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ABSTRACT
Metabarcoding is a popular application which warrants continued methods
optimization. To maximize barcoding inferences, hierarchy-based sequence classifica-
tion methods are increasingly common. We present methods for the construction and
curation of a database designed for hierarchical classification of a 157 bp barcoding
region of the arthropod cytochrome c oxidase subunit I (COI) locus. We produced
a comprehensive arthropod COI amplicon dataset including annotated arthropod
COI sequences and COI sequences extracted from arthropod whole mitochondrion
genomes, the latter of which provided the only source of representation for Zoraptera,
Callipodida and Holothyrida. The database contains extracted sequences of the target
amplicon from all major arthropod clades, including all insect orders, all arthropod
classes and Onychophora, Tardigrada and Mollusca outgroups. During curation, we
extracted the COI region of interest from approximately 81 percent of the input
sequences, corresponding to 73 percent of the genus-level diversity found in the input
data. Further, our analysis revealed a high degree of sequence redundancy within the
NCBI nucleotide database, with a mean of approximately 11 sequence entries per
species in the input data. The curated, low-redundancy database is included in the
Metaxa2 sequence classification software (http://microbiology.se/software/metaxa2/).
Using this database with the Metaxa2 classifier, we performed a cross-validation
analysis to characterize the relationship between the Metaxa2 reliability score, an
estimate of classification confidence, and classification error probability. We used
this analysis to select a reliability score threshold which minimized error. We then
estimated classification sensitivity, false discovery rate and overclassification, the
propensity to classify sequences from taxa not represented in the reference database.
Our work will help researchers design and evaluate classification databases and conduct
metabarcoding on arthropods and alternate taxa.

Subjects Bioinformatics, Ecology, Entomology
Keywords SINTAX, USEARCH, Metaxa2, Overclassification, Taxonomic annotation, Classifica-
tion confidence, Metagenomics, Entomology, UTAX, Non-redundant database

How to cite this article Richardson et al. (2018), A reference cytochrome c oxidase subunit I database curated for hierarchical classifica-
tion of arthropod metabarcoding data. PeerJ 6:e5126; DOI 10.7717/peerj.5126

https://peerj.com
mailto:richardson.827@osu.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.5126
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://microbiology.se/software/metaxa2/
http://dx.doi.org/10.7717/peerj.5126


INTRODUCTION
With the increasing availability of high-throughput DNA sequencing, scientists with a
wide diversity of backgrounds and interests are increasingly utilizing this technology to
achieve a variety of goals. One growing area of interest involves the use of metabarcoding,
or amplicon sequencing, for biomonitoring, biodiversity assessment and community
composition inference (Yu et al., 2012; Guardiola et al., 2015; Richardson et al., 2015).
Using universal primers designed to amplify conserved genomic regions across a broad
diversity of taxonomic groups of interest, researchers are afforded the opportunity to survey
biological communities at previously unprecedented scales. While such advancements hold
great promise for improving our knowledge of the biological world, they also represent
new challenges to the scientific community.

Given that bioinformatic methods for taxonomic inference of metabarcoding sequence
data are relatively new, the development, validation and refinement of appropriate
analytical methods is ongoing. Relatively few studies have characterized the strengths
and weaknesses of different bioinformatic sequence classification protocols (Porter &
Golding, 2012; Bengtsson-Palme et al., 2015; Peabody et al., 2015; Somervuo et al., 2016;
Richardson, Bengtsson-Palme & Johnson, 2017). Further, researchers continue to utilize a
diversity of methods to draw taxonomic inferences from amplicon sequence data. Relative
to alignment-based nearest-neighbor and lowest common ancestor-type classification
approaches, methods involving hierarchical classification of DNA sequences are popular as
they are often designed to estimate the probabilistic confidence of taxonomic inferences at
each taxonomic rank. However, studies explicitly examining the accuracy of classification
confidence estimates are rare (Somervuo et al., 2016).

When performing hierarchical classification, the construction, curation and uniform
taxonomic annotation of the reference sequence database is an important methodological
consideration. Database quality can affect classification performance in numerous ways.
For example, artifacts within the taxonomic identifiers of a reference database can represent
artificial diversity and the inclusion of sequence data adjacent to the exact barcoding locus
of interest likely display sequence composition that is unrepresentative of the barcoding
locus. Lastly, sequence redundancy within reference databases increases computational
resource use and is particularly problematic for classification software programs that classify
sequences based on a set number of top alignments. In general, such database artifacts
have the potential to bias model selection and confidence estimation both with k-mer
style classifiers such as UTAX, SINTAX and the RDP Naïve Bayesian Classifier (Wang et
al., 2007; Edgar, 2015; Edgar, 2016) and alignment-based classification approaches such as
Metaxa2 andMegan (Huson et al., 2011; Bengtsson-Palme et al., 2015). Thus, it is important
to identify and manage reference sequence database artifacts during curation for optimal
downstream classification performance.

The use ofmolecular barcoding andmetabarcoding in arthropod community assessment
and gut content analysis has gained popularity in recent years (Corse et al., 2010; Yu et al.,
2012; Mollot et al., 2014; Elbrecht & Leese, 2017). However, as with other non-microbial
taxonomic groups of interest, few researchers have developed hierarchical DNA sequence
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classification techniques for arthropods (Porter et al., 2014; Tang et al., 2015; Somervuo et
al., 2017). Here, we detail the construction, curation and evaluation of a database designed
for hierarchical classification of amplicon sequences belonging to a 157 bp COI locus
commonly used for arthropod metabarcoding (Zeale et al., 2011). This work will serve as
both a resource for those conducting experiments using arthropod metabarcoding and
as a template for future work curating and evaluating hierarchical sequence classification
databases.

METHODS
Data collection and curation
To produce a comprehensive reference set, all COI annotated sequences from Arthropoda
as well as three sister phyla, Mollusca, Onychophora and Tardigrada, between 250 and
2,500 bp in length were downloaded from the NCBI Nucleotide repository onOctober 21st,
2016 using the search term ‘Arthropoda cytochrome oxidase subunit I’. To supplement
this collection, all arthropod whole mitochondrion genomes were downloaded from
NCBI Nucleotide on March 3rd, 2017 using the search term ‘Arthropoda mitochondrion
genome’. For metagenetic analysis, the inclusion of close outgroup sequences is useful for
estimating the sequence space boundaries between arthropods and alternate phyla. The
Perl script provided in Sickel et al. (2015) was then used along with the NCBI Taxonomy
module (NCBI Resource Coordinators, 2018) to retrieve the taxonomic identity of each
sequence across each of the major Linnaean ranks, from kingdom to species.

After obtaining the available sequences and rank annotations, we created an intermediate
database to obtain extracted barcode amplicons of interest from the reference data using the
Metaxa2 database builder tool (v1.0, beta 4; http://microbiology.se/software/metaxa2/).
This tool creates the hidden Markov models (HMMs) and BLAST reference databases
underpinning the Metaxa2 classification procedures. Prior to extraction, we randomly
selected a reference sequence, trimmed it to the exact 157 bp barcode amplicon of interest
and designated it as the archetypical reference during database building using the ‘-r’
argument. The section of the arthropod COI gene we trimmed this sequence to is the
amplicon product of the commonly used primers of Zeale et al. (2011). The reference
sequence is used in the database builder tool to define the range of the barcoding region of
interest, and the software then trims the remainder of the input sequences to this region
using the Metaxa2 extractor (Bengtsson-Palme et al., 2015). To increase the accuracy of
multiple sequence alignment during this process, we split the original input sequences
on the basis of length prior to running the database builder for amplicon extraction,
creating four files with sequences of 250–500 bp, 501–600 bp, 601–2,500 bp and whole
mitochondrion genomes. Following sequence extraction, the database builder tool aligns
trimmed sequences using MAFFT (Katoh & Standley, 2013) and from this alignment the
conservation of each residue in the sequence is determined. The most conserved regions
are selected for building HMMs using the HMMER package (Eddy, 2011). Input sequences
that cover most of the barcoding region and are taxonomically annotated are used to build
a BLAST (Altschul et al., 1997) database for sequence classification. Finally, the sequences
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Table 1 Taxonomic midpoint annotation corrections. Summary of taxonomic annotations made for
references which had undefined ranks at midpoints in their respective taxonomic lineages.

Undefined
rank

Higher resolution
assignment

Assignment made Authority used

Order Family Sphaerotheriidae Order Sphaerotheriida
Order Family Zephroniidae Order Sphaerotheriida

MilliBase

Order Family Lepidotrichidae Order Zygentoma
Order Family Lepismatidae Order Zygentoma
Order Family Nicoletiidae Order Zygentoma
Class Order Pauropoda Class Myriapoda
Family Genus Pseudocellus Family Ricinididae
Family Genus Chanbria Family Eremobatidae
Genus Species Tanypodinae spp. Genus Tanypodinae
Genus Species Ennominae spp. Genus Ennominae
Family Genus Dichelesthiidae Family Dichelesthiidae
Family Genus Phallocryptus Family Thamnocephalidae

ITIS

Class Order Symphyla Class Myriapoda
Order Family Peripatidae Order Onychophora
Class Family Peripatidae Class Onychophora
Order Family Peripatopsidae Order Onychophora
Class Family Peripatopsidae Class Onychophora

Regier et al. (2010)

Family Genus Lasionectes Family Speleonectidae
Order Family Speleonectidae Order Nectiopoda
Family Genus Prionodiaptomus Family Diaptomidae
Order Family Diaptomidae Order Calanoida
Class Order Calanoida Class Maxillopoda

WoRMS

in the BLAST database are aligned using MAFFT, and the intra- and inter-taxonomic
sequence identities are calculated to derive meaningful sequence identity cutoffs at each
taxonomic level. This entire process is described in more detail in the Metaxa2 2.2 manual
(http://microbiology.se/software/metaxa2/) and in Bengtsson-Palme et al. (2018).

After extraction, sequences were then curated by removal of duplicate sequences using
the Java code provided with the RDP classifier (v2.11; Wang et al., 2007), which removes
identical sequences or any sequence contained within another sequence. At this point,
we conducted extensive curation of the available lineage data for the reference sequence
database. For references lacking complete annotation at midpoints within the Linnaean
lineage, we used Perl regular expression-based substitution to complete the annotation
according to established taxonomic authorities, including MilliBase (Sierwald, 2017), the
Integrated Taxonomic Information System (http://www.itis.gov) and the phylogenomic
analysis of Regier et al. (2010). Table 1 shows the substitutions made. Further, we removed
ranks containing annotations reflective of open nomenclature, such as sp., cf. and Incertae
sedis, as well as ranks annotated as ‘undef.’ Lastly, we removed entries containing more
than two consecutive uncalled base pairs.
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Upon analyzing the representativeness of this initial database across arthropod classes
and insect orders, we found that amplicon sequences from two insect orders, Strepsiptera
and Embioptera, were not present in the curated database, likely due to their poor
sequence similarity to the reference sequence used to designate the amplicon barcode
region of interest. To add Strepsiptera and Embioptera COI amplicons, all NCBI COI
sequences belonging to these orders were downloaded on October 10th, 2017, curated
and added to the Metaxa2 COI database. To improve recovery of amplicons from these
insect orders during curation, a representative sequence from both Embioptera and
Strepsiptera, representing the 157 bp COI amplicon of interest, was used when building the
Metaxa2 database. This retrospective addition of sequences belonging to Strepsiptera and
Embioptera contributed 102 and three non-redundant reference sequences to the database,
respectively. After this final sequence addition step, a Metaxa2 database was built to include
all curated sequences and this database is available through the Metaxa2 software package
(http://microbiology.se/software/metaxa2/).

To assess the degree to which our amplicon sequence extraction, dereplication and
curation procedures worked, we took inventory of the number of sequences per species
in the initial input data as well as the number of sequences and genera present in the
data at three points during curation: (1) in the initial input data, (2) following Metaxa2
database builder-based amplicon sequence extraction and (3) in the final database following
dereplication and taxonomic curation.

Classifier performance evaluation
For performance evaluations, the methods used were highly similar to those of Richardson,
Bengtsson-Palme & Johnson (2017). For three repeated samplings, we randomly selected 10
percent of the curated sequences to obtain testing data, using the remaining 90 percent of
sequences to train the Metaxa2 classifier for performance evaluations. To assess the effect
of sequence length on classifier performance, we used a Python script to crop the test case
sequences to 80 bp in length, approximately half the median length of the original reference
sequence dataset. Evaluating classification performance on these short sequences provides
a test of the classifiers robustness to sequence length variation and enables estimation of the
potential for classifying sequences from short, high-throughput technology, such as 100
cycle single-end Illumina HiSeq sequencing. We then performed the following analyses on
both the full-length (157 bp) and half-length (80 bp) test case sequences, separately.

To characterize the relationship between the Metaxa2 reliability score, an estimate
of classification confidence, and the probability of classification error, we used the COI
trained classifier to classify the testing datasets, requiring the software to classify to the
family rank regardless of the reliability score of the assignment. After comparing the known
taxonomic identity of each reference test case to the Metaxa2 predicted taxonomic identity,
we regressed 5,000 randomly chosen binary classification outcomes, ‘1’ representing an
incorrect classification and ‘0’ representing a correct classification, against the Metaxa2
reliability score using local polynomial logistic regression in R (v3.3.1; R Core Team, 2014)
with the span set to a value of 0.5.
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For each of the three testing and training datasets, we classified the testing sequences using
Metaxa2 with a reliability score threshold (-R) of 68. With the resulting classifications,
we compared the known taxonomic identity of each reference test case to its Metaxa2
classification, from kingdom to species, to assess the proportion of true positive, true
negative, false negative and false positive predictions. We also calculated false discovery
rate, as measured in errors per assignment for each rank.

To assess the rate of taxonomic overclassification at the genus and species levels, we
searched the testing dataset for sequence cases belonging to arthropod genera and species
not represented in the training database. For each of the two ranks, we then determined
the proportion of these sequences which were classified. Since the actual identity of such a
sequence case is not represented in the training data, any such classification represents a
particular type of misclassification known as an overclassification or overprediction. Lastly,
for these sequence cases, we looked at how the classifier performed at the preceding rank
(e.g., for the species-level cases, we analyzed classifier performance at the genus-level).
Such analysis provides a measure of how well the software is able to perform at the next
higher rank for these worst-case-scenario input sequences.

For each order in the testing data, we estimated the family, genus and species-level
proportion of sequences assigned and false discovery rate to estimate the degree of
variance in performance across major arthropod lineages. For this analysis, the false
discovery rate was again defined as the number of errors per assignment. After conducting
this analysis, we limited our interpretation of the results to orders with at least 100
tests sequence cases at all of the ranks analyzed, family, genus and species. A Python
script which takes the testing sequence taxonomies, training sequence taxonomies and
Metaxa2 predicted taxonomies as input and provides the summaries of classification
performance described above is provided with the GitHub repository associated with
this work (https://github.com/RTRichar/Zeale_COI_Database). This work was performed
using Ohio Supercomputer Center resources (Ohio Supercomputer Center, 1987).

RESULTS
Following curation and extraction, we obtained 199,206 reference amplicon sequences
belonging to 51,416 arthropod species. Over 90 percent of the references were between 142
and 149 bp in length, with a minimum reference sequence length of 94 bp. For the final
database creation and classifier training procedure, many reference amplicons were shorter
than the 157 bp region of interest due to the incompleteness of some reference sequences
and the trimming of taxonomically uninformative ends during Metaxa2 training. Prior to
this step, 82 percent of the sequences were between 150 and 157 bp in length following
the original extraction and these longer sequences can be found at the GitHub repository
associated with this work. The taxonomic representativeness of the database across different
arthropod classes and insect orders, including the number of families, genera and species
in each, are presented in Tables 2 and 3.

Analyzing the number of sequences per species in the input reference sequence data,
we observed a heavily right-skewed distribution, with a median of 2 and a mean of 11.1
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Table 2 Summary of database completeness with respect to all arthropods. Summary of taxonomic
representation across all arthropod classes and associated sister groups. Numbers may include sub and su-
per groupings.

Class Number of
orders

Number of
families

Number of
genera

Number of
species

Heterotardigrada 1 2 2 1
Eutardigrada 1 3 12 20
Onychophora 1 2 17 42
Pycnogonida 1 10 27 89
Cephalopoda 1 1 1 1
Merostomata 1 1 3 4
Arachnida 17 226 740 1,804
Myriapoda 2 4 7 9
Chilopoda 5 16 53 172
Diplopoda 11 33 95 181
Ostracoda 2 6 19 40
Branchiopoda 3 25 76 254
Malacostraca 13 256 969 2,654
Maxillopoda 11 85 240 568
Cephalocarida 1 1 2 1
Remipedia 1 2 5 8
Protura 1 4 12 13
Diplura 1 5 7 11
Collembola 4 18 98 203
Insecta 29 789 14,654 45,341
Total 107 1,489 17,039 51,416

sequences per species (Fig. 1A). Further, 32.0 percent of species were represented by 5 or
more sequences and 40 species, includingBemisia tabaci andDelia platura, were represented
by between 1,000 and 9,736 entries. After conducting amplicon sequence extraction using
the Metaxa2 database builder tool, we were able to extract the COI region of interest from
80.8 percent of the input sequences, which corresponded to 73.4 percent of the genus-level
diversity found in the original input data. Following sequence dereplication, removal
of sequences with three or more ambiguous base calls and taxonomic lineage curation,
our final database contained approximately 13 percent of the input extracted sequences,
which represented 98.2 percent of the genus-level richness of the input extracted reference
amplicon sequences (Figs. 1B and 1C).

Regressing classification outcome against the Metaxa2 reliability score yielded a similar
best fit model for both the 80 bp and full length test sequence datasets (Fig. 2). For
both regressions, the probability of sequence mis-assignment was below 10 percent for
reliability scores above 70. Thus, for our evaluations, we chose a reliability score of 68,
which corresponded to family-level error probabilities of approximately 11.3 percent and
9.5 percent for 80 bp and full length sequences, respectively.

In evaluating the performance of our classification database when analyzed withMetaxa2
at a reliability score cutoff of 68, we found consistently low proportions of false positives
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Table 3 Summary of database completeness with respect to insects. Summary of insect taxa included in
the arthropod COI database following curation. Numbers may include sub and super groupings.

Order Number of
families

Number of
genera

Number of
species

Archaeognatha 2 15 18
Zygentoma 3 3 3
Odonata 34 243 488
Ephemeroptera 26 108 378
Zoraptera 1 1 1
Dermaptera 4 6 7
Plecoptera 15 84 199
Orthoptera 30 299 603
Mantophasmatodea 1 1 1
Grylloblattodea 1 1 0
Embioptera 1 2 2
Phasmatodea 6 20 28
Mantodea 11 74 76
Blattodea 8 82 95
Isoptera 6 91 186
Thysanoptera 3 14 30
Hemiptera 101 1,245 2,730
Psocoptera 12 17 19
Hymenoptera 74 1,500 4,418
Raphidioptera 2 9 11
Megaloptera 2 10 22
Neuroptera 14 65 153
Strepsiptera 3 10 36
Coleoptera 124 2,287 7,452
Trichoptera 43 320 1,269
Lepidoptera 134 6,554 21,626
Siphonaptera 6 14 20
Mecoptera 4 5 10
Diptera 118 1,574 5,460
Total 789 14,654 45,341

across all ranks, though the proportion of true positive, true negative and false negatives
varied more considerably from kingdom to species (Fig. 3A). Further, while the Metaxa2
false discovery rate increased with higher resolution ranks (Fig. 3B), it was generally low,
never exceeding 5 percent at the genus level. Interestingly, Metaxa2 displayed low variance
in the proportion of sequences assigned when classifying 80 bp sequences relative to full
length sequences of 147 bp in median length. Overall, the proportion of sequences assigned
was greater than 90 percent through the order level for both full length and half length
sequences. Beyond the order level, this statistic decreased to 53 and 56 percent at the species
level for half length and full length sequences, respectively. Conversely, the proportion of
false positives variedmore strongly by sequence length andwas greatest at higher-resolution
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Figure 1 Data inventory throughout curation process. A percent density histogram of the number of
sequences per species (A) shows the distribution of redundancy within the NCBI Nucleotide entries used.
The dashed blue line and solid red line indicate the median and mean number of sequences per species,
respectively. Inventories of the number of sequences (A) and genera (B) input into the curation process,
following Metaxa2 extraction and following dereplication of redundant sequences and curation of taxo-
nomic lineages.

Full-size DOI: 10.7717/peerj.5126/fig-1
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Figure 2 Estimating reliability score accuracy. A logistic regression analysis of case-by-case classification
accuracy, ‘1’ indicating a false-positive identification and ‘0’ indicating a true-positive identification, re-
gressed against classification reliability score for half length (A) and full length (B) test sequence cases. A
best fit local polynomial regression line (solid blue with 95 percent confidence interval) was used to esti-
mate the relationship between reliability score and the probability of mis-classification. Dashed red lines
illustrate the hypothetically ideal 1 to 1 relationship between error probability and the Metaxa2 reliability
score, an estimate of classification confidence. Solid black lines highlight the 10 percent error probability.

Full-size DOI: 10.7717/peerj.5126/fig-2

taxonomic levels. At the species level, 1.97 percent of 80 bp sequences were misclassified,
compared to only 1.13 percent for full length sequences. At the order level, the percent of
sequences misclassified was 0.59 and 0.65 for 80 bp and full length sequences, respectively.
As measured in errors per assignment, the classification false discovery rate was similarly
highest at the species level, with 7.3 and 6.3 percent of assignments being incorrect for 80
bp and full length sequences, respectively. False discovery rates decreased to 1.2 and 0.7
percent of assignments being incorrect at the order level for 80 bp and full length sequences,
respectively.

During our evaluation of taxonomic overclassifiction, we found between 3,141 and 3,202
sequence test cases belonging to species not represented in the corresponding training data
and between 612 and 630 sequence test cases belonging to genera not represented in the
corresponding training data across the three iterations of training and testing data. At the
species level, the proportion of these cases which were overclassified was roughly equal for
full length and half length sequences, with 5.4 and 5.2 percent being overclassified (Fig. 4A).
With respect to genus level classification performance on these species overclassification
test cases, approximately 31 and 37 percent of test cases were classified correctly as true
positives or true negatives for half length and full length sequences. Genus level false
positive proportions for these sequence cases were 6.2 and 5.1 percent (Fig. 4B). For the
genus level overclassification cases, the difference in overclassification rates by sequence
length was slightly larger, with approximately 8.9 and 10.9 percent of full length and half
length test cases being overclassified (Fig. 4C). Family level performance on genus level
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Figure 3 Classification performance accross entire testing corpus.Mean proportion and standard error
of true positives (TP), true negatives (TN), false negatives (FN) and false positives (FP) for the classifica-
tion of all testing sequences, conducted on both the full-length and half-length sequences (A). Mean and
standard error of the false discovery rate for both full length and half length sequences, as measured in er-
rors per assignment, during classification of all testing sequences (B).

Full-size DOI: 10.7717/peerj.5126/fig-3

overclassification cases was slightly lower with the proportion of true positive and true
negative identifications summing to 25 and 27 percent for half length and full length
sequences, with corresponding false positive proportions of 8.8 and 8.0

Evaluating classification performance for each order resulted in unsurprising outcomes
across taxonomic ranks, from family to species (Fig. 5). Generally, the proportion of
sequences assigned decreased and false discovery rate increased with increasing taxonomic
resolution. Between orders, there was noteworthy variation in performance. For example,
the proportion of sequences assigned was highest among trichopteran sequences and lowest
among lepidopteran sequences, with approximately 94 and 50 percent of sequences being
assigned to the family rank for each order, respectively. Further, while the proportion of
sequences assigned was similarly lowest for lepidopteran sequences at the genus and species
levels, wherein 39 and 21 percent of sequences were assigned for each respective rank, the
highest proportion of sequences assigned at these ranks was not observed with trichopteran
sequences. Instead, genus and species level proportion assigned was highest among Sessilia
sequences, with 86 and 78 percent of sequences being assigned to each respective rank.

DISCUSSION
While species-specific PCR and immunohistochemistry-based methods have been useful
in documenting arthropod food webs (Stuart & Greenstone, 1990; Symondson, 2002;Weber
et al., 2006; Blubaugh et al., 2016), the narrow species-by-species nature of such approaches
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Figure 4 Overclassification analysis. Proportional species level overclassification rate (A) and
genus level classification performance (B) for test sequence cases from species not represented in the
corresponding training data. Proportional genus level overclassification rate (C), and family level
classification performance (D) for test sequence cases from genera not represented in the corresponding
training data.
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has limited their utility for answering large-scale or open-ended ecological questions. With
the increasing availability of high-throughput sequencing, arthropod metabarcoding will
continue to become more broadly applicable to scientific questions spanning a diversity
of research areas. The development of improved methods for drawing maximal inferences
from sequence data is an important area for further methodological research. In creating a
highly curated COI reference amplicon sequence database and evaluating its performance
when used with the Metaxa2 taxonomic classifier, we have developed a new method to aid
researchers in the analysis of arthropod metabarcoding data.

Though predictions vary greatly, researchers have estimated the species richness of
arthropods to be between 2.5 to 3.7 million (Hamilton et al., 2010). Further, according to
the literature review of Porter et al. (2014), 72,618 insect genera have been described to
date. Thus, the 51,416 species and 17,039 genera represented in our database account for
only a small fraction of arthropod biodiversity. The limited representativeness of currently
available, high quality reference sequence amplicons for the COI region highlights the
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need for continued efforts to catalogue arthropod biodiversity with molecular techniques.
Despite this current limitation, the combination of molecular gut content analysis with
high-throughput sequencing is a promising path toward investigating arthropod trophic
ecology and biodiversity monitoring with greater sensitivity and accuracy relative to
alternate approaches.

The results of our inventory of sequences per species and genus level richness at various
stages in the database curation process revealed that our amplicon extraction procedure
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was highly sensitive, extracting and trimming approximately 81 percent of the input
sequences down to the 157 bp region of interest. Further, approximately 87 percent of
these extracted sequences represented sequence redundancies and were removed during
dereplication. As mentioned previously, the trimming of sequence residues adjacent to the
barcode of interest and removal of redundant sequences not only makes computational
analysis less resource intensive, it can also improve classification performance. For k-mer
style classifiers, extraneous sequence residues can bias model selection during classifier
training, while abundant sequence duplicates can result in an overwhelming number of
identical top hit alignments for alignment-based classifiers.

Overall, the best fit local regression models summarizing the relationship between the
Metaxa2 reliability score and the probability of classification error were useful in that
the likelihood of misclassification was always less than what would be expected based
on the reliability score. For example, a reliability score of 90 corresponded to only a 3.3
percent probability of family-level misclassification for full length sequences. We selected a
reliability score of 68 for subsequent analysis as this provided a balanced trade-off between
sensitivity and accuracy. Using this reliability score we observed minimal false positive
rates and overall proportions of misclassification when comparing our results to those of
similar studies (Porter et al., 2014; Bengtsson-Palme et al., 2015; Edgar, 2016; Richardson,
Bengtsson-Palme & Johnson, 2017). Given that the family level probability of error was only
9.5 percent at a reliability score of 68, a lower reliability score threshold may be justifiable
for certain research situations. However, further testing should be conducted to ensure
that the relationship between reliability score and classification confidence is similar across
taxonomic ranks and between different DNA barcodes.

With respect to sensitivity using a reliability score of 68, our results were highly dependent
upon the rank being analyzed, with sensitivities, as measured by the total proportion of
sequences classified, above 60 percent only being achieved at the family and order ranks. To
some degree, these sensitivity estimates reflect the large degree of database incompleteness
at the genus and species ranks, wherein approximately 3.6 and 25.5 percent of unclassified
sequences were true negatives. However, to our knowledge, no other studies have reported
classification sensitivity data for this COI amplicon locus. This makes it difficult to ascertain
if Metaxa2 –with an average of approximately 44.7 percent of false negative assignments
at the genus and species ranks –exhibits relatively low sensitivity or if this locus is limited
in discriminatory power. The short length of the 157 bp COI amplicon region relative to
other barcoding regions such as the ITS and 18S rRNA regions (Hugerth et al., 2014;Wang
et al., 2015) could be a cause of such limited discriminatory power.

As expected, analyzing cases of overclassification in our data revealed that sequences
from taxa lacking representation in the database are far more likely to be misclassified
relative to sequences from well-represented taxa. This is supported by an approximately
10 percent probability of genus level overclassification for sequences from unrepresented
genera relative to a 1 to 2 percent probability, depending on sequence length, for all
sequence test cases. Interestingly, the genus level overclassification rate was approximately
double that observed at the species level. This seems counterintuitive but is expected in light
of the discussion put forth by Edgar (2018), wherein the percent identity difference from
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the closest reference sequence match is considered one of the most important predictors of
classification performance. For a species-level overclassification case, the closest reference
sequence match in the corresponding database is a sequence from a congeneric species
in the best case scenario. Since the closest reference sequence match for a genus level
overclassification case is a sequence from a confamilial species at best, the average percent
identity difference from the closest reference is greater for a genus level overclassification
case than for a species level overclassification case. Thus, for overclassification cases in
particular, higher levels of error are expected at more inclusive taxonomic ranks.

While the genus level overclassification estimates we observed are not desirable, they
are considerably lower than similar estimates for the RDP classifier, which range from 21.3
percent to 67.8 percent depending on the database, locus analyzed and cross-validation
approach used (Edgar, 2016; Richardson, Bengtsson-Palme & Johnson, 2017). Further, the
observed degree of genus level overclassification using Metaxa2 with our COI database
was similar to or less than that of the recently developed SINTAX classifier (Edgar, 2016;
Edgar, 2018). Interestingly, the recent analysis of Edgar (2018), resulted in a similar estimate
of the Metaxa2 genus level overclassification rate while revealing a considerably higher
overclassification rate for the majority of other classifiers tested. Though this analysis found
Metaxa2 to be relatively less sensitive than other classifiers, a weakness of the work was
that it only tested Metaxa2 using the default reliability score of 80, while testing multiple
confidence thresholds for alternate classifiers, such as SINTAX and RDP. Given that our
analysis has revealed the Metaxa2 default reliability score to be too conservative—at least
for the COI locus—such results are difficult to interpret. In general, such comparisons
across studies should be approached with caution as multiple factors complicate the
interpretation of classification performance, such as locus discriminatory power, database
completeness and the choice of evaluation metrics used. Ultimately, direct comparisons of
classification methods using standardized loci and databases are needed to more rigorously
compare performance.

With respect to Metaxa2 classification of full length relative to half length amplicon
sequences, we observed surprisingly small differences in performance. Consistently,
the proportion of misclassified sequences was greater for half length sequences. When
considering error and sensitivity together, the false discovery rate or errors per assignment
for full length sequences was consistently less than or equal to that achieved during the
classification of half length sequences. Lastly, when considering the relationship between
the Metaxa2 reliability score and the probability of classification error at the family level,
we noted highly similar local polynomial regression models of error probability for both
full length and half length sequences.

CONCLUSIONS
Here, we assembled a highly curated database of arthropod COI reference amplicon
sequences, trained a recently developed hierarchical DNA sequence classifier using the
database and conducted extensive in silico performance evaluations on the resulting
classification pipeline. Overall, we found a high degree of sequence redundancy within the
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initial, uncurated dataset, highlighting the importance of effective sequence dereplication
during the creation of databases designed for metabarcoding analysis. Further, the limited
representativeness of the database with respect to arthropod biodiversity indicates that
additional sequencing effort is needed to further improve the performance of arthropod
metabarcoding techniques. Though the performance evaluations presented in this work
were conducted on a large corpus of available biological data, the results are not necessarily
directly transferable to all experimental settings. For example, variations in sequence error
profiles and taxonomic distributions among datasets are potential confounding factors.
Despite these limitations, this work provides researchers with a new resource for arthropod
COI sequence analysis and novel data for gauging the strengths and limitations of different
approaches to arthropod metabarcoding.
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