

Methods and Results
We use a 6,000-y preindustrial control simulation conducted
with the Geophysical Fluid Dynamics Laboratory CM3 (GFDL-
CM3) model. GFDL-CM3 incorporates an atmospheric chem-
istry model within the framework of the atmosphere, ocean,
land, and sea-ice components (3, 22–24). Most pertinent to our
application is the fully coupled tropospheric and stratospheric

chemistry. The merged chemical scheme includes tropospheric
chemistry based on MOZART-2 (Model for OZone and Related
chemical Tracers; ref. 25; simulates atmospheric concentrations
of 97 chemical species including aerosols) and stratospheric
chemistry based on AMTRAC (Atmospheric Model with Trans-
port and Chemistry; ref. 26). The isoprene mechanism in GFDL-
CM3 does not include OH recycling pathways discussed in
Taraborrelli et al. (27), and modifying the chemistry scheme
to include the OH recycling mechanisms from isoprene oxida-
tion could alter the OH variability in the model. GFDL-CM3
uses a cubed sphere grid with 48 × 48 cells per face, result-
ing in a native horizontal resolution ranging from ∼163 km to

Fig. 1. Statistics of OH anomalies in a preindustrial control simulation. Left shows the monthly OH anomalies in the tropics (23◦N–23◦S) from years 3,000
to 6,000 in the GFDL-CM3 control run. OH anomalies are the deseasonalized OH deviations (pressure-weighted mean, 300 to 800 hPa) from the long-term
mean, normalized to the long-term mean, and expressed as a percentage: (x− x̄) · x̄−1. Seasonal cycle is removed using a stable seasonal filter. Top Right
shows the distribution of OH anomalies (gray bars) and a normal distribution fitted to the anomalies (black line). Middle Right is the maximum change in
OH over a 10-y period (gray bars) and a normal distribution fitted to ∆OH (black line). Bottom Right is the partial autocorrelation function (PACF) of the
OH anomalies; filled black circles indicate significant lags (α= 0.001).
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∼231 km with 48 vertical layers. Results analyzed here are at
monthly time resolution regridded to a horizontal resolution
of 2◦× 2.5◦. This control simulation holds all forcings constant
and uses prescribed (static) vegetation. Specifically, the land
use and land cover, tropospheric ozone precursor emissions,
solar and volcanic forcings, and GHG concentrations (includ-
ing methane) are held at 1860 conditions. Production of NOx

by lightning is parameterized as a function of convective cloud-
top height and thus varies with the model meteorology. Changes
in stratospheric ozone concentrations can impact the photoly-
sis in the troposphere. GFDL-CM3 has been shown to have a
reasonable simulation of ENSO based on CMIP5 intercompar-
isons (28–34). The ENSO period is slightly short (∼2.5 y), and its
anomaly patterns and teleconnections tend to be shifted slightly
west of observed [see figure 18 in Donner et al. (22)].

Fig. 1 shows the time series of the deseasonalized OH anoma-
lies in the tropics (23◦N–23◦S) from years 3,000 to 6,000
in the control simulation. We use pressure-weighted tropo-
spheric mean quantities from 300 to 800 hPa. [Boundary layer
is excluded because concentrations of methane are prescribed
below 800 hPa, which may dampen the potential variability and
feedbacks. Using the full tropospheric column makes little dif-
ference in the periodicity (see SI Appendix, Fig. S1).] The first
3,000 y of the control simulation are discarded due to a climate
drift of ∼ 1◦C temperature increase and a change in computer
architecture in year 1,070 of the control simulation that resulted
in a ∼4% increase in global mean OH (see SI Appendix, Fig.
S2). From Fig. 1, we find an OH interannual variability of±1.0%

(1-σ). This variability is consistent with previous work that finds
global mean OH to be well buffered [e.g., Montzka et al. (13),
who infer an interannual variability of 2.3± 1.5% using observa-
tions of methyl chloroform]. However, the present atmosphere
is substantially NOx -richer than the preindustrial, and we may
expect more OH recycling in the present. A qualitative exami-
nation of the OH anomaly time series shows regular excursions
to ±2% for individual decades. These excursions could lead
to transients in the atmospheric record for molecules whose
atmospheric lifetime is dictated by OH, such as methane. To
determine the distribution of decadal-scale changes in OH, we
randomly draw decades from this 3,000-y control simulation and
compute the maximum change in OH over a decade (∆OH).
We find ∆OH over a decade is 3.8± 0.8% (see Fig. 1, Mid-
dle Right). These changes in OH alone are large enough to
explain present trends in methane, independent of changes in
methane sources.

The distribution of decadal changes in OH provides evidence
of atmospherically relevant changes in OH in the absence of
external forcing. However, it does not indicate whether this sim-
ply arises from random sampling of a white-noise process or
if there is a mechanism that could provide longer term feed-
backs. To investigate the possibility of feedbacks, we compute the
partial autocorrelation function (PACF) of the OH anomalies.
Black dots in Fig. 1, Bottom Right indicate lags that are significant
at the 99.9% level (α= 0.001). We find numerous significant,
large lags between 0 and 5 y as well as significant, but weaker,
lags going out 10+ y. This indicates that there are feedbacks in

Wavelet power spectrum (deseasonalized 23°N–23°S OH anomalies) 

P
er

io
d

 (
yr

)

0.25

0.5

1

2

4

8

16

32

64

128

256

Power (%2)

0.25

0.5 

1   

2   

4   

8   

16  

32  

64  

128 

256 

Julian date (yr)
3000 3500 4000 4500 5000 5500 6000

A
ve

ra
g

e 
va

ri
an

ce
 (

%
2 )

0

0.5

1

1.5

2
Scale-average time series (1-8 yr)

0 1 2 3
P

er
io

d
 (

yr
)

95% confidence level

0.0625 0.25 1 4 16
Power (%2)

95% confidence level
OH anomalies

Fig. 2. Wavelet analysis of the OH anomalies (300 to 800 hPa) in a preindustrial control simulation. Top Left is the bias-rectified local wavelet power
spectrum of the OH anomalies from Fig. 1 using a Morlet wavelet following Torrence and Compo (4). Left axis is the Fourier period (in years), bottom axis is
time (in years), and shading is the power (in %2). Right is the global wavelet spectrum for the OH anomalies (solid red line) and the 95% confidence level
(dashed blue line) assuming red noise. Bottom is the scale-averaged wavelet power over the 1–8 y band for the OH anomalies (solid red line) and the 95%
confidence level (dashed blue line) assuming red noise.
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the chemistry or climate system that are providing some memory
in the OH anomalies.

Since OH variability exhibits significant feedbacks on annual-
to-decadal timescales, we examine the question: “What is the
mechanism providing this memory in OH?” Fig. 2 shows the
wavelet power spectrum for the deseasonalized OH anomalies
from years 3,000 to 6,000 in the GFDL-CM3 control simulation
using a Morlet wavelet following Torrence and Compo (4). We
see a strong periodicity in the OH anomalies that peaks at ∼3 y
(Fig. 2, Right). The power spectrum found here bears a strong
resemblance to that of ENSO, diagnosed from the NINO3.4 SST
anomalies (see SI Appendix, Fig. S3). Fig. 2, Bottom shows how
the variance changes over time when averaged over 1- to 8-y peri-
ods. We find modulation of the OH variability that is entirely
due to the internal climate dynamics—that is to say, that it is
intrinsically generated variability and not driven by a change in
forcings.

This modulation of the OH variability in the absence of exter-
nal forcing is striking. We find periods of large variability (e.g.,
years 5,000 to 5,050) and quiescent periods (years 4,800 to 4,850).
If the real-world OH is similarly modulated, then it is possible
that the research community could have observed an unrepresen-
tative ∼15 y of OH variability in the recent record, confounding
attempts to attribute observed methane trends to forced changes
in sources or sinks. This finding of modulation in the OH vari-
ability also has implications for future methane trends. It implies
that the envelope of potential methane trajectories may be
larger than previously assumed due to this nonstationary vari-
ability in the sink. In other words, we could observe transients
in the methane record that arise from variability in OH, inde-
pendent of changes in methane sources. This would be super-
imposed onto the trends due to external forcings (e.g., methane
emissions).

Analysis shown in Fig. 2 indicates the OH anomalies have a
periodicity similar to ENSO. We further investigate the link to
ENSO by examining the spatial patterns of OH. Fig. 3A shows
the climatology of OH with a peak OH concentration off the
coast of Africa. However, much of this spatial pattern is dictated
by the seasonal cycle. Fig. 3B shows the spatial variability in OH
that is not associated with the seasonal cycle. We find some of
the largest variability in the Tropical Pacific, Eastern Africa, and
the Indo-Gangetic Plain. This is surprising because the Tropical
Pacific, with little OH (e.g., ref. 35), is not a region that would
stand out as important from a qualitative examination of the OH
climatology in Fig. 3A.

We compute the EOFs and the associated principal compo-
nents (PCs) to identify the spatial patterns that explain the most
variability in the OH anomalies. Fig. 3C shows the first EOF,
which explains 17% of the variance in the OH anomalies. The
second EOF (SI Appendix, Fig. S4) explains 7% of the variance.
The leading EOF is found to be robust, but it is unclear if the
second EOF is a robust pattern, and EOFs 3+ are not robust (SI
Appendix, Fig. S5). We also find that EOF 1 explains 25 ± 3% of
the variance if we focus on 100-y records (SI Appendix, Fig. S6),
indicating that this pattern of variability may be more important
on decadal-to-centennial timescales. The EOF 1 pattern and PC
1 time series are strongly indicative of ENSO. Specifically, from
Fig. 3C we see that EOF 1 has a dipole feature in the Tropical
Pacific and PC 1 is anticorrelated with the NINO3.4 SST anoma-
lies (r = −0.84; Fig. 3D). From this we conclude that ENSO is
the dominant factor controlling the OH variability in the absence
of external forcings.

There are a number of mechanisms through which ENSO
could impact OH. ENSO could affect (i) JO3 by changing
the Walker circulation and stratospheric ozone, (ii) q through
changes in temperature via Clausius–Clapeyron, (iii) SN through
changes to convection and consequently emissions of NOx from
lightning, and (iv) SC through changes to biomass burning or
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Fig. 3. Modes controlling the OH variability in a preindustrial control sim-
ulation. A shows the OH climatology (300 to 800 hPa) from years 3,000 to
6,000. B shows the deseasonalized OH standard deviation where each grid
cell is deseasonalized using a unique stable seasonal filter. C shows the first
empirical orthogonal function (EOF) that explains 17% of the variance in
the OH anomalies. EOF is unit length (sum of the squares is equal to 1)
and computed using the spatially weighted [

√
cos (lat)], unnormalized OH

deviations (x− x̄). D shows the first PC (black line) that corresponds to the
first EOF. Only the first 100 y (out of 3,000 y) is shown for the PC. Red and
blue shading in D are the NINO3.4 SST anomalies (area-averaged sea surface
temperature anomalies from 5°S–5°N and 170°W–120°W).

wetland or biogenic VOC emissions. The fourth mechanism is
not feasible here because GHG concentrations are prescribed
and biomass burning and biogenic VOC emissions are unchang-
ing in the preindustrial control simulation. We find the strongest
correlation between OH and lightning NOx emission anoma-
lies (r = 0.52; see SI Appendix, Fig. S7), indicating that changes
in NOx emissions from lightning are the primary mechanism
through which ENSO is modulating OH. This is reinforced by a
strong correlation between the lightning NOx emission anoma-
lies and the leading PC (r = 0.78; see SI Appendix, Fig. S8).
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Tropical Pacific from 1980–2017.

This is not to say that changes in q or JO3 are unimportant; it
means that SN is the largest lever on OH in the GFDL-CM3
model and highlights the importance of understanding how trop-
ical lightning may change in the future (e.g., ref. 36). There will
also be other indirect effects from changes in SN [e.g., Murray
et al. (7) discuss how changing NOx could influence ozone
production and thus the primary source of HOx ]. Mechanisti-
cally, this means that in this model periods of La Niña lead to
increased deep convection in the Tropical Pacific that increases
the NOx produced from lightning and, consequently, increases
the recycling of OH. We find tenuous evidence of this relation-
ship between La Niña and Tropical Pacific lightning flash counts
in the present-day satellite record (Fig. 4), in agreement with pre-
vious work that found a relationship between maritime lightning
and La Niña (e.g., ref. 37).

Conclusions
A 6,000-y preindustrial control simulation of the GFDL-CM3
model shows OH variability that is large enough to impact
our understanding of present and future trends in atmospheric
methane. We also find strong modulation of the OH variability,
intrinsically generated by the model, in the absence of external
forcings. The finding of intrinsically generated modulation of OH
variability bares resemblance to work on ENSO from Wittenberg
(38), who showed strong interdecadal and intercentennial mod-
ulation of ENSO in a preindustrial control simulation. A wavelet
and EOF analysis of the OH anomalies indicate that ENSO is

the dominant factor controlling this OH variability. Periods of
La Niña are found to be positively correlated with increases in
OH. This is primarily due to increases in the occurrence of light-
ning in the Tropical Pacific during La Niña, which in turn lead
to more recycling of OH. This relationship between lightning in
the Tropical Pacific and La Niña is also seen in the present-day
record of lightning and ENSO, lending credence to this link.

This link between ENSO and OH may help improve the pre-
dictability of the oxidative capacity of the troposphere. While we
cannot directly measure OH to a precision that is necessary to
understand present trends in some non-CO2 GHGs, we may be
able to use information about ENSO to reduce our uncertainty
on OH. Such a relationship can help improve the predictability
of OH and, consequently, methane. Moving forward, this rela-
tionship could be used as a weak constraint when estimating OH
or methane through inverse methods.
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