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γ-H2AX/53BP1/pKAP-1 foci and 
their linear tracks induced by in 
vitro exposure to radon and its 
progeny in human peripheral blood 
lymphocytes
Defang Ding1,2,*, Yaping Zhang1,*, Jing Wang1, Xufei Wang3, Dunhuang Fan4, Linfeng He5, 
Xuxia Zhang1, Yun Gao1, Qiang Li1 & Honghong Chen1

The biodosimetric information is critical for evaluating the human health hazards caused by radon 
and its progeny. Here, we demonstrated that the formation of phosphorylated histone variant H2AX 
(γ-H2AX), p53-binding protein 1 (53BP1) and phosphorylated KRAB-associated protein 1 (pKAP-1) foci 
and their linear tracks in human peripheral blood lymphocytes (HPBLs) in vitro exposed to radon and 
its progeny were dependent on the cumulative absorbed dose of radon exposure but was unrelated 
to the concentration of radon. Among them, γ-H2AX foci and its linear tracks were the most sensitive 
indicators with the lowest estimable cumulative absorbed dose of 1.74 mGy from their linear dose-
response curves and sustained for 12 h after termination of radon exposure. In addition, three types 
of foci showed an overdispersed non-Poisson distribution in HPBLs. The ratios of pKAP-1/γ-H2AX 
foci co-localization, 53BP1/γ-H2AX foci co-localization and 53BP1/pKAP-1 foci co-localization were 
significantly increased in HPBLs exposed to radon while they were unrelated to the cumulative dose 
of radon exposure, suggesting that γ-H2AX, pKAP-1 and 53BP1 play an important role in the repair 
of heterochromatic double-strand breaks. Altogether, our findings provide an experimental basis for 
estimating the biological dose of internal α-particle irradiation from radon and its progeny exposure in 
humans.

The human health risk associated with environmental radon exposure including occupational, indoor or drinking 
water consumption exposure to high radon and its progeny has been recognized for decades. Radon and its prog-
eny have been classified as a category 1 human carcinogen by the International Agency for Research on Cancer1. 
After inhalation or ingestion, radon and its progeny are deposited in lungs or bone marrow adipose and bone 
tissues, produce high linear energy transfer (LET) α​-particle irradiation on the respiratory cells and bone marrow 
hematopoietic stem/progenitor cells2–4, and responsible for the lung cancer and leukemia risk5–10. The α​-particle 
exposure is the major type of radiation generated by inhaled or ingested radon and its progeny, although some β​ 
particles and γ​-rays are also emitted. It is well established that biodosimetric information is critical for evaluating 
the health hazards caused by ionizing radiation (IR). However, exposure to radon is a type of chronic, cumulative, 
low-dose and non-uniform radiation exposure to human body, and a simple and reliable method for estimating 
the biological dose from internal α​-particle irradiation is still unavailable.

The high LET α​-particle irradiation has been demonstrated to induce clustered double-strand break 
(DSB) damage in DNA, a type of damage that is more difficult to repair than the isolated DSBs induced by 
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low-LET radiation11,12. Recent studies have shown that clustered DSBs can be repaired with slow kinetics via 
the microhomology-mediated non-homologous end joining (NHEJ) pathway in the G1 phase of the cell cycle13, 
and that heterochromatic DSB repair is a critical rate-limiting step in the repair process13. In the DNA damage 
response (DDR), phosphorylated histone variant H2AX (γ​-H2AX), a molecular marker for DSBs, provides a plat-
form for the accumulation of DSB repair factors in mammalian cells11. p53-binding protein 1 (53BP1), a trans-
ducer in DDR, not only has a critical decision-making role in choosing DSB repair pathways but also promotes 
heterochromatic DSB repair in G1 phase cells by recruiting the phosphorylated ataxia telangiectasia mutated pro-
tein (p-ATM)14,15. KRAB-associated protein 1 (KAP-1), a molecular marker for heterochromatin, plays an impor-
tant role in the chromatin remodeling process. In cells that have not been subjected to stress injury, KAP-1 exists 
in dense heterochromatin in a SUMOylated form. When DSBs occur in heterochromatin, 53BP1-dependent 
concentrated p-ATM phosphorylate KAP-1 and induce the formation of phosphorylated KAP-1 (pKAP-1) foci, a 
molecular marker for heterochromatic DSBs, leading to local relaxation of heterochromatin structure at the sites 
of DSBs. As a result, repair proteins can readily access the damaged sites to carry out repair16.

Immunofluorescence examination of γ​-H2AX foci in peripheral blood lymphocytes (PBLs) has been used 
to estimate the biological dose from uniform external radiation17–23 and local irradiation24,25. Compared to the 
dicentric assay as the “gold standard” for biodosimetry analysis, γ​-H2AX foci approach is a simple and rapid 
assay with a high sensitivity as low as several mGy17,26. Some laboratories have developed methods for automatic 
detection of γ​-H2AX foci that permit high-throughput screening of populations27–30. Our recent study has estab-
lished a γ​-H2AX foci-based assay to determine biological dose to red bone marrow (RBM) in radon-inhaled 
rats, in which the linear γ​-H2AX foci track in rat PBLs and bone-marrow lymphocytes (BMLs) can serve as a 
biomarker to determine whether the body is suffered from high radon exposure in the absence of other internal 
radiation from α​-particle emitting radionuclides and high-LET external irradiation31. γ​-H2AX foci quantitation 
in rat PBLs can be used to estimate RBM-absorbed doses with the established linear dose-response curve of 
γ​-H2AX foci after in vitro radon exposure and the established ratio of RBM- to PBLs-absorbed doses after in vivo 
radon exposure31. In addition, IR-induced 53BP1 foci is also a useful biomarker for detecting radiation exposure 
after radionuclide incorporation, even for absorbed doses to the blood below 20 mGy32. In the present study, we 
established dose-response curves for the linear γ​-H2AX/pKAP-1 foci tracks and for individual γ​-H2AX/pKAP-1 
foci induced by in vitro exposure of human PBLs (HPBLs) to radon and its progeny. Moreover, we explored 
the dose-response relationships of the linear 53BP1 foci tracks and individual 53BP1 foci. We also examined 
the characteristics of the formation, elimination and distribution of the three types of foci, and the status of 
co-localization of each pair of the three types of foci in HPBLs exposed to radon and its progeny, and further 
determined the repair characteristics of the heterochromatic DSBs induced by internal α​-particle irradiation 
from radon and its progeny exposure in HPBLs. The findings of this study provide an experimental basis for using 
the γ​-H2AX foci-based assay to estimate the biological dose of internal α​-particle irradiation from radon and its 
progeny exposure in humans.

Results
Exposure to radon and its progeny induces dose-dependent formation of linear γ-H2AX, 53BP1 
and pKAP-1 foci tracks in HPBLs.  As shown in Fig. 1A, in vitro radon exposure at 1.74–6.85 mGy induced 
not only the formation of linear γ​-H2AX foci tracks but also the formation of linear tracks of 53BP1 and pKAP-1 
foci in HPBLs. Moreover, some tracks were partial, which is the result of the α​-particle range and spherical shape 
of HPBLs adhered to membrane. While the linear γ​-H2AX foci tracks were consisted of continuous and intermit-
tent linear tracks, the linear 53BP1/pKAP-1 foci tracks were mostly the intermittent linear tracks. The yields of 
these linear foci tracks were increased significantly in a dose-dependent manner (Fig. 1B). In contrast, no linear 
γ​-H2AX, 53BP1 or pKAP-1 foci tracks were observed in HPBLs that received background levels of radon expo-
sure. It is worth noting that at the same absorbed dose, the levels of linear γ​-H2AX foci tracks were approximately 
1.45–1.65 and 2.05–2.25 folds of the levels of linear 53BP1 foci and pKAP-1 foci tracks, respectively. The yield 
of linear γ​-H2AX foci tracks was markedly increased over the background level when the absorbed dose from 
radon exposure was as low as 1.74 mGy, while the yields of linear pKAP-1 and 53BP1 foci tracks were significantly 
higher than the corresponding background values only with the cumulative dose of radon reaching 3.39 mGy 
(Fig. 1B). These results demonstrate that the formation of linear γ​-H2AX foci tracks in HPBLs is more sensitive 
to radon exposure than the formation of the other two types of foci tracks.

Based on the above findings, a dose-response curve of the linear γ​-H2AX foci tracks was constructed in 
HPBLs exposed to radon and its progeny (0–6.85 mGy) under two distinct exposure conditions: low concentra-
tion of radon at ~500 kBq/m3 and high concentration of radon at ~1000 kBq/m3 (Fig. 1C). A dose-response curve 
of the formation of linear pKAP-1 foci tracks was also established (Fig. 1D). The results show that both linear 
γ​-H2AX foci tracks and linear pKAP-1 foci tracks exhibit a linear dose-response relationship with the absorbed 
dose from radon exposure. It is noteworthy that the dose-response curve of linear γ​-H2AX foci tracks after expo-
sure of HPBLs to radon with the high concentration overlaps with that obtained after exposure of HPBLs to radon 
with the low concentration. Similar results were obtained in dose-response curves of linear pKAP-1 foci track 
formation. These results indicate that the yields of linear γ​-H2AX foci tracks and linear pKAP-1 foci tracks are 
determined by the cumulative absorbed dose from radon exposure but are independent on radon concentrations 
for exposure.

Exposure to radon and its progeny induces dose-dependent formation of γ-H2AX, 53BP1 and 
pKAP-1 foci in HPBLs.  The formation of γ​-H2AX, 53BP1 and pKAP-1 foci was observed at the levels of 
0.0029–0.0198 foci/cell, 0.0015–0.0128 foci/cell and 0.0028–0.0095 foci/cell, respectively, in HPBLs after back-
ground radon exposure (Fig. 2A,B). There were no significant differences in the background foci levels observed 
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at various time points during the course of 6–18 h in vitro HPBL culture (Fig. 3A). Similar results for the back-
ground level of γ​-H2AX foci (0.0012–0.0176 foci/cell) and 53BP1 foci (0.0012–0.0333 foci/cell) in HPBLs have 
been reported32.

Figure 1.  The formation of linear γ-H2AX, 53BP1 and pKAP-1 foci tracks in HPBLs in vitro exposed to 
radon and its progeny. (A) Representative images of linear γ​-H2AX, 53BP1 and pKAP-1 foci tracks in HPBLs 
induced by in vitro exposure to radon and its progeny. (B–D) Dose-response relationship between the yields 
of linear γ​-H2AX, 53BP1 and pKAP-1 foci tracks and cumulative radon exposure dose in HPBLs. Two to four 
thousand HPBLs from each sample were used for linear γ​-H2AX, 53BP1 and pKAP-1 foci track quantitation. 
The data are presented as the mean ±​ standard deviation of three human blood samples. Red, γ​-H2AX and 
pKAP-1; green, pKAP-1 and 53BP1; blue, DNA stained with DAPI. 1000 ×​ magnification. *P <​ 0.05, **P <​ 0.01, 
***P <​ 0.001 compared with the control group that was exposed to the natural background concentration of 
radon for the same protein. Rn exp, radon exposure.
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As shown in Fig. 2, radon exposure at 1.74–6.85 mGy induced the formation of γ​-H2AX, 53BP1 and pKAP-1 foci in 
HPBLs (Fig. 2A), and the yields of these foci increased significantly as the cumulative absorbed dose increased (Fig. 2B). 
Like the yields of the three types of linear foci tracks, the yield of γ​-H2AX foci was obviously higher than the yields of 
53BP1 and pKAP-1 foci at the same absorbed dose. Specifically, the levels of γ​-H2AX foci were 1.55–1.75 and 2.15–2.35 
folds of the levels of 53BP1 foci and pKAP-1 foci, respectively. Moreover, at a cumulative dose of as low as 1.74 mGy 
from radon exposure, the yield of γ​-H2AX foci was significantly higher than the background value, indicating that 

Figure 2.  The formation of γ-H2AX, 53BP1 and pKAP-1 foci in HPBLs in vitro exposed to radon and its 
progeny. (A) Representative images of γ​-H2AX, 53BP1 and pKAP-1 foci in HPBLs induced by in vitro exposure 
to radon and its progeny. (B–D) Dose-response relationship between the yields of γ​-H2AX, 53BP1 and pKAP-1 
foci and cumulative radon exposure dose in HPBLs. Two to four thousand lymphocytes from each sample 
were used for γ​-H2AX, 53BP1 and pKAP-1 foci quantitation. The data are presented as the mean ±​ standard 
deviation of three human blood samples. Red, γ​-H2AX and pKAP-1; green, pKAP-1 and 53BP1; blue, DNA 
stained with DAPI. 1000 ×​ magnification. *P <​ 0.05, **P <​ 0.01, ***P <​ 0.001 compared with the control 
group that was exposed to the natural background concentration of radon for the same protein. Rn exp, radon 
exposure.
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γ​-H2AX foci shows a similar sensitivity as the linear γ​-H2AX foci tracks. In contrast, the yields of 53BP1 and pKAP-1 
foci were significantly higher than their corresponding background levels only when the cumulative dose reached 2.89 
mGy (Fig. 2B), but they are more sensitive to radon exposure than their tracks. Collectively, these results show that the 
formation of γ-H2AX foci is more sensitive to radon exposure than the formation of 53BP1 and pKAP-1 foci.

The dose-response curves for radon exposure-induced γ​-H2AX and pKAP-1 foci in HPBLs are shown in 
Fig. 2C,D. Over a dose range of 0–6.85 mGy, γ​-H2AX and pKAP-1 foci exhibited linear dose-response rela-
tionships with cumulative absorbed doses from radon exposure. It is worth noting that there was no significant 
difference between the γ​-H2AX foci dose-response curves when HPBLs were exposed to different concentrations 
of radon. Similar results were obtained for the dose-response curves of pKAP-1 foci, further indicating the rela-
tionships between foci response and radon exposure dose were determined by cumulative absorbed dose from 
radon exposure and were independent on radon concentration.

HPBLs show sustained formation of γ-H2AX, 53BP1, pKAP-1 foci and their linear tracks after 
termination of radon exposure.  Temporal changes in the yields of γ​-H2AX, 53BP1 and pKAP-1 foci 
and their linear tracks in HPBLs were examined at various times after termination of exposure to radon at a 
dose of 5.56 mGy (Fig. 3). It was found that immediately after termination of radon exposure (0 h), as well as 
at 3 h and 6 h after termination of radon exposure, the yields of γ​-H2AX, 53BP1 and pKAP-1 foci were drasti-
cally increased compared to the corresponding background levels with a peak at 3 h after termination of radon 
exposure (Fig. 3A). Moreover, the yield of γ​-H2AX foci was much higher than those of 53BP1 and pKAP-1 foci 
within 6 h after termination of radon exposure and remained significantly higher than background value at 12 h 
after termination of radon exposure. In contrast, the number of residual 53BP1 and pKAP-1 foci had declined to 
near-background levels by 12 h (Fig. 3A). For linear foci tracks in HPBLs exposed to radon and its progeny, the 
majority of the linear γ​-H2AX, 53BP1 and pKAP-1 foci tracks appeared intermittent at 0–12 h after termination 
of radon exposure except that the continuous linear γ​-H2AX foci tracks were observed within the first 3 h after 
termination of radon exposure. The numbers of linear γ​-H2AX, 53BP1 and pKAP-1 foci tracks at 0, 3 and 6 h 
after termination of radon exposure were significantly higher than their corresponding background levels with 
no significant differences between 0 h and 3 h and a decline from 3 h to 6 h, whereas the yield of linear γ​-H2AX 
foci tracks was markedly higher than those of 53BP1 and pKAP-1 foci tracks within 6 h after termination of radon 
exposure (Fig. 3B). At 12 h after termination of radon exposure, the yields of all three types of linear foci tracks 
were markedly reduced compared to their corresponding yields at 0 h. However, the number of residual linear 
γ​-H2AX foci tracks remained significantly higher than the background value. In contrast, the yields of 53BP1 
and pKAP-1 foci tracks present at 12 h were not significantly different from the corresponding background levels. 
Together, these results demonstrate that the increased yields of γ​-H2AX foci and its linear tracks in HPBLs are 
sustained for 12 h after termination of radon exposure.

γ-H2AX, 53BP1 and pKAP-1 foci show an overdispersed contaminated Poisson distribution 
among HPBLs exposed to the background level and different doses of radon and its progeny.  
Poisson distribution analysis was performed to examine the distribution of γ​-H2AX, 53BP1 and pKAP-1 foci 

Figure 3.  Persistent formation of γ-H2AX, 53BP1, pKAP-1 foci and their linear tracks in HPBLs after 
termination of exposure to radon and its progeny. (A) Temporal changes in the yields of γ​-H2AX, 53BP1 
and pKAP-1 foci in HPBLs immediately (0 h) after termination of radon exposure and at 3, 6 and 12 h after 
termination of radon exposure. (B) Temporal changes in the yields of linear γ​-H2AX, 53BP1 and pKAP-1 foci 
tracks in HPBLs at 0, 3, 6 and 12 h after termination of radon exposure. Two to four thousand lymphocytes 
from each sample were used for γ​-H2AX, 53BP1 and pKAP-1 foci and their linear tracks quantitation. The data 
are presented as the mean ±​ standard deviation of three human blood samples. For each protein: *P <​ 0.05, 
**P <​ 0.01 and ***P <​ 0.001 compared with the control group that was exposed to the natural background 
concentration of radon; #P <​ 0.05, ##P <​ 0.01, ###P <​ 0.001 compared with 0 h after termination of radon 
exposure; $P <​ 0.05, $$P <​ 0.01, $$$P <​ 0.001 compared with 3 h after termination of radon exposure. +P <​ 0.05, 
++P <​ 0.01, +++P <​ 0.001 compared with 53BP1 and pKAP-1 foci or their linear tracks at corresponding time 
point after termination of radon exposure.
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among HPBLs exposed to the background level and different doses of radon. As for each type of foci, all the sam-
ples had μ​ values greater than |1.96| and δ​2/y ratios greater than 1 showing an overdispersed contaminated 
Poisson distribution whether in the background control group or radon-exposed groups. Moreover, the distribu-
tion was independent of the concentration of radon and its progeny and of the cumulative absorbed dose from 
radon exposure (Table 1; 53BP1 foci- and pKAP-1 foci-related data not shown). Importantly, the number of foci 
formed in foci-positive cells increased gradually with the radon exposure doses. The majority of γ​-H2AX foci-, 
53BP1 foci- and pKAP-1 foci-positive cells contained only one focus in the blank control group and the 
radon-exposed groups with low doses, whereas the cells containing six γ​-H2AX foci were only detected at a radon 
exposure dose of 5.51–5.80 mGy, and the cells containing four 53BP1 or pKAP-1 foci were detected only when the 
absorbed dose from radon exposure reached 5.80 mGy.

Exposure to radon and its progeny induces the co-localization of the three types of foci 
(γ-H2AX, 53BP1 and pKAP-1) in HPBLs.  The co-localization of γ​-H2AX/53BP1, γ​-H2AX/pKAP-1 and 
53BP1/pKAP-1 foci were observed in HPBLs after 1–6 h of in vitro radon exposure (Figs 1A and 2A). As shown in 
Fig. 4, the ratios of γ​-H2AX/53BP1 foci co-localization, γ​-H2AX/pKAP-1 foci co-localization and 53BP1/pKAP-1 
foci co-localization were significantly higher in HPBLs that received various cumulative absorbed doses from 
radon exposure than in the blank control group. However, the co-localization ratios were not significant changed 
as the cumulative absorbed dose increased. In addition, the co-localization ratios were also independent of the 
concentration of radon and its progeny. pKAP-1 foci, a marker for heterochromatic DSBs, was co-localized with 
more either γ​-H2AX or 53BP1 foci after radon exposure than the background control, indicating that γ​-H2AX, 
53BP1 and pKAP-1 participate in the repair of heterochromatic DSBs in G0 phase HPBLs. Our data support the 
notion that 53BP1, γ​-H2AX and pKAP-1 jointly promote the repair of heterochromatic DSBs in the G1 phase15.

Exposure to radon and its progeny induces the apoptotic pan-nuclear γ-H2AX response in HPBLs.  
It has been reported that IR-induced pan-nuclear γ​-H2AX response represents an apoptotic signal33–36. In the 
present study, we further observed that the pan-nuclear γ​-H2AX response in HPBLs induced by α​-particle irra-
diation from 241Am source was co-localized with apoptotic TUNEL staining accompanying with γ​-H2AX foci in 
neighboring cells; exposure to radon also induced the apoptotic pan-nuclear γ​-H2AX response accompanying 
with intermittent linear γ​-H2AX foci track and individual foci in neighboring cells (Fig. 5A). The percentages of 
apoptotic HPBLs were significantly increased with radon exposure time for 3–6 h at 3.4–5.8 mGy cumulative dose 
with the maximum percentage of apoptotic HPBLs at about 22% (Fig. 5B), which is similar to the findings on the 
cell survival after 3 and 6 h radon exposure reported by other laboratory37. Notably, although the percentages of 

Groups No. of samples
Total cell 

count γ-H2AX foci/cell

Cells containing different number of γ-H2AX foci

δ2/y μ0 1 2 3 4 5 6

Ctrl

0 mGy 3 4006 0.009 3980 16 8 2 0 0 0 1.728 23.67

4024 0.013 3988 26 6 2 2 0 0 1.911 29.46

4010 0.011 3978 24 4 2 2 0 0 1.946 30.62

mean ±​ SD 4013 ±​ 9 0.011 ±​ 0.002 3982 ±​ 5 22 ±​ 5 6 ±​ 2 2 ±​ 0 1 ±​ 1 0 0 1.989 32.00

Low CRn-222

1.74 mGy 3 4057 0.024 3979 67 4 6 1 0 0 1.554 25.07

4071 0.023 4000 54 10 7 0 0 0 1.630 28.56

4081 0.021 4017 47 13 4 0 0 0 1.568 25.80

mean ±​ SD 4070 ±​ 12 0.023 ±​ 0.002 3999 ±​ 19 56 ±​ 10 9 ±​ 5 6 ±​ 2 0 ±​ 1 0 0 1.565 25.61

3.39 mGy 3 4084 0.036 3970 94 6 14 0 0 0 1.613 27.78

4208 0.033 4108 77 9 13 0 1 0 1.802 36.91

4062 0.036 3948 90 15 9 0 0 0 1.536 24.22

mean ±​ SD 4118 ±​ 79 0.035 ±​ 0.002 4009 ±​ 87 87 ±​ 9 10 ±​ 5 12 ±​ 3 0 0 ±​ 1 0 1.609 27.73

5.51mGy 3 4065 0.062 3910 94 35 19 4 2 1 2.132 51.13

4002 0.065 3852 89 28 23 6 3 1 2.310 58.72

4043 0.061 3897 87 34 17 3 3 2 2.271 57.24

mean ±​ SD 4037 ±​ 32 0.063 ±​ 0.002 3886 ±​ 30 90 ±​ 4 32 ±​ 4 20 ±​ 3 4 ±​ 2 3 ±​ 1 1 ±​ 1 2.221 54.96

High CRn-222

2.89 mGy 3 4006 0.035 3924 44 22 10 6 0 0 2.205 38.40

4084 0.035 4004 42 22 8 6 2 0 2.383 44.48

4000 0.033 3924 42 20 8 6 0 0 2.199 38.21

mean ±​ SD 4030 ±​ 47 0.034 ±​ 0.002 3951 ±​ 46 43 ±​ 1 21 ±​ 1 9 ±​ 1 6 ±​ 0 1 ±​ 1 0 2.192 38.09

5.80 mGy 3 4008 0.063 3866 78 32 22 6 2 2 2.387 44.06

4000 0.063 3856 86 30 18 2 4 4 2.494 47.41

4000 0.062 3852 92 30 16 4 4 2 2.326 42.10

mean ±​ SD 4003 ±​ 5 0.063 ±​ 0.001 3858 ±​ 7 85 ±​ 7 31 ±​ 1 19 ±​ 3 4 ±​ 2 3 ±​ 1 3 ±​ 1 2.375 43.65

Table 1.  Distribution of γ-H2AX foci in HPBLs exposed to radon and its progeny. Abbreviation: SD, 
standard deviation.
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apoptotic HPBLs with radon exposure at natural environmental levels were increased with exposure time, they 
reached to merely 10% after 6 h-exposure, suggesting that in vitro radon exposure system is feasible.

Discussion
In the present study, two patterns of linear γ​-H2AX foci tracks, continuous and intermittent linear tracks, were 
observed in HPBLs during radon exposure. This finding is consistent with our recent report on in vitro exposure 
of rat PBLs to radon31. It is noteworthy that the formation of continuous linear γ​-H2AX foci tracks was sustained 
within the first 3 h after termination of radon exposure, and that the formation of intermittent linear γ​-H2AX foci 
tracks was sustained for 12 h after termination of radon exposure. Therefore, the formation and pattern of linear 
γ​-H2AX foci tracks are not only useful in determining whether a person is suffering from a high dose of radon 
exposure, but also able to predict the period after a person with a high dose of radon exposure. This phenomenon 
may be explained by the dissolution of radon gas in cell culture medium and the resulting deposition of radon 
progeny, which results in sustained internal α​-particle irradiation. This is also the important reason that yields of 
linear γ​-H2AX, 53BP1 and pKAP-1 foci tracks remained constant within the first 3 h after termination of radon 
exposure and yields of their foci significantly increased within the first 6 h after termination of radon exposure 
compared to 0 h after termination of radon exposure.

The present study showed that the yields of radon and its progeny exposure-induced γ​-H2AX, 53BP1 and 
pKAP-1 foci and their linear tracks in HPBLs are positively correlated with the cumulative absorbed dose and 
exhibit a linear dose-response relationship. This linear dose-response mode is consistent with the finding that 
high-LET radiation such as α​ particles, heavy ions and neutrons induces simple and complex chromosome 
aberrations as well as dicentric chromosome aberrations38,39. In the present study, we also found that the linear 
dose-response curves of γ​-H2AX foci, pKAP-1 foci and their linear tracks showed no significant differences in 
HPBLs exposed to different concentrations of radon. This phenomenon is likely related to the fact that high-LET 
radiation lacks a dose-rate effect40. It is particularly noteworthy that the yields of γ​-H2AX foci and its linear tracks 
were significantly higher than the background value in HPBLs exposed to extremely low dose of radon (1.74 mGy).  
In contrast, the yields of 53BP1 foci, pKAP-1 foci and their linear tracks in HPBLs that received a 1.74 mGy 
of radon did not differ significantly from the corresponding background values. These findings indicate that 
γ​-H2AX foci and its linear track display greater sensitivity to irradiation than 53BP1 foci, pKAP-1 foci and their 
linear tracks. Moreover, at 12 h after termination of radon exposure, the levels of residual γ​-H2AX foci and linear 

Figure 4.  Ratios of γ-H2AX, 53BP1 and pKAP-1 foci co-localization in HPBLs in vitro exposed to radon 
and its progeny. (A) Co-localization of γ​-H2AX foci and 53BP1 foci. (B) Co-localization of γ​-H2AX foci and 
pKAP-1 foci. (C) Co-localization of 53BP1 foci and pKAP-1 foci. Two to four thousand lymphocytes from each 
sample were used for each pair foci quantitation. The data are presented as the mean ±​ standard deviation of 
three human blood samples. *P <​ 0.05, **P <​ 0.01, ***P <​ 0.001 compared with corresponding controls that were 
exposed to the natural background concentration of radon. Rn exp, radon exposure.
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γ​-H2AX foci tracks in HPBLs remained significantly higher than background values whereas the levels of residual 
53BP1 foci, pKAP-1 foci and their linear tracks declined to near-background levels. We believed that the high 
yield of γ​-H2AX foci induced by radon exposure, which is dependent on co-localization of γ​-H2AX foci with 
53BP1 or pKAP-1 foci, is the important reason for the significant increase of residual γ​-H2AX foci level even 
at 12 h after termination of radon exposure. These results are consistent with the literature on that the yield of 
γ​-H2AX foci induced by IR is significantly higher than those of 53BP1 foci and pKAP-1 foci16,41. Notably, our 
finding on the sustained increase of γ​-H2AX level induced by radon exposure is supported by other studies.  
Liu et al. demonstrated that exposure to radon induced marked increases of γ​-H2AX protein level and DNA 
damage detected by comet assay in human bronchial epidermal cells at 24 h after termination of radon exposure42. 
In addition, the epidemiological studies showed that the radon level in indoor air was positively associated with 
the level of DNA damage in PBLs of residents with indoor radon exposure43,44. Moreover, it was reported that 
the increased residual 53BP1/γ​-H2AX foci remained in HPBLs for up to four weeks after γ​-ray irradiation20. Our 
recent study also demonstrated that yields of γ​-H2AX foci were significantly increased in rats inhaled 30 and 
60 WLM radon for about 3 weeks and 5 weeks compared to the rats exposed to radon at background levels31. 
Importantly, the dose-response curves for γ​-H2AX foci and its linear tracks in HPBLs in vitro exposed to radon 
and its progeny established in our present study were almost identical to those of rat PBLs in vitro exposed to 
radon and its progeny in our recent reports31, indicating that γ​-H2AX foci-based assay to determine biological 
dose to PBLs and red bone marrow in rats inhaling radon and its progeny is feasible for human. Finally, immu-
nofluorescence γ​-H2AX staining has an advantage of showing apoptotic pan-nuclear γ​-H2AX response to avoid 
the effects of apoptosis on residual foci counting20. Altogether, our results indicate that γ​-H2AX foci and its linear 
tracks represent the best indicators for estimating the biological dose from extremely low-dose exposure to radon 
and its progeny and for determining whether a person has suffered high radon exposure.

As expected, the present study found that the distribution of γ​-H2AX, 53BP1 and pKAP-1 foci induced by 
α​-particle irradiation from radon and its progeny among HPBLs did not conform to the Poisson distribution 
and appeared to be overdispersed. Our finding is consistent with previous report that γ​-H2AX foci induced by 
in vitro external high-LET neutron irradiation exhibited an overdispersed non-Poisson distribution in HPBLs45. 
It is noteworthy that the distribution of γ​-H2AX foci in HPBLs in vitro irradiated by external low-LET γ​-ray 
irradiation is also a non-Poisson distribution, showing an under discrete distribution at the radiation dose above 

Figure 5.  Apoptotic pan-nuclear γ-H2AX response in HPBLs in vitro exposed to radon and its progeny. 
(A) Representative images of pan-nuclear γ​-H2AX staining in HPBLs induced by in vitro exposure to radon 
and its progeny and the co-localization of pan-nuclear γ​-H2AX signal with TUNEL staining in HPBLs induced 
by α​-particle irradiation from 241Am source at 6 h post-irradiation. (B) Relationship between the percentages 
of pan-nuclear γ​-H2AX-positive cells and radon exposure time in HPBLs. One thousand HPBLs from each 
sample were used for quantitation. The data are presented as the mean ±​ standard deviation of three human 
blood samples. Red, γ​-H2AX; Green, TUNEL staining; blue, DNA stained with DAPI. 1000 ×​ magnification. 
***P <​ 0.001 compared with the control group that was exposed to the natural background levels of radon. BG, 
background.
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0.2 Gy and an overdispersed distribution at the radiation dose equal to or less than 0.1 Gy45. Together, these results 
therefore indicate that the distribution of γ​-H2AX foci cannot be used to distinguish whether a person is exposed 
to low-LET radiation or high-LET radiation.

In summary, we demonstrated that the yields of γ​-H2AX, pKAP-1 foci and their linear tracks displayed a lin-
ear dose-response relationship with the cumulative absorbed dose from radon exposure, and were independent 
of the radon concentration. Compared to 53BP1 foci, pKAP-1 foci and their linear tracks, γ​-H2AX foci and its 
linear track are more sensitive indicators for determination of exposure to radon and its progeny with the lowest 
estimable dose of 1.74 mGy. Moreover, constant formation of γ​-H2AX foci and its linear track was detected in 
HPBLs after termination of radon exposure, providing evidence for the feasibility of estimating the biological 
dose from internal α​-particle irradiation. On the other hand, the γ​-H2AX foci induced by exposure to radon and 
its progeny or by neuron and γ​-ray irradiation exhibit an non-Poisson distribution in HPBLs, thus the γ​-H2AX 
foci distribution cannot be employed to distinguish between low-LET and high-LET irradiation.

Materials and Methods
Collection of blood specimens and isolation and culture of HPBLs.  A total of 6 healthy volunteers 
who had no history of exposure to radiation or contact with chemical toxic substances and were not addicted to 
tobacco or alcohol were selected for the present study. All the volunteers signed the informed consent documents. 
The research was approved by the Institutional Review Board of the Fudan University School of Public Health, 
and was conducted in accordance with the approved guidelines.

Peripheral blood was collected and placed in vacuum tubes containing the anticoagulant heparin. HPBLs 
were isolated by density gradient centrifugation in Ficoll-Paque (Cedarlane Co., Burlington, Ontario, Canada) 
according to the manufacturer’s instructions. The purity of HPBLs was at least 95% as determined by morpho-
logical criteria. The viability of cells from these separations was greater than 95% as determined by the trypan 
blue exclusion assay. Isolated HPBLs were cultured at a density of 1 ×​ 106 cell/ml in RPMI 1640 medium (Gibco®​, 
Invitrogen Technologies, Carlsbad, CA, USA) supplemented with 15% fetal calf serum (Invitrogen Technologies), 
5% (v/v) plasma, 100 U/ml penicillin, and 100 μ​g/ml streptomycin at 37 °C in a humidified incubator.

In vitro exposure of HPBLs to radon and cumulative absorbed dose estimation.  The in vitro 
radon exposure system has been described in our previous study31. Briefly, radon gas emanating from a 226Rn 
source was introduced at a chosen concentration in a closed chamber with saturated humidity placed in the 
water-jacketed incubator with constant temperature at 37 °C. The monolayers of spherical HPBLs attached in the 
permeable polyethylene terephthalate (PET) membrane of inserts were floated on the culture medium in the lower 
chamber of 6-well Transwell plates so that they can be irradiated by direct deposition of radon and its progeny 
from 0 ~ 180 degree any angle. Exposure of HPBLs to radon was achieved by placing the 6-well Transwell plates 
for 1–6 h in an in vitro radon exposure apparatus where the concentration of radon gas was continuously moni-
tored with a RAD7 Professional Electronic Radon Detector (Durridage Company Inc., Billerica, MA, USA). For 
low radon exposure, radon gas coming from 226Rn source of activity 65 kBq was introduced at ~500 kBq/m3. For 
high radon exposure, radon gas coming from 226Rn source of activity 135 kBq was introduced at ~1000 kBq/m3.  
A solid-state CR-39 nuclear track detector (Fukuvi Chemical Industry Co., Ltd, Fukui, Japan) was simultane-
ously placed in a cell free insert of 6-well Transwell plate to measure the cumulative absorbed dose from radon 
exposure. The cumulative absorbed dose to the cells was calculated from the track density F (tracks/μ​m2) of 
the CR-39 sheet and the LET value (139 keV/μ​m) in our in vitro radon exposure system using our previous 
reported method31. The blank control group was simultaneously exposed to radon at the natural background 
level in another cell culture incubator with other conditions being the same. After radon exposure, the cells were 
collected, washed with phosphate-buffered saline (PBS), resuspended in PBS for cell-based immunofluorescence 
assays.

Immunofluorescence assay.  HPBLs suspensions at approximately 4 ×​ 105 cells/ml were deposit on glass 
slides in a monolayer by a cytocentrifuge using our previous reported method31. Subsequently, the cells were 
fixed in 4% paraformaldehyde/PBS for 15 min, permeabilized with 0.5% Triton X-100/PBS for 15 min and 
blocked with 10% calf serum/PBS for 1 h at 37 °C. After blocking, the cells were incubated with anti-γ​-H2AX 
antibody (Cell Signaling Technology, Inc., Danvers, MA, USA; 1:500 dilution), anti-pKAP-1 (Ser824) antibody 
(Bioss Inc., Woburn, MA, USA; 1:500 dilution) or anti-53BP1 antibody (R&D Systems Inc., Minneapolis, MN, 
USA; 1:200 dilution) at 4 °C overnight and then incubated with the corresponding fluorescent secondary anti-
bodies, Alexa Fluor 488 or Alexa Fluor 555 (Molecular Probes, Life Technologies, Grand Island, NY, USA) for 
1 h at room temperature (RT) in the dark. The cells were stained in anti-fade mounting medium containing  
4′​,6-diamidino-2-phenylindole (DAPI, Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA), covered with 
cover slips, sealed with clear nail polish and examined under a fluorescence microscope.

Fluorescence microscopic examination and criteria for counting foci and their tracks.  The scor-
ing criteria for counting individual foci and continuous and intermittent linear foci tracks has been described in 
our previous report31. A linear track containing more than three isolated foci along a straight line is defined to 
an intermittent linear track, and isolated foci on a intermittent linear track is counted as individual foci together 
with dispersed individual foci. Using an Olympus BX51 fluorescence microscope (Tokyo, Japan), the number 
of γ​-H2AX foci and its linear tracks, 53BP1 foci and its linear tracks, and pKAP-1 foci and its linear tracks were 
determined and recorded per 2000–4000 nuclei in each sample. The co-localization status of γ​-H2AX foci and 
53BP1 foci, γ​-H2AX foci and pKAP-1 foci, or 53BP1 foci and pKAP-1 foci was also determined and recorded. 
Co-localization with γ​-H2AX foci was calculated as the ratio of the number of co-localized γ​-H2AX/53BP1 foci 
to the total number of γ​-H2AX foci and the ratio of the number of co-localized γ​-H2AX/pKAP-1 foci to the total 
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number of γ​-H2AX foci. Similarly, co-localization with 53BP1 foci was calculated as the ratio of the number of 
co-localized 53BP1/pKAP-1 foci to the total number of 53BP1 foci.

Statistical analysis.  All data are expressed as ±x s. The data were analyzed using SPSS 17.0 software. 
Student’s t-test was conducted to compare data between two groups; one-way analysis of variance (ANOVA) was 
employed to compare data among multiple groups. P values less than 0.05 were considered statistically 
significant.

The distribution of γ​-H2AX foci, pKAP-1 foci and 53BP1 foci in the HPBLs was subjected to Poisson distribu-
tion analysis (μ​ test) using Ctampois software, a generous gift from Professor Lloyd DC (Cytogenetics Laboratory, 
National Radiological Protection Board, UK). The μ​ value and the ratio of variance to the mean (δ​2/y) were cal-
culated. A μ​ value less than |1.96| and a δ​2/y ratio close to 1.00 indicated that the foci distribution conformed to a 
Poisson distribution. In contrast, foci distribution did not meet the assumptions of the Poisson distribution if the 
μ​ value was greater than |1.96| and the δ​2/y ratio was not close to 1.00. Moreover, μ​ >​ |1.96| and δ​2/y <​ 1.00 indi-
cated lack of discrete distribution, whereas μ​ >​ |1.96| and δ​2/y >​ 1.00 indicated overdispersion.
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