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Abstract

Context: There is insufficient knowledge about the chondrocyte membranome and its
molecular composition.
Objective: To develop a Triton X-114 based separation technique using nanoLC-MS/MS
combined with shotgun proteomics to identify chondrocyte membrane proteins.
Materials and methods: Articular chondrocytes from equine metacarpophalangeal joints were
separated into hydrophobic and hydrophilic fractions; trypsin-digested proteins were analysed
by nanoLC-MS/MS.
Results: A total of 315 proteins were identified. The phase extraction method yielded a high
proportion of membrane proteins (56%) including CD276, S100-A6 and three VDAC isoforms.
Discussion: Defining the chondrocyte membranome is likely to reveal new biomarker targets for
conventional and biological drug discovery.
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Introduction

Proteins that are embedded in or associated with biological

membranes play critically important roles in a wide range of

vital cellular functions including transport, cell–cell commu-

nication and signalling processes. As the plasma membrane

(PM) acts as the first barrier to the extracellular environment,

PM proteins enable cells to sense and respond to external

stimuli in a specific manner – they include receptors; cell

recognition, cell–cell or cell–matrix adhesion sites; enzymes;

as well as channels, pores and transporters for ions, small

molecules and nutrients (Cordwell & Thingholm, 2010).

Based on domain predictions by different methods, membrane

proteins comprise approx. 15–30% of the human proteome

(Almen et al., 2009; Kabbani, 2008), highlighting the funda-

mental importance of membrane-associated physiological

processes. PM proteins are also the primary targets of many

of the drugs that are currently in our pharmaceutical arsenal;

indeed, the majority (over 70%) of currently marketed drugs

act on PM proteins (Almen et al., 2009; Rabilloud, 2003). The

qualitative and quantitative composition of the PM proteome

is known to be significantly altered during cellular differen-

tiation and disease. Membrane proteins have the potential to be

selective and sensitive biomarkers for disease progression and

prognosis. Furthermore, membrane proteins that exhibit

altered expression in disease states could be suitable candi-

dates for the development of sensitive receptor-targeted

imaging agents for non-invasive monitoring of biological

and inflammatory processes (Dissoki et al., 2015; Samkoe

et al., 2014; Sega & Low, 2008). Therefore, there is a critical

need for the development of tools and technologies for

identification and characterisation of membrane proteins to

complement physiological methods for elucidating their

functions. This combined approach will promote the discovery
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of new and better drugs, and the development of novel

treatment strategies of diseases.

Integral membrane proteins have an amphiphilic structure;

apart from hydrophilic domains located on the external

cytosolic or organellar surfaces, they also contain hydrophobic

(membrane-spanning) regions that directly interact with the

lipid bilayer of the membranes in which they are embedded.

High-resolution and high-throughput proteomic techniques

have been widely applied to study the PM proteome of various

cell types [for a review please see Cordwell & Thingholm

(2010)]. However, there are serious (mainly technical) limi-

tations that currently hinder advances in this field. In addition

to their very low relative abundance, their amphiphilic nature

and poor solubility makes membrane proteins challenging to

purify, identify and characterise on a proteomic scale. The use

of non-ionic detergents (e.g. the Triton X series in which the

number of hydrophilic oxyethylene units attached to the

hydrophobic octylphenyl residue determines the specific

physicochemical properties) has enabled the solubilisation

and characterisation of these proteins. Their use is based on the

principle that water-soluble proteins, unlike amphiphilic

membrane proteins, show little or no interaction with these

compounds; consequently, only integral membrane proteins

form mixed micelles with non-ionic detergents (Bordier,

1981). The cloud point, the temperature at which phase

separation occurs between the detergent and the aqueous

phase, is at approximately 20 �C for Triton X-114, which

makes its application particularly convenient in studies aimed

at analysing integral membrane proteins (Bordier, 1981;

English et al., 2012; Mathias et al., 2011).

In addition to the application of non-ionic detergents, a

number of other approaches have been developed over the past

decades for the selective enrichment of membrane proteins

including precipitation and gradient centrifugation, biotinyla-

tion and affinity enrichment or the application of glycopro-

teomics [reviewed in Cordwell & Thingholm (2010)]. The

main technical challenge remaining in the analysis of integral

membrane subproteomes, however, is the ability to obtain high

purity membrane protein samples without the presence of high

abundance contaminating proteins from the cytoplasm or other

intracellular organelles. Comprehensive analyses of the

membrane protein complement (also known as the membra-

nome) of distinct cell types are relatively scarce; this can at

least partially be attributed to the challenges and limitations

described above. It is particularly true for chondrocytes, the

single cell type in articular cartilage that serves as a

specialised load-bearing tissue with unique tribological

properties such as a low-friction gliding surface and peculiar

rheology in synovial joints. The extracellular matrix (ECM)

of hyaline cartilage, in which chondrocytes are embedded,

primarily consists of a meshwork of type II collagen fibres

and other minor collagens (types VI, IX and XI); large

aggregating proteoglycans (e.g. aggrecan) and their constitu-

ent glycosaminoglycans (GAGs); as well as high quantities

of osmotically bound water (approx. 70% of the net weight

of ECM) and counteracting cations attracted by the net

negative charge of GAGs (Archer & Francis-West, 2003).

Because of its avascular nature and the inability of mature

chondrocytes to divide in situ, once damaged, articular

cartilage seldom regenerates on its own. Therefore, lesions

due to either osteoarthritis (OA) or traumatic injuries are

associated with progressive degeneration of articular cartil-

age, pain and disability. OA is still an unresolved clinical

problem, and developing novel therapies or drug targets

poses a major challenge (Mobasheri, 2013).

In order to identify proteins involved in pathological

processes affecting the structure and function of articular

cartilage such as OA, it is first necessary to characterise the

normal protein complement of chondrocytes in healthy

tissues. For proteomic studies, cartilage is very challenging

as the chondrocyte, its sole cell type, forms only 1–2% of the

volume of the tissue (Lambrecht et al., 2010). Although the

proteome of healthy (Lambrecht et al., 2010; Ruiz-Romero

et al., 2005) and OA-affected chondrocytes (Lambrecht et al.,

2008; Ruiz-Romero et al., 2008; Tsolis et al., 2015), as well as

the secretory profile (secretome) of a cartilage tissue explant

model of OA (Williams et al., 2013) has been published, the

‘‘hidden’’ proteome, i.e. low-abundance membrane proteins

or other poorly soluble proteins may have remained undis-

covered in those studies. Here, we report a technique for

profiling integral membrane proteins in primary equine

articular chondrocytes using an optimised Triton X-114

phase partitioning technique and LC-MS/MS analysis for

protein identification. To the best of our knowledge, this work

represents the first and most comprehensive analysis of the

integral membrane subproteome in chondrocytes reported.

This technique allowed us to establish CD276, S100-A6

(calcyclin) and three VDAC isoforms as key components of

the chondrocyte membranome.

Materials and methods

Isolation and culture of primary equine articular
chondrocytes

Articular chondrocytes were isolated from equine articular

cartilage. The animal used in this study was euthanized in a

UK-based abattoir for research-unrelated purposes, and

stunned before slaughter in accordance with Welfare of

Animals (Slaughter or Killing) Regulations 1995. Ethical

approval for the use of abattoir-derived animal tissues was

obtained from the Ethics Committee of the School

of Veterinary Science and Medicine, University of

Nottingham, with input from members of the University

of Nottingham Animal Welfare and Ethical Review Body

(AWERB). After opening the metacarpophalangeal joint

cavity under aseptic conditions and rinsing the articular

cartilage surface with sterile physiological saline, articular

cartilage shavings were taken from the distal end of the

metacarpal bone using a sterile surgical blade and placed in

serum-free DMEM (Thermo Fisher Scientific, Inc., Waltham,

MA) supplemented with 4% Penicillin/Streptomycin solution

(P/S, Sigma-Aldrich, St. Louis, MO) pre-warmed to 37 �C as

described previously (Williams et al., 2013). The shavings

(�100mm thick, �5 mm in diameter) were taken from the

superficial part of macroscopically normal cartilage areas

without any visible signs of degeneration, including discol-

ouration, fibrillation and surface irregularities, to avoid the

deep (calcified) layers of articular cartilage or the cartilage–

bone interface. The surface of articular cartilage did not

receive treatment prior to sampling to preserve the lamina
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splendens (the uppermost surface layer of articular cartilage)

(Dunham et al., 1988).

Cartilage shavings were washed three times with sterile

PBS containing 10% P/S. Articular chondrocytes were

isolated by overnight incubation with 0.1% type II collagenase

(from Clostridium histolyticum; Invitrogen, Carlsbad, CA)

dissolved in serum-free DMEM containing 4% P/S solution at

37 �C. Following dissociation of cartilage shavings by tritur-

ation the solution was filtered through a 70-mm nylon mesh

filter to yield a single cell suspension, and centrifuged at

800�g for 5 min at room temperature. After washing twice in

serum-free DMEM, cells were resuspended in DMEM

containing 10% foetal calf serum (FCS; Invitrogen) and 2%

P/S solution, seeded into tissue culture flasks (Nunc; Thermo

Fisher Scientific), and cultured in a CO2 incubator at 37 �C.

Cells were subcultured when they reached approx. 80%

confluency. The media was changed on every second day.

Cells from the second passage were used for further

experiments. A schematic overview of the experimental

design is shown in Figure 1.

Sample preparation, phase partitioning using triton
X-114, and methanol/chloroform extraction

Approximately 80% confluent cultures of primary equine

articular chondrocytes from passage 2 were washed with PBS,

then 2 mL of PBS containing 80 mL of protease inhibitor

cocktail (25�, Sigma-Aldrich) was added to the flasks. The

flasks were placed on ice, and cells were liberated using a cell

scraper (Greiner, Stonehouse, UK). The solution was

centrifuged (at 850�g for 2 min, room temperature), and

the pellet was resuspended in 600 mL of PBS containing 24 mL

of 25� protease inhibitor cocktail. After incubating on ice for

15 min, the suspension was transferred into a glass homogen-

iser and the cells were lysed.

Following the addition of Triton X-114 (Sigma-Aldrich) at

a final concentration of 0.75%, the lysate was incubated on ice

Figure 1. Schematic overview of the experi-
mental design used in this study.
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for 30 min with vortexing every 5 min. After centrifugation

(30 min, 10 000�g, 4 �C) the supernatant was retained and

incubated at 37 �C for 5 min, and then on ice for 15 min. The

sample was centrifuged again (30 min, 10 000�g, 4 �C) and

the supernatant was incubated at 37 �C for 5 min. Following

centrifugation for 3 min (1000�g, room temperature), two

layers appeared. The upper layer (aqueous phase) contained

the hydrophilic proteins, the lower layer (detergent phase)

contained the hydrophobic proteins. To maximise the recov-

ery of membrane proteins, the upper layer was extracted

further by adding Triton X-114 at a final concentration of

0.75% and the phase partitioning procedure was repeated.

Finally, the two lower layers were combined together to

constitute the hydrophobic fraction, and the upper layer was

treated as the hydrophilic fraction.

To remove Triton X-114 from the samples, four times

the sample volume of methanol (Thermo Fisher Scientific)

was added to both fractions. After centrifugation at 15 000�g

for 10 s at room temperature, two times the original

sample volume of chloroform (Sigma-Aldrich) was added.

The mixture was centrifuged again, and after adding three

times the original sample volume of HPLC grade water, the

sample was centrifuged for 5 min (15 000�g, room tempera-

ture). The proteins accumulated at the interface between the

two layers formed during the last centrifugation step.

Following removal of the upper layer, three times the

sample volume of methanol was added, and after spinning

for 5 min (15 000�g, 4 �C), the pellet containing the proteins

was retained and air-dried.

Quantification of proteins

After methanol/chloroform extraction, the pellets were

dissolved in sample resuspension buffer containing 4% SDS

(Bio-Rad Laboratories, Inc., Hercules, CA), 0.2 M Tris pH

7.4 (Bio-Rad) and 0.15 M NaOH (Thermo Fisher Scientific).

Protein concentration in the samples was determined using

the Bio-Rad DC Protein Assay Kit according to the manu-

facturer’s protocol (Bio-Rad). The absorbance of the assayed

samples at 655 nm was read using a Bio-Rad Benchmark

Microplate Reader.

Polyacrylamide gel electrophoresis (SDS–PAGE)

Loading buffer containing 4�Laemmli buffer and 3 M

dithiothreitol (DTT; Bio-Rad) was added to each sample

(typically, 4.8 mL 4�Laemmli buffer and 1.2 mL 3M DTT was

added to 18 mL sample resuspension buffer), and then proteins

were fractionated by SDS–PAGE on a 12% polyacrylamide

gel. Proteins were initially run at 32 mA constant current, and

once the dye front reached the bottom of the stacking gel, the

current was increased to 45 mA. Protein bands were visualised

by silver staining using a Hoefer Processor Plus automated gel

stainer (Amersham, GE Healthcare Life Sciences, UK). The

protocol for silver staining was performed as described

previously (Yan et al., 2000).

Preparation and trypsin digestion of proteins for
LC-MS/MS analysis: in-solution digestion

The protein pellets from the methanol/chloroform extraction

step were resuspended in a solution of 50 mM ammonium

bicarbonate (AMBIC) (Sigma-Aldrich) and 10 mM DTT

(Bio-Rad), and incubated at 37 �C for 30 min, vortexing

every 10 min. Following the addition of iodoacetamide (IAA,

Bio-Rad) at a final concentration of 55 mM, samples were

incubated at 37 �C for 45 min in dark. Then, 1.2 mL of –20 �C
acetone was added to each sample, and after mixing, the

samples were incubated at 4 �C overnight. Protein precipitates

were pelleted by centrifugation at 15 000�g for 5 min at 4 �C.

Pellets were air-dried for 1 min, and then resuspended

in 20 mL of trypsin buffer including 50 mM AMBIC and

10 ng/mL Trypsin Gold (Promega, Madison, WA). Samples

were vortexed until the pellets were fully dissolved and then

incubated at 37 �C for 16 h. Finally, 1 mL of formic acid (1%)

was added to each sample to stop the reaction. Samples were

stored at –80 �C until analysis.

LC-MS/MS analysis

Samples were injected into a 15 cm C18 Pepmap column

using a Bruker (Coventry, UK) Easy-nanoLC UltiMate�

(Bruker, Coventry, UK) 3000 RSLCnano chromatography

platform with a flow rate of 300 nL/min to separate peptides.

Three microlitres of each sample was injected into the HPLC

column. After peptide binding and washing processes on the

column, the complex peptide mixture was separated and

eluted by a gradient of solution A (100% water + 0.1% formic

acid) and solution B (100% ACN + 0.1% formic acid) over

115 min, followed by column washing and re-equilibration.

The peptides were delivered to a Bruker (Coventry, UK)

amaZon ETD ion trap instrument (Bruker, Coventry, UK).

The top five most intense ions from each MS scan were

selected for fragmentation. The nanoLC-MS/MS analysis was

performed three times on the samples (all triplicates).

Peptide and protein identification, data analysis and
bioinformatics

Processed data were compiled into *.MGF files and

submitted to the Mascot search engine (version: 2.4.1) and

compared to mammalian entries in the SwissProt and NCBInr

databases. The data search parameters were as follows: two

missed trypsin cleavage sites; peptide tolerance, ±0.3 Da;

number of C13¼1; peptide charge, 1+, 2 + and 3 + ions.

Carbamidomethyl cysteine was specified as a fixed modifi-

cation, and oxidised methionine and deamidated asparagine

and glutamine residues were specified as variable modifica-

tions. Individual ions Mascot scores above 50 indicated

identity or extensive homology. Only protein identifications

with probability-based protein family Mascot MOWSE

scores above the significant threshold of 450 (p50.05)

were accepted. After mass spectrometric identification,

315 proteins were classified manually using the UniProt

(http://www.uniprot.org/) database, considering homologous

proteins and further literature information. For many pro-

teins, assigning a definitive cellular compartment and/or

function was a difficult task because of the limitations in

accurate predictions and lack of experimental evidence. Also,

many proteins may actually reside in multiple cellular

compartments. To assign identified proteins to specific

organelles, the references to subcellular localisations in the
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UniProt database, as well as gene ontology (GO) annotations

were used.

Validation of selected membrane proteins by western
blotting

Hydrophobic and hydrophilic protein samples were loaded

onto Mini-Protean 3 gels. Approximately 20 mg protein per

lane was separated by 7.5% SDS–PAGE gel for immuno-

logical detection of selected proteins. Proteins were trans-

ferred to PVDF membranes (Immun-Blot� PVDF

Membrane, Bio-Rad). After blocking in 5% non-fat dry

milk in PBST, membranes were incubated with the anti-Na+,

K+-ATPase primary antibody (diluted 1:100) in blocking

solution at 4 �C overnight, with gentle rotation. Membranes

were then incubated with the secondary antibody (anti-mouse

labelled polymer HRP, DakoCytomation, 1:1000 dilution) in

blocking solution at room temperature for 1 h. Membranes

were developed by enhanced chemiluminescence reaction

(Amersham) according to the instructions of the manufacturer

and using auto-radiographic films (Hyperfilm, Amersham).

Films were scanned on a calibrated densitometer (Bio-Rad

GS800) operated by Quantity One version 4.4.1 software

(Bio-Rad). Optical density of bands was determined

using ImageJ version 1.47 (ImageJ, Bethesda, MD; http://

imagej.nih.gov/ij); data were normalised to the value detect-

able in the hydrophilic fraction.

Results

Triton X-114 phase separation efficiently enriches
membrane proteins from primary chondrocyte
cultures

To confirm whether the Triton X-114 phase separation

method was able to efficiently extract and enrich lipid-soluble

membrane proteins from primary articular chondrocytes

cultured in vitro, equal amounts of proteins (25 mg) from the

hydrophobic and the hydrophilic fractions were loaded onto

polyacrylamide gels. Following SDS–PAGE and silver

staining, protein bands with clearly different patterns

appeared in the gels with several strong bands present in

the hydrophobic fraction only (Figure 2A). To validate the

effectiveness of the Triton X-114 extraction method, western

blot experiments were performed on both fractions to probe

for the presence and relative abundance of a membrane-bound

Na+, K+-ATPase. As seen in Figure 2B, the band for this

protein in the hydrophobic pool was more than 2.6-fold

stronger than that in the hydrophilic pool, demonstrating that

lipid-soluble proteins were extracted and enriched in the

hydrophobic fraction.

To investigate the protein content of the two fractions,

trypsin-digested protein fractions were analysed by nanoLC-

MS/MS using Bruker Easy-nanoLC chromatography and a

Bruker amaZon ion trap instrument with shotgun proteomics

methodologies. A total of 315 unique proteins were reliably

(p50.05) identified in this study; 208 proteins were detected

in the hydrophobic fraction and 192 proteins in the hydro-

philic fraction, with 73 (23%) proteins present in both

fractions. According to the subcellular localisation data in

the UniProt database entries and gene ontology (GO)

annotations, in the hydrophobic pool 115 proteins (55%)

were membrane proteins and only the remaining 93 proteins

(45%) were non-membrane proteins. In contrast, only 38

proteins (20%) were listed as membrane proteins in the

hydrophilic fraction, and the other 154 proteins (80%) were

non-membrane proteins (Figure 2C). Based on the distribu-

tion of membrane versus non-membrane proteins in the two

fractions, using the Triton X-114 phase separation method, we

successfully extracted and enriched membrane proteins in

lysates of primary articular chondrocytes.

Further analysis of the hydrophobic pool reveals
various types of membrane proteins

Proteins identified in the hydrophobic fraction were further

analysed according to subcellular localisation based on gene

ontology (GO) annotation data in the UniProt database entries

(Figure 3). Of the 115 membrane proteins in this pool, PM

localisation was indicated for 64 proteins (56%), and the other

51 proteins (44%) were localised in organellar membranes.

The PM proteins were further subdivided according to their

main functions (Table 1). Eighteen proteins (28%) were

transporters or involved in membrane/vesicle traffic; 11 and

10 proteins (17 and 16%) were adhesion molecules and

proteins with enzyme functions, respectively; 15 proteins

(23%) were receptors, and the remaining 10 PM proteins

(16%) could not be assigned to any of the previous groups or

their function was unknown.

The membrane proteins with other organellar distribu-

tions were also subdivided according to their subcellular

localisations (Table 2). The majority (23 proteins; 45%)

were localised in the membrane of the Golgi complex or

the endoplasmic reticulum; 13 proteins (25%) were

localised to exosome/lysosome/endosome/other vesicular

membranes; another big portion (11 proteins; 22%) were

mitochondrial membrane proteins; two proteins (4%) were

nuclear membrane proteins; and the remaining two proteins

(4%) were ambiguous in terms of specific subcellular

localisation.

The majority of the non-membrane proteins in the

hydrophobic pool were cytoplasmic/cytoskeletal proteins

(46 proteins; 50%) and secreted (extracellular) proteins (19

entries; 20%). Other subcellular localisations included the

lysosome/endosome (4 proteins; 4%), the mitochondrion

(1 protein; 1%), the Golgi complex or the endoplasmic

reticulum lumen (8 proteins; 9%), the nucleus (10 proteins;

11%), and the remaining five proteins were either contamin-

ants or their subcellular localisation was ambiguous (5%;

Figure 4 and Table 3).

The hydrophilic pool contains proteins with different
solubility and subcellular distribution

The Triton X-114 phase separation technique effectively

extracted and enriched lipid-soluble membrane proteins in the

hydrophobic phase, and left comparably few membrane

proteins (only 20%) in the hydrophilic fraction (Figure 2C).

As in the case of the hydrophobic fraction, the majority of the

38 lipid-soluble membrane proteins were localised in the PM

(25 proteins; 66%), whilst the others were localised in various
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organellar membranes (Golgi complex/endoplasmic reticulum

membrane, 16%; mitochondrial membrane, 8%; nuclear

membrane, 2%; Figure 5 and Table 4).

Taken together, we have identified 78 unique PM proteins

in equine articular chondrocytes in this work. Among them,

32 proteins possessed receptor/adhesion functions; the most

important ones are the cluster of differentiation (CD) proteins

and integrins. Furthermore, 21 PM proteins with transporter

functions were detected in articular chondrocytes (Tables 1

and 4).

The non-membrane protein complement in the hydrophilic

fraction comprised 154 proteins, the majority of which (77

proteins; 50%) were cytoplasmic/cytoskeletal proteins. Also

in good correlation with the non-membrane protein distribu-

tion observed in the hydrophobic samples, the secreted

(extracellular) and the nuclear proteins were the second and

third largest groups in this fraction (23 proteins, 15%; and 22

proteins, 14%, respectively). Other subcellular localisations

included the lysosome/endosome (5 proteins; 3%), the

mitochondrion (6 proteins; 4%), the Golgi complex or the

endoplasmic reticulum lumen (13 proteins; 9%), and the

remaining eight proteins were either contaminants or their

subcellular localisation was not determined (5%; Figure 5 and

Table 5).

Discussion

The application of mass spectrometry (MS) has recently

become an important tool in cartilage biology as it offers

numerous advantages over more conventional biochemical

approaches such as western blotting. To date, a number of

proteomic studies have been performed on cartilage tissue and

on chondrocytes, confirming that this analytical tool is

particularly suitable for high-throughput and large-scale

analysis of the protein complement in health and disease

[reviewed in Hsueh et al. (2014) and Williams et al. (2011)].

The first proteomic study carried out on normal human knee

articular chondrocyte cultures aimed at creating a two-

dimensional gel electrophoresis (2-DE) reference map and

generated 93 unique protein identities (Ruiz-Romero et al.,

2005). A 1-D SDS–PAGE approach combined with MS/MS

resulted in the identification of over 100 different proteins

Figure 2. Validation of the efficacy of the
Triton X-114 phase separation method. (A)
Distribution of protein bands in the hydro-
phobic (1) and hydrophilic (2) fractions
following phase partitioning in total lysates
from primary equine articular chondrocyte
cultures. After SDS–PAGE, protein bands
were visualised using silver staining (M,
molecular weight marker). Representative gel
image. (B) Western blot experiment per-
formed on both hydrophobic and hydrophilic
fractions to probe for the presence and
relative abundance of the membrane-bound
Na+, K+-ATPase. Numbers below bands
represent integrated densities determined by
ImageJ freeware. Representative image. (C).
The relative distribution of identified proteins
following analysis by nanoLC-MS/MS based
on their solubility in both hydrophobic and
hydrophilic fractions. Numbers outside pie
charts represent the actual numbers of pro-
teins identified in each subgroup.
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from human knee cartilage supernatants (Garcia et al., 2006).

In the first large-scale MS analysis of human articular

cartilage, which was designed to extract both extracellular and

intracellular proteins from samples depleted of highly abun-

dant ECM proteins such as collagens and aggrecan to allow

the detection of less abundant proteins, a total number of 814

distinct proteins were identified (Wu et al., 2007). In a more

recent study, the proteome of articular chondrocytes from

healthy and OA patients using high resolution label-free MS

was analysed, leading to the identification of �2400 proteins

(Tsolis et al., 2015).

Despite these studies and the impressive number of

proteins identified, our knowledge about the proteome of

cartilage and its resident cell, the chondrocyte, can still be

improved. One significant drawback is that at least in some of

the studies the identified proteins have not been properly

analysed in terms of subcellular locations and/or functions. In

addition, the majority of proteins identified in these studies

were located in the ECM because of their high abundance

relative to cellular proteins in chondrocytes. More specific-

ally, the ‘‘hidden’’ proteome, which comprises low abundance

proteins and/or is not accessible by standard methods, is still

poorly characterised. In a study that combined extensive pre-

fractionation followed by electrospray ionisation mass spec-

trometry (ESI-MS/MS), 779 unique proteins expressed by

cultured chondrocytes were identified, of which 203 were

annotated to the membrane (Lambrecht et al., 2010).

However, the authors did not carry out a detailed analysis

with respect to specific subcellular location and/or function of

the identified membrane proteins, making further data

interpretation attempts challenging.

Therefore, the aim of this study was to extend the current

knowledge of the chondrocyte proteome by using the Triton

X-114 phase separation technique to discover the membrane

Figure 3. Subcellular distribution of the
identified membrane proteins in the hydro-
phobic fraction. PM proteins were further
classified according to their main function
based on GO annotations. Numbers outside
pie charts represent the actual numbers of
proteins identified in each subgroup.
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Table 1. Functional classification of PM proteins in the hydrophobic fraction identified in equine articular chondrocytes based on GO annotations.

# Name
Accession

No.*
Mascot
score

Seq.
coverage

(%)

No. of
matched
peptides

Transporters, membrane/vesicle traffic
1 Voltage-dependent anion-selective channel protein 1 VDAC1 383 36.7 8
2 Voltage-dependent anion-selective channel protein 2 VDAC2 313 25.9 6
3 Voltage-dependent anion-selective channel protein 3 VDAC3 139 12.0 3
4 Ras-related protein Rab-5B RAB5B 134 15.8 3
5 Ras-related protein Rab-5C RAB5C 164 16.2 3
6 Ras-related protein Rab-8A RAB8A 135 17.4 3
7 Ras-related protein Rab-8B RAB8B 145 17.4 3
8 Ras-related protein Rab-9A RAB9A 61 10.4 1
9 Membrane-associated progesterone receptor component 2 PGRC2 178 17.0 4

10 Annexin A1 ANXA1 125 9.2 2
11 Dolichyl-diphosphooligosaccharide–protein glycosyltransferase 48 kDa subunit OST48 86 4.6 2
12 Solute carrier family 2, facilitated glucose transporter member 1 GTR1 118 6.3 3
13 Solute carrier family 2, facilitated glucose transporter member 3 GTR3 74 4.0 3
14 Caveolin-1 CAV1 69 11.8 1
15 Monocarboxylate transporter 1 MOT1 75 2.4 1
16 PREDICTED: Melanotransferrin (CD228 antigen) MFI2 64 4.5 2
17 PREDICTED: Equilibrative nucleoside transporter 1 isoform X1 SCL29A1 67 5.5 2
18 PREDICTED: Synaptosomal-associated protein 23 SNAP23 57 11.4 1

Adhesion molecules
1 Integrin alpha-5 (CD49e antigen, Fibronectin receptor alpha subunit; fragment) ITA5 97 6.5 2
2 Integrin alpha-V (CD51 antigen, Vitronectin receptor alpha subunit) ITAV 84 3.2 3
3 Integrin beta-1 (CD29 antigen, Fibronectin receptor beta subunit) ITB1 753 22.4 16
4 Thrombospondin-1 TSP1 435 9.7 9
5 RA175 (Cell adhesion molecule 1) CADM1 58 5.5 1
6 CD151 antigen (Tetraspanin-24) CD151 79 5.9 2
7 CD166 antigen (ALCAM, Fragment) CD166 125 8.4 3
8 CD107 antigen (Lysosome-associated membrane glycoprotein) LAMP2 53 2.0 2
9 PREDICTED: CD9 antigen (tetraspanin-29) CD9 88 10.4 2

10 PREDICTED: integrin alpha-3 isoform 2 (CD49c antigen) ITA3 60 1.2 1
11 PREDICTED: integrin beta-3 (CD61 antigen) ITB3 57 0.8 1

Receptors
1 Protein S100-A6 (Calcyclin) S10A6 277 53.3 4
2 CD44 antigen (Hyaluronan receptor) CD44 260 15.3 5
3 CD63 antigen (Tetraspanin-30) CD63 55 2.5 1
4 CD81 antigen (Tetraspanin-28) CD81 54 8.5 1
5 Cofilin-1 COF1 234 39.8 5
6 Myristoylated alanine-rich C-kinase substrate MARCS 172 9.0 3
7 Cell division control protein 42 homologue CDC42 154 6.5 3
8 CD71 antigen (Transferrin receptor protein 1) TFR1 64 1.7 1
9 PREDICTED: Thy-1 membrane glycoprotein (CD90 antigen) THY1 152 21.1 3

10 Basigin (CD147 antigen) precursor BSG 100 13.7 3
11 PREDICTED: disintegrin and metalloproteinase domain-containing protein 9 isoform 1 ADAM9 83 1.7 1
12 P48 (Cytokine receptor-like factor 3) CRLF3 80 6.8 2
13 Membrane steroid binding protein gij7689365 191 29.2 4
14 Mannose receptor, C type 2 MRC2 69 0.9 1
15 Lactadherin MFGM 66 2.7 1

Enzymes
1 Protein disulfide-isomerase PDIA1 320 11.8 5
2 Alpha-enolase ENOA 295 24.4 7
3 CD73 antigen (5’-nucleotidase) 5NTD 160 12.0 5
4 Ras-related protein Rap-1b RAP1B 146 19.0 3
5 Prolyl endopeptidase FAP SEPR 130 5.3 3
6 Transforming protein RhoA RHOA 146 24.9 4
7 TRAF2 and NCK-interacting protein kinase TNIK 61 0.6 1
8 Thioredoxin-related transmembrane protein 1 TMX1 67 4.3 1
9 Rho GTPase-activating protein 21 RHG21 56 0.4 1

10 PREDICTED: adipocyte plasma membrane-associated protein isoform X1 APMAP 62 3.0 1

Miscellaneous
1 Brain acid soluble protein 1 BASP1 223 21.1 4
2 Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-12 GBG12 98 56.9 3
3 Receptor expression-enhancing protein 5 REEP5 86 11.6 2
4 CD276 antigen CD276 55 10.8 2
5 Annexin A5 ANXA5 54 3.8 1
6 Tuberin TSC2 54 0.4 1
7 PREDICTED: Tetraspanin-6 isoform X1 TSPAN6 105 7.8 2
8 PREDICTED: Matrix-remodeling-associated protein 7 MXRA7 79 20.3 1
9 PREDICTED: Protein lifeguard 3 TMBIM1 77 4.5 1

10 PREDICTED: Proteolipid protein 2 PLP2 72 18.4 2

*UniProt IDs are shown where available. In other cases, NCBInr accession numbers are shown.
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subproteome (the membranome). We have chosen to use

equine articular chondrocytes in this study, for the horse is

widely involved in occupational/sports activities and con-

sidered as an excellent animal model for human joint

diseases (Aigner et al., 2010) and yet, current knowledge is

limited and relates to only the protein complement of equine

chondrocytes. The unique features of our study are as

follows. First, to the best of our knowledge, this is the first

application of LC-MS/MS proteomics to study the mem-

brane protein complement of cultured articular chondrocytes.

Second, a large proportion (133 proteins; 42%) of the 315

proteins identified in this work consisted of membrane

Table 2. Subcellular distribution of membrane proteins in the hydrophobic pool identified in equine articular chondrocytes based on GO annotations.

# Name
Accession

No.*
Mascot
score

Seq.
coverage (%)

No. of matched
peptides

Exosome/lysosome/endosome/vesicle membrane
1 Ras-related protein Rab-7a RAB7A 538 60.9 10
2 Vesicle-associated membrane protein 3 VAMP3 239 38.5 3
3 Ras-related protein Rab-10 RAB10 164 22.5 4
4 14-3-3 protein theta 1433T 201 22.0 5
5 Cation-dependent mannose-6-phosphate receptor MPRD 150 13.3 3
6 Syntaxin-7 STX7 144 19.9 5
7 Ras-related protein Rab-11B RB11B 176 14.2 3
8 Ras-related protein Rab-14 RAB14 128 15.3 3
9 Vesicle-associated membrane protein 5 VAMP5 54 11.2 1

10 Lysosome membrane protein 2 SCRB2 115 2.7 1
11 Charged multivesicular body protein 6 CHMP6 51 6.5 1
12 PRA1 family protein 2 PRAF2 89 16.3 2
13 PREDICTED: glucosylceramidase isoform X2 GLCM 88 4.9 2

Golgi/ER membrane
1 Ras-related protein Rab-1A RAB1A 301 35.6 6
2 Ras-related protein Rab-1B RAB1B 266 25.9 5
3 Ras-related protein Rab-2A RAB2A 213 24.5 4
4 Transmembrane emp24 domain-containing protein 2 (Fragment) TMED2 83 10.7 2
5 Transmembrane emp24 domain-containing protein 5 TMED5 57 5.3 1
6 Transmembrane emp24 domain-containing protein 9 TMED9 116 14.9 3
7 Transmembrane emp24 domain-containing protein 10 TMEDA 228 22.4 5
8 Membrane-associated progesterone receptor component 1 PGRC1 149 11.8 2
9 Membrane-associated progesterone receptor component 2 PGRC2 178 17.0 4

10 Transmembrane emp24 domain-containing protein 4 TMED4 120 12.3 2
11 78 kDa glucose-regulated protein GRP78 155 5.5 3
12 Translocon-associated protein subunit delta SSRD 110 17.3 2
13 Surfeit locus protein 4 SURF4 93 8.2 2
14 Vesicular integral-membrane protein VIP36 LMAN2 58 3.4 1
15 Calnexin CALX 78 2.2 1
16 B-cell receptor-associated protein 31 BAP31 85 8.1 2
17 Eukaryotic translation initiation factor 5A-1 IF5A1 53 10.4 2
18 Vesicle-associated membrane protein-associated protein A VAPA 83 4.8 1
19 Vesicle-trafficking protein SEC22b SC22B 53 5.6 1
20 PREDICTED: PRA1 family protein 3 PRAF3 89 16.0 3
21 lanosterol 14-alpha demethylase CP51A 72 2.4 1
22 PREDICTED: golgin subfamily B member 1 GOGA1 69 0.4 1
23 PREDICTED: NADH-cytochrome b5 reductase 3-like isoform 1 gij338721361 62 4.7 1

Mitochondrial membrane
1 Cytochrome c oxidase subunit 5A, mitochondrial COX5A 197 30.9 4
2 ATP synthase subunit beta, mitochondrial ATPB 235 16.7 7
3 ATP synthase subunit alpha, mitochondrial ATPA 144 6.3 3
4 ATP synthase subunit delta, mitochondrial ATPD 90 8.3 1
5 Apoptosis regulator BAX BAX 70 5.7 1
6 Cytochrome c oxidase subunit 4 isoform 1, mitochondrial (Fragment) COX41 59 10.3 1
7 Carbamoyl-phosphate synthase [ammonia], mitochondrial CPSM 65 1.2 1
8 prohibitin-2 PHB2 63 4.0 1
9 Cytochrome c oxidase subunit 5B, mitochondrial COX5B 61 3.3 2

10 cytochrome oxidase subunit 2 COX2 74 3.1 1
11 PREDICTED: mitochondrial fission 1 protein-like gij558166747 58 10.5 1

Nuclear membrane
1 PREDICTED: nesprin-1 SYNE1 73 0.1 1
2 PREDICTED: transmembrane protein 109 isoform X1 TMEM109 60 4.9 1

Miscellaneous
1 Peptidyl-prolyl cis–trans isomerase A PPIA 241 43.3 5
2 PREDICTED: cell cycle progression protein 1 isoform X1 CCPG1 65 1.6 2

*UniProt IDs are shown where available. In other cases, NCBInr accession numbers are shown.
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proteins, and for some of these only ambiguous data were

available in chondrocytes [e.g. CD276, S100-A6 (calcyclin),

VDACs]. The proportion of membrane proteins was even

higher in the hydrophobic phase (55%). As far as the

proportion of membrane proteins is concerned, our results

are in a good agreement with those reported elsewhere

(Hansson et al., 2010). The aim of that study was to

characterise the human pancreatic islet membrane proteome

by evaluating five different extraction procedures; while the

proportion of membrane proteins in the total extracts was

35%, a considerably higher proportion (61%) of membrane

proteins was identified following the use of membrane

protein-enriching methods. It is also worth noting that the

choice of method for extraction of membrane proteins had a

strong influence on the number and identity of proteins

detected in that analysis, and the hydrophobic phase of

Triton X-114 phase separation was found to be the most

efficient extraction method (Hansson et al., 2010). These

results also underpin that appropriate sample preparation and

pre-fractionation methods can increase the amount of

identified proteins with specific properties in the MS/MS

analysis of proteins in complex biological samples. It was for

that reason that we used the Triton X-114 phase separation

method in this study.

Although a detailed description of the proteins identified in

the chondrocyte membranome is beyond the scope of this

article, a few important protein classes merit comment due to

their potential involvement in chondrocyte homeostasis. We

therefore restrict discussing our results to certain protein

groups localised in the PM.

CD antigens and integrins

Cluster of differentiation (CD) proteins are four hydrophobic

domain-containing cell surface membrane glycoproteins that

mediate a range of cellular processes including development,

differentiation, activation, growth and motility. Composed of

alpha and beta subunits, integrins are integral PM receptors

that mediate attachment between a cell and its surroundings.

They transduce information from the ECM to the cell and

integrin-mediated signalling pathways influence cell shape,

mobility, differentiation and the cell cycle. The integrins

identified in this study (integrin beta-1 [CD29], integrin

alpha-5 [CD49e], integrin alpha-V [CD51], integrin alpha-3

[CD49c] and integrin beta-3 [CD61]) are in a complete

agreement with what has been published earlier (Mobasheri

et al., 2002a; Shakibaei et al., 2008; Woods et al., 1994). Our

data also confirm reports on CD antigen expression in

articular chondrocytes (Diaz-Romero et al., 2005). We found

that equine articular chondrocytes express tetraspanins (CD9

[tetraspanin-19], CD63 [tetraspanin-30], CD81 [tetraspanin-

28] and CD151 [tetraspanin-24]); CD44 (hyaluronan recep-

tor); CD71 (transferrin receptor); CD90 (Thy-1); and CD166

(ALCAM). CD73, an ecto-50-nucleotidase, which plays a

crucial role in extracellular adenosine generation, has been

reported to be involved in mechanotransduction pathways

following cyclic compressive stimulation (Ode et al., 2013).

CD107 (LAMP) expression has been recently reported in

murine growth plate cartilage and cartilaginous nodules in

embryonic limb bud-derived micromass cultures

(Hatakeyama et al., 2014). CD147 (basigin; also known as

extracellular matrix metalloproteinase inducer) is known to be

extensively expressed by chondrocytes both in normal and OA

cartilage (Orazizadeh & Salter, 2008). CD228 (melanotrans-

ferrin) has also long been known to facilitate the differenti-

ation of prechondrogenic cells (Suardita et al., 2002). While

CD276 has not been identified earlier in chondrocytes, it is

known to be expressed in undifferentiated mesenchymal stem

cells derived from Wharton’s jelly (WJ-MSCs), even after

osteogenic, adipogenic and chondrogenic differentiation (La

Rocca et al., 2013).

S100 proteins

Of particular interest is protein S100-A6 (calcyclin) expres-

sion in equine articular chondrocytes. The S100 family of

proteins consists of 24 members, which show cell-specific

expression patterns and are involved in a wide range of

cellular processes including proliferation, differentiation,

apoptosis, Ca2+ homeostasis, energy metabolism, inflamma-

tion and migration/invasion through interactions with a

variety of target proteins ranging from enzymes, cytoskeletal

Figure 4. Subcellular localisation of the identified non-membrane
proteins in the hydrophobic fraction based on GO annotations.
Numbers outside pie chart represent the actual numbers of proteins
identified in each subgroup.
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Table 3. Subcellular distribution of non-membrane proteins in the hydrophobic pool identified in equine articular chondrocytes based on GO
annotations.

# Name
Accession

No.*
Mascot
score

Seq.
coverage

(%)

No. of
matched
peptides

Secreted (extracellular)/exosome
1 Alpha-2-macroglobulin A2MG 914 15.8 19
2 Transgelin-2 TAGL2 426 47.7 9
3 Apolipoprotein D APOD 188 24.3 6
4 Alpha-1-antiproteinase (Serpin A1, antitrypsin) A1AT 220 9.4 5
5 Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 GBB1 90 6.2 2
6 Annexin A2 ANXA2 83 7.7 2
7 Guanine nucleotide-binding protein subunit beta-4 GBB4 119 9.7 3
8 Galectin-1 LEG1 119 16.3 2
9 Pancreatic trypsin inhibitor BPT1 52 13.0 1

10 Transthyretin TTHY 95 19.0 2
11 SPARC SPRC 190 25.3 5
12 Alpha-S1-casein CASA1 72 10.3 2
13 Triosephosphate isomerase TPIS 214 21.3 4
14 Hemopexin HEMO 55 3.5 2
15 Apolipoprotein E APOE 54 6.5 2
16 Hypothetical protein PANDA_010395 (lipocalin) gij281339160 152 5.9 1
17 PREDICTED: cell growth regulator with EF hand domain protein 1 isoformX1 gij149727690 111 14.1 3
18 Complement component C4 CO4 63 11.6 1
19 PREDICTED: ovostatin-like gij344278152 57 1.1 1

Cytoplasm/cytoskeleton
1 Actin, cytoplasmic 1 ACTB 610 41.1 14
2 Tropomyosin alpha-4 chain TPM4 538 32.7 10
3 Myosin light polypeptide 6 MYL6 337 52.3 8
4 60S acidic ribosomal protein P2 RLA2 334 60.0 5
5 Tropomyosin alpha-1 chain TPM1 339 21.5 7
6 Tropomyosin beta chain TPM2 319 18.0 6
7 Glyceraldehyde-3-phosphate dehydrogenase G3P 271 15.9 4
8 Tropomyosin alpha-3 chain TPM3 298 21.4 6
9 Tubulin alpha-1B chain TBA1B 381 19.1 7

10 Transgelin TAGL 136 16.4 3
11 L-lactate dehydrogenase A chain LDHA 217 13.3 4
12 Pyruvate kinase PKM KPYM 186 12.6 5
13 Tubulin alpha-1A chain TBA1A 168 12.2 4
14 Heat shock protein beta-1 (hsp25, hsp27) HSPB1 209 22.5 5
15 Peroxiredoxin-1 PRDX1 217 27.1 6
16 14-3-3 protein zeta/delta 1433Z 74 19.2 3
17 Tubulin beta-5 chain TBB5 122 9.9 3
18 Profilin-1 PROF1 112 24.3 4
19 Fructose-bisphosphate aldolase A ALDOA 178 13.7 3
20 Hsc70-interacting protein F10A1 63 6.8 2
21 14-3-3 protein epsilon 1433E 57 11.4 2
22 Phosphoglycerate kinase 1 PGK1 83 6.7 2
23 Myosin-9 MYH9 100 0.6 1
24 Far upstream element-binding protein 2 FUBP2 103 4.6 3
25 Caldesmon CALD1 82 3.9 2
26 14-3-3 protein beta/alpha 1433B 81 11.8 2
27 Guanine nucleotide-binding protein G(i) subunit alpha-2 GNAI2 77 7.9 2
28 60S acidic ribosomal protein P1 RLA1 64 14.0 1
29 40S ribosomal protein S12 RS12 63 19.7 2
30 Nuclease-sensitive element-binding protein 1 YBOX1 61 4.6 1
31 Calmodulin CALM 59 22.1 2
32 Elongation factor 1-alpha 1 EF1A1 56 5.0 2
33 Heat shock cognate 71 kDa protein HSP7C 134 6.3 3
34 Metallothionein-1A MT1A 52 19.7 1
35 Protein S100-A1 S10A1 50 16.0 1
36 PREDICTED: protein S100-A11 gij149751468 160 27.0 3
37 A-kinase anchor protein 9 AKAP9 82 0.3 1
38 PREDICTED: plasminogen activator inhibitor 1 RNA-binding protein isoform 1 gij345800374 81 4.1 1
39 PREDICTED: peroxiredoxin-6 gij149707887 80 17.9 3
40 hsp70A1 gij193983 79 2.7 2
41 40S ribosomal protein S28 RPS28 79 30.4 2
42 PREDICTED: phosphatidylethanolamine-binding protein 1 gij149720563 74 18.7 3
43 G-protein beta subunit gij51116 72 17.1 2
44 phosphoglycerate mutase gij189868 59 9.5 2
45 Stathmin STMN1 59 15.1 2
46 Tropomyosin 3, gamma isoform 19-like protein gij528766928 268 18.6 7

(continued )
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subunits, receptors, transcription factors and nucleic acids

[reviewed in Donato et al. (2013)]. In particular, S100-A6

may function as a Ca2+ sensor and modulator, contributing to

Ca2+ signalling pathways. It is also implicated in cell

proliferation and cytoskeletal dynamics, and known to have

a potential role in cell responses to different stressors.

Calcyclin was reported to be significantly upregulated in

serially passaged adipose tissue-derived MSCs (Capra et al.,

2012), which may correspond to previous data suggesting that

it is frequently upregulated during proliferation and differen-

tiation and it is induced by different growth factors. There are

only sporadic data available relating to S100-A6 expression in

chondrocytes. Its mRNA transcript has been shown to be

downregulated following chondrogenic induction by BMP4 in

ATDC5 cells, and it has also been identified in one of the

chondrocyte proteome studies discussed earlier (Lambrecht

et al., 2010).

Other S100 proteins identified in this study include S100-

A1 and S100-A11 (Tables 3 and 5). S100-A1 is localised in

the cytoplasm where it is associated with cytoskeletal

components and mitochondria. It can influence Ca2+

handling in cultured ventricular cardiomyocytes through

interaction with the sarcoplasmic reticulum Ca2+-ATPase

and RyR2; it also modulates CaV1 channel currents in a PKA-

dependent manner. S100-A1 also regulates energy metabol-

ism by stimulating fructose-1,6-biphosphate aldolase and

inhibiting phosphoglucomutase and glycogen phosphorylase

(Donato et al., 2013). Also localised in the cytoplasm, S100-

A11 is reported to modulate cell growth via binding either to

nucleolin or Rad54B (Donato et al., 2013). In particular,

S100-A11 can activate the p38 MAPK pathway to accelerate

chondrocyte hypertrophy and ECM catabolism that may

promote OA progression (Cecil & Terkeltaub, 2008). Both

S100-A1 and S100-A11 have been reported to be expressed

and functional in chondrocytes (Donato et al., 2013;

Patti et al., 1999), and both proteins were identified in a

previous MS study (Lambrecht et al., 2010).

Transporters

Ion channels and transporters are essential components of

chondrocytes that control the movement of ions and other

small molecules across the PM. An increasing number of

studies have reported the presence of an ever-expanding list of

Table 3. Continued

# Name
Accession

No.*
Mascot
score

Seq.
coverage

(%)

No. of
matched
peptides

Lysosome/melanosome/endosome
1 Cathepsin D CATD 218 15.6 7
2 Prosaposin SAP 184 6.5 4
3 Cathepsin K CATK 56 5.2 2
4 CLN2 protein (tripeptidyl peptidase 1) TPP1 64 1.8 1

Mitochondrion
1 PREDICTED: Diablo homologue, mitochondrial-like gij345323079 69 4.1 1

Golgi/ER lumen
1 Reticulocalbin-3 RCN3 252 12.2 3
2 Glucosidase 2 subunit beta GLU2B 129 4.3 2
3 Endoplasmin (hsp90beta1) ENPL 123 2.5 2
4 Glucosidase 2 subunit beta GLU2B 100 5.8 2
5 Calumenin CALU 73 10.2 2
6 Serpin H1 SERPH 73 3.6 1
7 Calreticulin CALR 65 3.1 1
8 Endoplasmic reticulum resident protein 29 ERP29 51 8.4 2

Nucleus
1 Far upstream element-binding protein 1 FUBP1 237 14.4 7
2 Prothymosin alpha PTMA 198 21.8 4
3 Neuroblast differentiation-associated protein AHNAK AHNK 166 0.8 4
4 Thioredoxin THIO 130 2.1 2
5 Coiled-coil domain-containing protein 57 CCD57 67 0.8 1
6 Small ubiquitin-related modifier 2 SUMO2 54 12.6 1
7 PREDICTED: zinc finger protein 764-like gij558191623 66 2.7 1
8 PREDICTED: Fanconi anaemia group C protein gij348565316 56 1.6 1
9 PREDICTED: poly [ADP-ribose] polymerase 6 isoformX1 gij545216657 206 4.9 2

10 Bromodomain adjacent to zinc finger domain protein 2A BAZ2A 198 2.7 5

Contaminants
1 Keratin, type II cytoskeletal 1 K2C1 592 21.4 12
2 Serum albumin ALBU 195 7.7 4
3 Trypsin TRYP 75 7.8 2

Miscellaneous
1 PREDICTED: leptin receptor gene-related protein-like isoform X1 gij545218045 79 11.5 1
2 Chain C, Ternary Complex Of A Calcineurin A Fragment, Calcineurin B, Fkbp12

And The Immunosuppressant Drug Fk506 (tacrolimus)
gij1942335 65 12.1 1

*UniProt IDs are shown where available. In other cases, NCBInr accession numbers are shown.
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ion channels and transporters in chondrocytes [reviewed in

Barrett-Jolley et al. (2010) and Matta et al. (2015)]. Based on

GO annotations, 21 proteins with transporter functions were

identified in the PM in this study (Tables 1 and 4). Originally

described as being localised in the outer mitochondrial

membrane (Benz, 1994), voltage-dependent anion-selective

channels (VDACs), also known as mitochondrial porins, form

the pores that allow the transport of small hydrophilic solutes

across the membrane. However, accumulating evidence

support that VDACs can also be expressed in the PM (De

Pinto et al., 2010), where they exhibit voltage-gated anion

channel activity, and its electrophysiological phenotype is that

of a maxi-chloride channel (Lewis et al., 2013). Although

VDACs have not been unequivocally reported to be expressed

and function in chondrocytes, the anion channel identified in

some previous studies was the maxi-chloride channel, which

is remarkably similar to the maxi-Cl–/VDAC channel

(Sugimoto et al., 1996; Tsuga et al., 2002). Although all

three VDAC proteins were identified in chondrocytes in our

experiments and also by others (Lambrecht et al., 2010),

further studies will need to functionally investigate the

physiological and pathophysiological roles of these trans-

porters in the chondrocyte PM.

The chloride intracellular channel (CLIC) proteins possess

pH-dependent chloride ion channel activity. CLIC1 and

CLIC4, in addition to other members of the CLIC family,

are often referred to as ‘‘p64-related’’ proteins, and while

they may localise to intracellular compartments (e.g. the

nucleus), they also appear to be in the PM and could serve a

role in secretion (Lewis et al., 2013). Once again, although

the CLIC1 protein was identified in chondrocytes in this

study and by others (Lambrecht et al., 2010), its presence

and function has not been unambiguously demonstrated

earlier.

In addition to anion channels, glucose transporter (GLUT)

proteins (facilitative glucose transporter 1 and 3; GLUT 1 and

GLUT3) were also identified in our study. Glucose is a key

metabolite and a structural precursor for articular cartilage

and its transport has significant consequences for cartilage

development and functional integrity. Our results are in a

good agreement with previously published data (Mobasheri

et al., 2002b), confirming here by proteomic techniques the

expression of these two GLUT isoforms in articular

chondrocytes.

Conclusion

In summary, studying the membranome profile of equine

articular chondrocytes by LC-MS/MS following enrichment

using Triton X-114 pre-fractionation has turned out to be an

excellent approach to gain insight into proteins involved in a

wide range of membrane-bound processes such as signal

transduction, adhesion and transport of ions and other

molecules. In spite of the significant enrichment of lipid-

soluble membrane proteins in the hydrophobic phase, the

proteins that are present in an extremely low abundance in

chondrocytes such as the majority of ion channels and other

transporter molecules in the PM remained undetectable.

Although detergent-based phase partitioning enriches PM

proteins relative to total soluble proteins, the membrane

proteins in the ER, mitochondria and other organelles are also

enriched; and the abundance of proteins in the contaminating

organelles can interfere with the ability to detect PM proteins

(Zhang & Peck, 2011). To mitigate these limitations, a

Figure 5. Subcellular localisation of the
identified membrane and non-membrane
proteins in the hydrophilic fraction based on
GO annotations. Numbers outside pie charts
represent the actual numbers of proteins
identified in each subgroup.
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combination of the Triton X-114 phase separation method

with other membrane protein enrichment techniques could

also be considered.

Our study confirms some previous findings and adds

further proteins to the proteomic profile of equine articular

chondrocytes. Some of the identified proteins including the

CD276 antigen, S100-A6 (calcyclin) or VDACs have not been

unambiguously reported before to be components of articular

chondrocytes. However, there are certain limitations to this

work. First and foremost, protein identifications were some-

what aggravated by the fact that our search results listed the

same proteins several times but for different species (primar-

ily human or bovine but no horse entries), suggesting that the

protein was present in the sample and that the identification

was made by virtue of the horse protein sharing homology

with several other species. This is one of the disadvantages

when ‘‘cross species matching’’ is used to identify proteins.

Another possible disadvantage of using equine articular

chondrocytes is that there may be subtle differences between

the two species and that the entirety of our results may not be

directly applicable to human articular chondrocytes.

A more detailed and comprehensive insight into the

chondrocyte membranome is likely to make a significant

contribution to the development of novel drugs for arthritic

diseases. The development and refinement of proteomics-

based techniques will enable a better understanding of

regulatory proteins and enhance the search for new drug

targets. It may also help to discover novel cartilage disease-

specific biomarkers. Thus, our data represent a significant

addition to the comprehensive cartilage proteome database

that is essential for understanding the molecular mechanisms

underlying cartilage function and OA.

Table 4. Functional classification of PM proteins and other membrane proteins in the hydrophilic pool identified in equine articular chondrocytes
based on GO annotations.

# Name
Accession

No.*
Mascot
score

Seq. coverage
(%)

No. of matched
peptides

Function of
PM protein

Plasma membrane/surface proteins
1 Thrombospondin-1 TSP1 811 14.3 14 Adhesion
2 Protein disulfide-isomerase PDIA1 614 28.1 13 Enzyme
3 Alpha-enolase ENOA 557 32.5 11 Enzyme
4 Annexin A1 ANXA1 468 39.9 10 Transporter
5 Cofilin-1 COF1 306 38.6 5 Receptor
6 Moesin MOES 303 15.1 8 Adhesion
7 Annexin A5 ANXA5 258 19.1 6 Other (receptor)
8 Integrin beta-1 (CD29 antigen, Fibronectin receptor beta subunit) ITB1 160 6.3 4 Adhesion
9 Protein disulfide-isomerase A6 PDIA6 147 14.1 4 Enzyme

10 Protein disulfide-isomerase A4 PDIA4 109 1.9 1 Enzyme
11 Prolow-density lipoprotein receptor-related protein 1 LRP1 76 0.5 2 Receptor
12 Annexin A4 ANXA4 58 5.6 2 Other (receptor)
13 40S ribosomal protein SA (Laminin receptor) RSSA 57 4.4 1 Receptor
14 Procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 PLOD2 53 1.9 1 Enzyme
15 Myristoylated alanine-rich C-kinase substrate MARCS 52 4.5 1 Other
16 Cytoskeleton-associated protein 4 CKAP4 99 5.0 3 Receptor
17 Guanine nucleotide-binding protein subunit beta-2-like 1 GBLP 66 7.3 2 Other
18 Brain acid soluble protein 1 BASP1 52 5.7 1 Other
19 Talin-1 TLN1 418 3.1 8 Other (receptor)
20 PREDICTED: annexin A8 isoform X1 gij149690688 127 12.8 3 Other
21 PREDICTED: alpha-2-macroglobulin receptor-associated protein gij545213509 116 7.3 2 Other
22 PREDICTED: chloride intracellular channel protein 1 gij149732344 68 12.4 2 Transporter
23 PREDICTED: ADP/ATP translocase 2-like gij558210559 64 2.7 1 Transporter
24 PREDICTED: utrophin gij507925858 57 0.4 1 Other
25 Vacuolar protein sorting-associated protein 35 VPS35 65 1.6 1 Transporter

Exosome/lysosome/endosome/vesicle membrane
Golgi/ER membrane

1 78 kDa glucose-regulated protein GRP78 734 30.0 15
2 Peptidyl-prolyl cis-trans isomerase A PPIA 268 43.3 7
3 Peptidyl-prolyl cis-trans isomerase B PPIB 174 21.3 4
4 14-3-3 protein theta 1433T 122 13.9 3
5 Calnexin CALX 49 2.2 1
6 PREDICTED: golgin subfamily B member 1 isoform 1 gij466052157 62 0.3 1

Mitochondrial membrane
1 ATP synthase subunit beta, mitochondrial ATPB 120 4.5 2
2 ATP synthase subunit alpha, mitochondrial ATPA 89 6.1 2
3 ATP synthase subunit delta, mitochondrial ATPD 74 8.3 1

Nuclear membrane
1 Nesprin-1 SYNE1 57 0.1 1

Miscellaneous
1 DNA primase small subunit gij431914029 203 2.8 3
2 PREDICTED: calpastatin isoform X5 gij545185308 69 3.4 2
3 CD209 antigen-like protein C C209C 54 3.4 1

*UniProt IDs are shown where available. In other cases, NCBInr accession numbers are shown.
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Table 5. Functional classification of non-membrane proteins in the hydrophilic pool identified in equine articular chondrocytes based on GO
annotations.

# Name
Accession

No.*
Mascot
score

Seq.
coverage (%)

No. of
matched
peptides

Secreted (extracellular), exosome
1 Alpha-2-macroglobulin A2MG 2098 37.0 45
2 Transgelin-2 TAGL2 475 44.2 7
3 Annexin A2 ANXA2 397 27.7 8
4 Triosephosphate isomerase TPIS 337 30.5 6
5 Hemopexin HEMO 270 17.9 7
6 Serotransferrin TRFE 268 13.1 7
7 Alpha-1-antiproteinase A1AT 254 10.3 5
8 Collagen alpha-1(I) chain CO1A1 141 1.8 2
9 Myosin regulatory light chain RLC-A MRLCA 127 22.7 3

10 Galectin-1 LEG1 109 22.2 3
11 Transthyretin TTHY 91 19.0 2
12 Macrophage migration inhibitory factor MIF 86 17.4 2
13 Complement C4 (Fragments) CO4 63 3.6 2
14 Alpha-1-inhibitor 3 A1I3 59 0.8 1
15 Pancreatic trypsin inhibitor BPT1 51 13.0 1
16 Connective tissue growth factor CTGF 98 2.9 1
17 SH3 domain-binding glutamic acid-rich-like protein SH3L1 62 7.9 1
18 Collagen alpha-5(VI) chain CO6A5 58 0.2 1
19 Thrombospondin-2 TSP2 50 1.0 1
20 PREDICTED: heat shock protein HSP 90-alpha-like, partial gij507695623 99 3.8 2
21 PREDICTED: glia-derived nexin (Serpin E2) gij344268474 60 3.0 1
22 AM2 receptor gij49942 60 0.4 2
23 Semaphorin-3G precursor gij9910362 57 1.3 1

Cytoplasm/cytoskeleton
1 Tropomyosin alpha-4 chain TPM4 902 47.6 15
2 Tropomyosin beta chain TPM2 722 31.7 12
3 Tropomyosin alpha-3 chain TPM3 639 34.7 10
4 Actin, cytoplasmic 1 ACTB 616 43.5 13
5 Tropomyosin alpha-1 chain TPM1 584 32.4 11
6 Phosphoglycerate kinase 1 PGK1 555 42.7 13
7 L-lactate dehydrogenase A chain LDHA 492 22.6 6
8 Heat shock cognate 71 kDa protein HSP7C 486 17.7 10
9 Pyruvate kinase PKM KPYM 463 23.7 10

10 14-3-3 protein epsilon 1433E 433 37.6 9
11 Fructose-bisphosphate aldolase A ALDOA 423 27.7 9
12 Filamin-A OS¼Homo sapiens FLNA 406 4.3 8
13 Tubulin alpha-1B chain TBA1B 358 20.2 7
14 Transgelin TAGL 357 41.3 8
15 Myosin-9 MYH9 351 7.2 9
16 Glyceraldehyde-3-phosphate dehydrogenase G3P 335 22.8 6
17 14-3-3 protein zeta/delta 1433Z 319 24.1 5
18 Tubulin beta-5 chain TBB5 310 20.7 7
19 Phosphoglycerate mutase 1 PGAM1 271 27.2 5
20 Myosin light polypeptide 6 MYL6 249 52.3 7
21 Protein SET SET 225 18.3 4
22 Elongation factor 1-alpha 1 EF1A1 222 11.3 6
23 Nuclease-sensitive element-binding protein 1 YBOX1 211 14.8 3
24 Glutathione S-transferase P GSTP1 202 20.0 3
25 Phosphatidylethanolamine-binding protein 1 PEBP1 196 26.2 3
26 Peroxiredoxin-1 PRDX1 195 28.1 5
27 Profilin-1 PROF1 195 40.7 6
28 Alpha-actinin-4 ACTN4 193 6.0 5
29 L-lactate dehydrogenase B chain LDHB 188 9.9 3
30 Caldesmon CALD1 182 5.7 5
31 14-3-3 protein beta/alpha 1433B 174 18.3 4
32 Stathmin STMN1 159 37.6 5
33 LIM and SH3 domain protein 1 LASP1 153 13.7 3
34 Elongation factor 2 EF2 147 4.7 4
35 L-lactate dehydrogenase C chain LDHC 144 7.2 3
36 Heat shock 70 kDa protein 1A HS71A 138 5.3 3
37 Heat shock protein HSP 90-beta HS90B 128 4.7 3
38 14-3-3 protein gamma 1433G 112 6.1 2
39 Ferritin light chain FRIL 109 16.0 2
40 Vinculin VINC 107 2.5 2
41 Heat shock protein HSP 90-alpha HS90A 100 4.9 3

(continued )
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Table 5. Continued

# Name
Accession

No.*
Mascot
score

Seq.
coverage (%)

No. of
matched
peptides

42 Calmodulin CALM 97 33.6 4
43 Centromere protein F CENPF 96 0.2 1
44 Nascent polypeptide-associated complex subunit alpha, muscle-specific form NACAM 95 0.7 1
45 Ubiquitin UBIQ 92 32.9 2
46 Peroxiredoxin-4 PRDX4 91 11.8 3
47 Peroxiredoxin-6 PRDX6 89 10.3 2
48 Titin TITIN 81 0.0 2
49 Plastin-3 PLST 77 4.9 2
50 Nucleoside diphosphate kinase B NDKB 69 17.1 2
51 40S ribosomal protein S28 RS28 69 17.4 1
52 Eukaryotic translation initiation factor 4B IF4B 63 2.8 1
53 Hepatoma-derived growth factor HDGF 61 4.2 1
54 Rho GDP-dissociation inhibitor 1 GDIR1 60 15.2 2
55 Fuctinin-3 (Fragment) FUC3 59 84.6 2
56 Peptidyl-prolyl cis-trans isomerase FKBP1A FKB1A 59 12.0 1
57 Eukaryotic translation initiation factor 4H IF4H 55 5.2 1
58 Metallothionein-1A MT1A 55 19.7 1
59 Heterogeneous nuclear ribonucleoprotein Q HNRPQ 53 5.6 2
60 Rab GDP dissociation inhibitor alpha GDIA 53 8.5 2
61 60S ribosomal protein L22 RL22 52 8.6 1
62 40S ribosomal protein S21 RS21 103 12.0 1
63 Myosin-10 MYH10 95 2.3 3
64 40S ribosomal protein S19 RS19 81 6.9 1
65 Ran-specific GTPase-activating protein RANG 65 5.3 1
66 Peroxiredoxin-2 PRDX2 57 8.1 2
67 Plastin-2 PLSL 56 1.4 1
68 Prostaglandin E synthase 3 TEBP 50 8.1 1
69 Transitional endoplasmic reticulum ATPase TERA 50 1.6 1
70 Tropomyosin 3, gamma isoform 19-like protein gij528766928 639 27.2 12
71 Striated-muscle alpha tropomyosin gij207349 590 34.2 12
72 PREDICTED: protein S100-A11 gij149751468 148 27.0 3
73 PREDICTED: hsc70-interacting protein isoform X1 gij149743058 113 7.3 2
74 PREDICTED: ubiquitin-60S ribosomal protein L40 isoform X1 gij532055807 82 19.5 2
75 PREDICTED: 60S ribosomal protein L19-like gij532037025 63 4.7 1
76 Ribosomal protein S3, isoform CRA_f gij148684444 57 5.4 1
77 PREDICTED: dynein heavy chain 9, axonemal gij403275402 62 0.1 1

Lysosome/melanosome/endosome
1 Myosin-11 MYH11 166 2.9 4
2 Cathepsin K CATK 105 11.5 3
3 Cathepsin D CATD 91 6.8 2
4 Prosaposin SAP 81 4.6 2
5 PREDICTED: cathepsin B isoform X1 gij149698064 96 9.4 2

Mitochondrion
1 60 kDa heat shock protein, mitochondrial CH60 167 14.0 5
2 Malate dehydrogenase, mitochondrial MDHM 145 14.8 4
3 10 kDa heat shock protein, mitochondrial CH10 87 29.4 3
4 Arginase-2, mitochondrial ARGI2 67 3.4 1
5 Stress-70 protein, mitochondrial (Fragments) GRP75 53 2.4 1
6 Aspartate aminotransferase, mitochondrial AATM 67 2.8 1

Golgi/ER lumen
1 Protein disulfide-isomerase A3 PDIA3 573 27.5 14
2 Calumenin CALU 374 40.0 9
3 Serpin H1 SERPH 367 27.3 9
4 Endoplasmin ENPL 344 11.1 7
5 Calreticulin CALR 257 24.7 8
6 Reticulocalbin-3 RCN3 154 12.5 3
7 Glucosidase 2 subunit beta GLU2B 114 7.9 3
8 Endoplasmic reticulum resident protein 29 ERP29 92 11.1 3
9 Prolyl 4-hydroxylase subunit alpha-1 P4HA1 78 2.6 1

10 Proteasome-associated protein ECM29 homologue ECM29 58 0.3 1
11 Thioredoxin domain-containing protein 5 TXND5 56 2.3 1
12 PREDICTED: reticulocalbin-1-like gij334331754 72 8.2 2
13 PREDICTED: hypoxia up-regulated protein 1 gij514466500 62 2.1 1

(continued )
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