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Introduction
Colorectal cancer (CRC) stands as one of the leading causes 
of cancer-related mortality worldwide, with its incidence and 
mortality rates showing considerable geographic variation.1 
Despite advances in screening and treatment strategies, the 
prognosis for CRC patients remains variable, underscoring 
the necessity for improved prognostic markers and personal-
ized treatment approaches.2 Recent research has increasingly 
focused on the molecular characteristics of CRC, aiming to 
elucidate the complex interactions between genetic altera-
tions and cancer progression.3 Among the molecular mecha-
nisms under investigation, ferroptosis, a form of regulated cell 
death characterized by iron-dependent lipid peroxidation, has 
emerged as a significant area of interest.4 Ferroptosis-related 

genes (FRGs) have been implicated in cancer biology, offer-
ing new insights into tumor suppression, drug resistance, and 
prognostic markers.5,6

Prior studies have explored the role of FRGs in various can-
cers, including CRC, highlighting their potential as therapeu-
tic targets and prognostic indicators.7,8 The identification of 
differentially expressed genes (DEGs) between tumor and nor-
mal tissues has been a fundamental approach to understanding 
cancer’s molecular basis.9,10 Tools such as the DESeq2 package 
have enabled researchers to systematically analyze these differ-
ences, laying the groundwork for identifying prognostic genes 
associated with overall survival (OS), disease-specific survival 
(DSS), and progression-free interval (PFI).11 The integration 
of survival analysis with the molecular characterization of can-
cer has led to the development of predictive models capable of 
forecasting patient outcomes with greater accuracy.
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Kaplan-Meier analysis revealed significantly lower OS probabilities in high-risk groups identified by the RSF model. The RSF model exhib-
ited high accuracy with AUC values of 0.978, 0.985, and 0.965 for 1-, 3-, and 5-year survival predictions, respectively. Calibration curves 
demonstrated excellent agreement between predicted and observed survival probabilities. Decision curve analysis confirmed the clinical 
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tic targets and biomarkers for patient stratification. The RSF model demonstrates robust predictive performance, suggesting its utility in clini-
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The prognostic significance of FRGs in CRC has been cor-
roborated by various studies. For instance, research utilizing 
The Cancer Genome Atlas (TCGA) and other datasets has 
identified specific FRGs that correlate with survival outcomes, 
offering a molecular basis for risk stratification.12 These studies 
have employed a range of statistical and machine learning 
models, including Cox regression,13 LASSO regression,14 and 
Random Survival Forest (RSF),15 to analyze the prognostic 
potential of FRGs. The RSF model, in particular, has gained 
attention for its ability to handle high-dimensional data and its 
robust performance in survival prediction.16

However, despite these advancements, challenges remain in 
the comprehensive understanding of FRGs’ role in CRC prog-
nosis. The variability in model performance across different 
datasets and the complexity of integrating molecular data with 
clinical outcomes call for further research to optimize predic-
tive models for clinical application.17 In this context, our study 
aims to bridge these gaps by characterizing FRGs and con-
structing predictive models for OS across multiple CRC data-
sets. By analyzing intersection genes across DEGs, OS, DSS, 
and PFI, and FRGs, we seek to refine the predictive accuracy of 
10 models and contribute to the personalized treatment of 
CRC.

Methods
Data collection and preprocessing

This study primarily utilized the TCGA-Colon Adenocar
cinoma (TCGA-COAD) dataset for initial analysis, with fur-
ther validation across multiple external datasets including 
GSE103479,18 GSE106584,19 GSE17536,20 GSE17537,20 
GSE29621,21 GSE39084,22 GSE39582,23 and GSE72970.24 
These datasets were chosen for their comprehensive coverage 
of CRC cases and downloaded from GEO database. GSE
103479 comprised a cohort of 363 stage II and III CRC 
patients from 4 European centers. RNA and DNA were 
extracted from 194 samples with ⩾50% tumor content, and 
high-quality transcriptomic data were obtained from 156 sam-
ples using the Almac Xcel array. GSE106584 involved whole 
transcriptome gene expression profiling of 156 CRC patient 
samples (Stage I-IV) using the HTA platform. GSE17536 and 
GSE17537 included gene expression data from mouse colon 
cancer cell lines and were refined using data from patient sam-
ples (55 VMC and 177 Moffitt samples) to develop a metasta-
sis gene expression profile. GSE29621 analyzed mRNA 
extracted from colon tissues through microarray techniques. 
GSE39084 involved 70 patients categorized by age and mis-
match repair status, with key gene mutations assessed and gene 
expression profiles obtained using Affymetrix GeneChip. 
GSE39582 included 598 colon cancer samples analyzed for 
mRNA expression using the Affymetrix U133plus2 chip. This 
dataset was a part of the Cartes d’Identité des Tumeurs (CIT) 
program, with DNA alteration profiles available for 463 sam-
ples. GSE72970 was derived from the COSIVAL cohort, a 

retrospective study involving 68 patients from multiple French 
hospitals and cancer centers. The RNAseq data processed 
through the STAR pipeline for the TCGA-COAD project 
was obtained from the TCGA database. Additionally, we 
employed the Variance Stabilizing Transformations method 
provided by the DESeq2 (version 1.36.0) package to normalize 
the raw count matrix.25 Prognostic information was sourced 
from the study conducted by Jianfang Liu et al.26 The TCGA-
COAD dataset comprises 41 normal samples and 478 tumor 
samples.

Identif ication of DEGs

The DESeq2 package in R was employed to identify DEGs 
between tumor and normal tissues within the TCGA-COAD 
dataset. DEGs were determined based on adjusted P-values 
(<.05) using the Benjamini-Hochberg procedure to control 
the false discovery rate (FDR), and a log2 fold change thresh-
old was set to identify significant DEGs.

Survival analysis

We utilized the survival package (version 3.3.1) in R to iden-
tify prognostic genes associated with OS, DSS, and PFI. 
Initially, we conducted univariate Cox regression analyses to 
assess the relationship between the expression of each gene 
and survival outcomes. Genes with a P-value <.05 were 
deemed statistically significant and chosen for further analy-
sis. Subsequently, to validate the Cox regression analysis, we 
assessed the proportional hazards assumption using the sur-
vival package.

FRG categorization

We retrieved FRGs from FerrDb V2, a meticulously curated 
database containing ferroptosis regulators and their associa-
tions with diseases, sourced from published journal articles.27 
These genes were categorized into 3 groups: unclassified, 
markers, and drivers, based on their known functions and roles 
in ferroptosis.

Model construction and validation

To construct predictive models for OS, 10 different statistical 
and machine learning methods were employed: Coxboost, 
Elastic Net (Enet), Gradient Boosting Machine (GBM), 
LASSO Regression, Partial Least Squares Regression for Cox 
Regression (plsRcox), Ridge Regression, RSF, stepwise Cox 
Regression (stepCox), Supervised Principal Components anal-
ysis (SuperPC), and Support Vector Machines (SVM). These 
models were chosen for their ability to handle high-dimen-
sional data and their application in survival analysis. Each 
model was trained using 6 intersection genes identified across 
DEGs, survival analysis, and FRG categories.
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The models were initially trained and validated within the 
TCGA-COAD dataset using a cross-validation approach to 
optimize model parameters and avoid overfitting. This dataset 
was chosen for its comprehensive transcriptomic and clinical 
data specific to colorectal cancer. Subsequently, the models 
were externally validated across the aforementioned datasets. 
These datasets in GEO database were selected based on crite-
ria such as data quality and availability of survival outcomes. 
This step was crucial to assess the generalizability of the mod-
els across different patient populations. For each model, spe-
cific tuning methods were applied to enhance performance. For 
the RSF model, we fine-tuned specific parameters to optimize 
performance. We set the nodesize parameter to 5 to control the 
minimum size of terminal nodes, the nsplit parameter to 10 to 
determine the number of random splits to consider for each 
node, and utilized the logrank splitrule for node splitting to 
enhance the model’s focus on survival differences. For the 
Coxboost model, tuning included setting the “Coxboost type” 
to “verweij.” For the Enet model, the “alpha” parameter was set 
to 0.5, and the “lambda” rule was designated as “lambda.min” 
for optimal shrinkage. For the GBM model, the “nodesize” 
parameter was set to 5. For the LASSO Regression model, the 
“lambda” rule was set to “lambda.min.” For the plsRcox model, 
the “lambda” rule was “lambda.min.” For the Ridge Regression 
model, we used the “lambda” rule “lambda.min.” For the step-
Cox model, the “direction” parameter was set to “both” for vari-
able selection. For the SuperPC model, the “ncomponents” 
parameter was set to 1. For the SVM model, we utilized “type” 
as “vanbelle1,” “diffmeth” as “makediff1,” “optmeth” as “quad-
prog,” and “kernel” as “add_kernel.” Model performance was 
evaluated based on the concordance index (C-index), area 
under the receiver operating characteristic curve (AUC), cali-
bration curves, and decision curve analysis (DCA) to assess 
their predictive accuracy and clinical usefulness.

Statistical analysis

All statistical analyses were performed using R software (ver-
sion 4.2.1). Statistical comparisons between 2 independent 
groups were conducted using the Wilcoxon rank sum test, 
while comparisons between paired samples employed the 
Wilcoxon signed rank test. Normality was assessed using the 
Shapiro-Wilk test, and homogeneity of variances was tested 
using Levene’s test. Log-rank tests were used to compare sur-
vival distributions. Visualization of the data was performed 
using the ggplot2 package (version 3.3.6).

Results
Identif ication of ferroptosis-related intersection 
genes in CRC

In an initial exploration of the TCGA-COAD dataset, our 
analysis focused on understanding the landscape of DEGs 
and their prognostic implications in CRC. Employing 

stringent selection criteria (log2 fold change ⩾ 1 and adjusted 
P-value < .05), we identified a set of 11 115 DEGs between 
tumor and normal tissues. Furthermore, we categorized genes 
based on their association with OS, DSS, and PFI, and clas-
sified FRGs into 3 categories: unclassified genes (genes asso-
ciated with ferroptosis, but whose regulatory roles are unclear), 
markers (genes that indicate the occurrence of ferroptosis), 
and drivers (genes that promote ferroptosis) based on their 
roles in ferroptosis. An upset plot highlighted the intersection 
among these categories, revealing 6 key genes—ASNS, 
TIMP1, H19, CDKN2A, HOTAIR, and ASMTL-AS1—
that were not only differentially expressed but also held prog-
nostic significance across OS, DSS, PFI, and were related to 
ferroptosis (Figure 1A).

Expression patterns of intersection genes

Subsequent analysis of expression levels in the TCGA-COAD 
dataset demonstrated that these 6 intersection genes were con-
sistently upregulated in tumor tissues compared to normal tis-
sues. This pattern was observed both in unpaired (Figure 1B) 
and paired sample analyses (Figure 1C), underscoring the 
potential role of these genes in tumorigenesis and their associa-
tion with ferroptosis in CRC.

Prognostic impact of ferroptosis-related intersection 
genes

Further investigation into the prognostic significance of the 6 
intersection genes was conducted through survival analysis. A 
forest plot was constructed to visually represent the hazard 
ratios for OS, DSS, and PFI associated with each of the 6 
genes. The analysis illuminated the considerable prognostic 
impact these genes possess, with all 6 showing significant asso-
ciations with survival outcomes in the TCGA-COAD dataset 
(Figure 2). This evidence strongly suggests that the dysregula-
tion of these FRGs plays a critical role in the prognosis of CRC 
patients, highlighting their potential as biomarkers for disease 
progression and treatment response.

Multi-model prognostic prediction analysis across 
diverse datasets

Our comprehensive assessment extended to evaluating the 
efficacy of various statistical and machine learning models for 
predicting OS in CRC across multiple datasets. We employed 
a wide array of modeling techniques, including Coxboost, 
Elastic Net (Enet), Gradient Boosting Machine (GBM), 
LASSO Regression, Partial Least Squares Regression for 
Cox Regression (plsRcox), Ridge Regression, Random 
Survival Forest (RSF), stepwise Cox Regression (stepCox), 
Supervised Principal Components analysis (SuperPC), and 
Support Vector Machines (SVM). These models were applied 
to datasets from TCGA-COAD and 8 additional studies 
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(GSE103479, GSE106584, GSE17536, GSE17537, 
GSE29621, GSE39084, GSE39582, and GSE72970) to 
derive risk scores, hazard ratios, and concordance indexes 
(C-indexes), crucial for evaluating the predictive accuracy of 
each model.

The analysis revealed significant variability in model perfor-
mance across the different datasets. Notably, in the TCGA-
COAD dataset, the RSF model emerged as the top performer, 
boasting the highest C-index among the evaluated models 
(Figures 3 and 4). This finding underscores the RSF model’s 
superior ability to handle the complex nature of transcriptomic 
data, capturing intricate interactions between genes and their 
prognostic significance in CRC.

Detailed assessment of the RSF model ’s predictive 
eff icacy in diverse datasets

The RSF model’s capabilities were thoroughly examined 
within the TCGA-COAD dataset. Kaplan-Meier survival 
curves distinctly categorized patients into high-risk and low-
risk groups based on the median risk score calculated by the 
RSF model (Figure 5A). Notably, the high-risk group exhib-
ited a markedly reduced OS compared to their low-risk 
counterparts. This stark differentiation underscores the 
model’s proficiency in discerning between varying survival 
probabilities, thereby reinforcing its clinical utility in prog-
nosis. The model’s predictive performance was quantitatively 

Figure 1.  Comprehensive Analysis of Gene Expression and Prognostic Significance in TCGA-COAD Dataset. (A) An upset plot illustrating the 

intersections among differentially expressed genes (DEGs) in tumor versus normal tissues, three categories of prognostic genes associated with overall 

survival (OS), disease-specific survival (DSS), and progression-free interval (PFI), along with three types of ferroptosis-related genes (FRGs): unclassified 

genes (those associated with ferroptosis whose regulatory roles are not yet defined), markers (genes indicating the occurrence of ferroptosis), and drivers 

(genes promoting ferroptosis). DEGs were selected based on criteria of a log2 fold change ⩾ 1 and an adjusted P-value (Padj) <.05. Prognostic genes for 

poor OS, DSS, and PFI were identified with hazard ratios > 1 and P-values < .05. The analysis identified six intersection genes—ASNS, TIMP1, H19, 

CDKN2A, HOTAIR, and ASMTL-AS1—that concurrently appear across DEGs, OS, DSS, PFI, and FRG categories. (B) The expression levels of the six 

intersection genes in unpaired tumor versus normal tissues within the TCGA-COAD dataset. These 6 genes were all upregulated in tumor tissues. (C) The 

expression levels of the six intersection genes in paired tumor versus normal tissues within the TCGA-COAD dataset. These 6 genes were all upregulated 

in paired tumor tissues.
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assessed using the AUC for 1-, 3-, and 5-year survival pre-
dictions (Figure 5B). Exceptionally high AUC values of 
0.978, 0.985, and 0.965, respectively, indicated outstanding 
model accuracy over these timeframes, reflecting its robust-
ness in short-term and long-term survival predictions. 
Calibration curves for 1-, 3-, and 5-year survival predictions 
(Figure 5C) closely aligned with the 45° reference line. This 
close proximity indicated an excellent agreement between 
the predicted survival probabilities by the RSF model and 
the actual observed outcomes, signifying the model’s reliabil-
ity. DCA for 1-year (Figure 5D), 3-year (Figure 5E), and 
5-year (Figure 5F) timeframes illustrated the clinical useful-
ness of the RSF model. The analysis demonstrated that using 
the RSF model to guide clinical decision-making results in a 
net benefit across these intervals, emphasizing its practical 
applicability in patient care strategies.

The performance of the RSF model was further evaluated 
using the GSE29621 dataset, which encompasses a different 
cohort of colon cancer patients. Kaplan-Meier curves for the 
GSE29621 dataset (Figure 6A) similarly stratified patients 
into high-risk and low-risk groups. The AUC values for 1-year, 
3-year, and 5-year survival predictions (Figure 6B) were 0.671, 
0.589, and 0.649, respectively. These values, although lower 
than those observed in the TCGA-COAD dataset, still dem-
onstrated the model’s capability to distinguish between differ-
ent survival outcomes, albeit with reduced accuracy. The 
calibration curves for the GSE29621 dataset (Figure 6C) were 
assessed against observed outcomes, providing insights into the 
model’s performance consistency. Decision Curve Analysis for 

1-year, 3-year, and 5-year intervals (Figure 6D-F) was con-
ducted to evaluate the clinical net benefit of using the RSF 
model in this dataset.

Discussion
CRC continues to pose a significant global health challenge, 
necessitating a comprehensive exploration of its underlying 
molecular intricacies and identification of robust prognostic 
markers.28 This study represents a comprehensive effort to elu-
cidate the prognostic significance of FRGs in CRC by leverag-
ing large-scale transcriptomic datasets. By integrating DEGs 
analysis with survival outcomes, our research has identified 6 
key genes (ASNS, TIMP1, H19, CDKN2A, HOTAIR, and 
ASMTL-AS1) that are significantly upregulated in CRC tis-
sues and correlated with poorer survival rates. The robustness 
of these findings is further underscored by the application of 
various predictive models, among which the RSF model 
emerged as the most accurate in forecasting OS.

The identification of these 6 intersection genes aligns with 
and extends the findings of previous studies. For instance, 
ASNS can catalyze asparagine to support cancer cell growth 
under conditions of stress and malnutrition, and emerging 
research has found that ASNS is a key rescuer of KRAS MT 
CRC growth when glutamine availability in the tumor micro-
environment is restricted.29 The role of H19 and HOTAIR, 
both of which are long non-coding RNAs, in cancer progres-
sion and metastasis has been well-documented across various 
cancer types, including CRC.30-33 Similarly, the involvement of 
TIMP1 and CDKN2A in tumor growth and cell cycle 

Figure 2.  Prognostic Impact of Intersection Genes on Survival Outcomes in TCGA-COAD Dataset. A forest plot displaying the prognostic significance of 

the six intersection genes in relation to OS, DSS, and PFI within the TCGA-COAD dataset.
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regulation, respectively, has been noted in the context of 
CRC.34,35 The association of these genes with ferroptosis, a 
form of regulated cell death pivotal in cancer biology, high-
lights their potential as therapeutic targets and prognostic 
markers in CRC.

The RSF model’s superior performance in our study is note-
worthy. RSF, an ensemble method that combines multiple 

decision trees for survival analysis, has been recognized for its 
ability to handle high-dimensional data and account for com-
plex interactions between variables. The high C-index and 
AUC values achieved by the RSF model in predicting 1-, 3-, 
and 5-year OS substantiate its efficacy in clinical prognostica-
tion. This is in line with previous research that has validated 
the utility of RSF in various oncological settings.36

Figure 3.  Multiple Modeling for Predicting OS Across Various Datasets. The hazard ratios and concordance indexes (C-indexes) of risk scores derived 

from Coxboost (A), Elastic Net (Enet) (B), Gradient Boosting Machine (GBM) (C), LASSO Regression (D), Partial Least Squares Regression for Cox 

Regression (plsRcox) (E), and Ridge Regression (F) across multiple datasets: TCGA-COAD, GSE103479, GSE106584, GSE17536, GSE17537, 

GSE29621, GSE39084, GSE39582, and GSE72970. These measures reflect the prognostic accuracy and discriminatory capabilities of these 

multivariable models in the context of CRC.
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The comprehensive evaluation of the RSF model across 
the TCGA-COAD and GSE29621 datasets highlights its 
strengths and limitations in predicting OS in CRC. While 
demonstrating high accuracy and reliability in the TCGA-
COAD dataset, its performance in the GSE29621 dataset 
indicates the need for cautious interpretation when applying 
the model to different patient cohorts. These findings under-
score the importance of dataset-specific model calibration 
and validation in the predictive modeling of cancer prognosis. 
Moreover, while the RSF model showed exemplary perfor-
mance in the TCGA-COAD dataset, the relative perfor-
mance of different models varied across other datasets, 
suggesting that no single model uniformly outperforms oth-
ers in every context. This variability emphasizes the necessity 
for tailored model selection in prognostic studies, taking into 
account the unique features and challenges presented by each 
dataset. Additionally, the study acknowledges several limita-
tions, including limited generalizability due to variability in 
patient demographics, tumor heterogeneity, and sequencing 
technologies, as well as the need for external validation in 
larger, more diverse cohorts to enhance the robustness and 

applicability of the findings. Moreover, the inherent con-
straints of retrospective analyses highlight the need for pro-
spective studies to validate these results. While the research 
offers valuable insights into the prognostic landscape of CRC, 
the biological mechanisms linking the identified FRGs to 
CRC progression require further investigation. Although 
FRGs were the focus, the broader ferroptosis pathways were 
not extensively explored. A deeper understanding of how 
these genes interact within these pathways could provide fur-
ther clarity on their roles in CRC progression and identify 
potential therapeutic targets.

Conclusion
In conclusion, our study elucidates the prognostic relevance 
of FRGs in CRC, with the RSF model showcasing remark-
able predictive accuracy. The 6 intersection genes identified 
offer promising avenues for future research and potential 
therapeutic interventions. As the field of cancer genomics 
evolves, studies like ours pave the way for more nuanced  
and personalized approaches to cancer prognostication and 
treatment.

Figure 4.  Various Models for Predicting OS Across Multiple Datasets. The hazard ratios and concordance indexes (C-indexes) of risk scores derived 

from Random Survival Forest (RSF) (A), stepwise Cox Regression (stepCox) (B), Supervised Principal Components analysis (SuperPC) (C), and Support 

Vector Machines (SVM) (D) across the datasets TCGA-COAD, GSE103479, GSE106584, GSE17536, GSE17537, GSE29621, GSE39084, GSE39582, and 

GSE72970. In TCGA-COAD dataset, the RSF model showed the highest C-index, highlighting the predictive and discriminatory strengths within the scope 

of CRC.
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Figure 5.  Comprehensive Assessment of a RSF Model for Predicting OS in the TCGA-COAD Dataset. (A) Kaplan-Meier curves demonstrate the OS of 

COAD patient cohorts, stratified by the median risk score into high-risk and low-risk groups. Notably, the high-risk group shows significantly lower OS 

probabilities than the low-risk group, underlining the model’s proficiency in effectively discriminating between varying risk levels. (B) The area under the 

time-dependent Receiver Operating Characteristic (ROC) curve (AUC) for 1-year, 3-year, and 5-year survival predictions are 0.978, 0.985, and 0.965, 

respectively, showcasing the model’s high accuracy in prognostic assessments over these time frames. (C) Calibration curves for 1-, 3-, and 5-year 

predictions are plotted against observed outcomes. The curves’ proximity to the 45° reference line across all evaluated time points signifies an excellent 

agreement between the model’s predicted survival probabilities and the actual observations, confirming the model’s reliable calibration. (D-F) Decision 

Curve Analysis (DCA) at 1-year (D), 3-year (E), and 5-year (F) intervals, aimed at quantifying the clinical benefit derived from using the RSF model in 

decision-making processes. The analysis provides insights into the trade-offs between the benefits of true-positive predictions and the costs of false-

positive predictions, emphasizing the model’s utility in clinical settings.
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Figure 6.  Comprehensive Assessment of a RSF Model for Predicting OS in the GSE29621 Dataset. (A) Kaplan-Meier curves demonstrate the OS of 

colon patient cohorts, stratified by the median risk score into high-risk and low-risk groups. Notably, the high-risk group shows lower OS probabilities than 

the low-risk group, underlining the model’s proficiency in effectively discriminating between varying risk levels. (B) The AUC for 1-year, 3-year, and 5-year 

survival predictions are 0.671, 0.589, and 0.649, respectively. (C) Calibration curves for 1-, 3-, and 5-year predictions are plotted against observed 

outcomes. The curves’ proximity to the 45° reference line across all evaluated time points signifies an excellent agreement between the model’s predicted 

survival probabilities and the actual observations, confirming the model’s reliable calibration. (D-F) DCA at 1-year (D), 3-year (E), and 5-year (F) intervals, 

aimed at quantifying the clinical benefit derived from using the RSF model in decision-making processes.
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