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Abstract: It is now well established that noncoding
regulatory variants play a central role in the genetics of
common diseases and in evolution. However, until
recently, we have known little about the mechanisms by
which most regulatory variants act. For instance, what
types of functional elements in DNA, RNA, or proteins are
most often affected by regulatory variants? Which stages
of gene regulation are typically altered? How can we
predict which variants are most likely to impact regulation
in a given cell type? Recent studies, in many cases using
quantitative trait loci (QTL)-mapping approaches in cell
lines or tissue samples, have provided us with consider-
able insight into the properties of genetic loci that have
regulatory roles. Such studies have uncovered novel
biochemical regulatory interactions and led to the
identification of previously unrecognized regulatory
mechanisms. We have learned that genetic variation is
often directly associated with variation in regulatory
activities (namely, we can map regulatory QTLs, not just
expression QTLs [eQTLs]), and we have taken the first
steps towards understanding the causal order of regula-
tory events (for example, the role of pioneer transcription
factors). Yet, in most cases, we still do not know how to
interpret overlapping combinations of regulatory interac-
tions, and we are still far from being able to predict how
variation in regulatory mechanisms is propagated through
a chain of interactions to eventually result in changes in
gene expression profiles.

Introduction

Accumulating evidence indicates that gene regulatory changes

often contribute to species-specific adaptations as well as to within-

species variation in complex phenotypes [1,2], such as interindi-

vidual variation in susceptibility to disease [3–5]. Indeed,

motivated by theoretical arguments regarding the likely functional

importance of variation in gene regulation and the emergence of

genomic technologies that allow one to cheaply and rapidly

characterize regulatory phenotypes, a large number of studies in

the last decade have focused on uncovering the principles of gene

regulation. These studies contributed to a rising recognition that

natural variation in gene regulation may underlie most complex

phenotypes within and between species. We have discovered a

large number of regulatory mechanisms and described in detail

many biochemical interactions that contribute to gene regulation.

This has contributed to a better understanding of how regulatory

information is encoded in the genome, and in a few cases, we have

managed to manipulate gene regulatory programs and thereby

affect complex phenotypes.

Yet, overall, we still have a limited ability to interpret how

genetic variants alter gene regulation. We do not know how to

‘‘read the genome’’ and predict gene regulatory outputs. Our

understanding of regulatory mechanisms and biochemical inter-

actions has not yet matured into an ability to ‘‘read the code’’ and

fully model transcriptional regulation.

Early studies of regulatory variation within and between species

focused on characterizing steady-state mRNA levels, which

represent the output of gene regulatory programs. For example,

genome-wide comparative studies of steady-state mRNA levels

were able to identify a large number of gene expression differences

between species [6,7]. However, while comparative studies

facilitated the identification of interspecies regulatory differences

that may be of functional importance, it was nearly impossible to

pinpoint the genetic changes responsible for these differences.

Thus, such studies had a limited ability to study the underlying

molecular mechanisms of regulatory evolution.

In contrast to early comparative work, studies of mRNA levels

within species were able to take the first steps towards the

characterization of genetic variation in regulatory elements, even

before the development of ultra-high-throughput sequencing

technologies. This was done indirectly, using expression quanti-

tative trait locus (eQTL) mapping to find associations between

genotypes and variation in gene expression levels [8–10]. For most

eQTLs the causal variant was unknown, and even when the likely

causal variant could be inferred with relative confidence, the

regulatory mechanism involved was generally difficult to identify

[11]. Nevertheless, eQTL studies taught us about the spatial

distribution of regulatory variants in the genome [11], the

temporal specificity of the effect of regulatory sequences on

expression patterns (namely, that some regulatory elements only

affect gene expression under certain conditions), and the

magnitude of steady-state expression changes associated with

variation in cis- or trans-regulatory elements [12,13].
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With the rise of massively parallel sequencing technologies, both

comparative studies of gene regulation and studies of regulatory

variation within populations have been able to move beyond

descriptions of steady-state mRNA expression levels [14,15].

Recent studies have characterized interspecies and population-

level variation in multiple aspects of gene regulation, including

chromatin states [16], transcription factor (TF) binding footprints

[17–20], profiles of different epigenetic markers [21–25], and

posttranscriptional modifications [26–30]. These studies have been

able to assess the correlation between variation in different

regulatory mechanisms and variation in mRNA levels, as well as—

using genotype data—infer the likely causal relationship between

genetic variation, changes in regulatory interactions, and differ-

ences in gene expression levels. The combined analyses of data on

multiple types of regulatory mechanisms often allow us to

understand the basis for concerted changes in regulatory outputs,

predict the consequences of a genetic change in regulatory

sequences, and prioritize among statistically equivalent genetic

associations of human diseases. Consequently, more complex

models of regulatory interactions and their effects on gene

expression have been developed.

Recent reviews have discussed the evolution of gene expression

levels [14], the turnover in regulatory elements [31], and the

insights from eQTL mapping studies [4,32]. Here, we review

recent insights into the genetic and mechanistic basis for variation

in gene regulatory phenotypes, focusing especially on human

studies. Our review concentrates on the efforts to perform

combined analyses of multiple types of genomic data to obtain a

more complete picture of the order of causal events that lead to

precise gene regulatory programs. We focus particularly on

mechanisms by which variants affect regulation of nearby genes

(i.e., putatively in cis), as these are better understood and,

moreover, likely represent the first step in most trans-acting QTLs

as well. We examine the emerging models of causal relationships

that explain concerted, or coordinated, changes in regulatory

interactions and point to questions that are still unanswered

regarding combinatorial relationships. Finally, we assess the

proportion of variation in gene expression levels across individuals

that could potentially be explained by variation in the regulatory

mechanisms that have been studied thus far.

Mapping Interindividual Variation in Gene
Expression Levels

A surge of studies over the last few years have used eQTL

mapping to identify substantial numbers of genetic variants

affecting gene expression levels in humans across tissues,

populations, and environmental or cellular conditions. One

attractive property of eQTL mapping is the ability to infer a

direct link between genotypic variation and phenotypic variation,

such as differences in gene expression among individuals. Hence,

eQTL mapping holds great promise as a method to annotate the

function of regulatory loci throughout the genome and potentially

identify causal genetic variants. Even using modest sample sizes

(60–100 individuals), early studies found a large number of genetic

associations with differences in gene regulation, identifying eQTLs

for as many as 30% of genes in lymphoblastoid cell lines (LCLs)

[12,26,33]. More recent studies, with larger sample sizes, have

identified much larger numbers of eQTLs [34–36]. For instance,

using RNA-sequencing-based expression data from whole-blood

samples of 962 individuals, Battle et al. recently identified

proximal (putatively cis-acting) eQTLs within 1 Mb of 78% of

more than 10,000 tested protein-coding genes [36]. Consistent

with earlier reports, the cis eQTLs found by Battle et al. were

enriched near the 59 ends of genes, suggesting that transcriptional

regulation (rather than RNA decay) might be exerting the

strongest amount of control on gene expression levels

[11,26,33,36].

The emerging pattern from recent eQTL studies, with sample

sizes ranging from 1,000 to 5,000 individuals, is that virtually all

expressed genes are likely to have at least one cis-acting eQTL

(which can be detected if the sample size is large enough).

Moreover, recent studies with large sample sizes have also started

to achieve power to reliably identify trans-eQTLs, i.e., variants

that affect the expression of both alleles of a gene; often the

variants and the regulated genes are on different chromosomes

[35,36]. Heritability studies suggest that more than half of the

genetically explained variance in gene expression is due to trans-
acting variants [37], but reliable detection of trans eQTLs has

been challenging in humans because the effect sizes of trans-acting

variants tend to be smaller than for cis eQTLs [35,36] and because

there is a higher statistical penalty for multiple testing. One

promising approach to overcome these issues might be to

specifically focus on QTLs affecting the expression levels of

putative trans-regulatory elements (thereby minimizing the num-

ber of tests performed). For instance, through possible trans-acting

mechanisms that are still unclear, genetic variation affecting long

intergenic noncoding RNAs (lincRNA) regulation could in turn be

influencing the mRNA levels of subsets of protein-coding genes

[38].

Mapping Interindividual Variation in Gene
Regulatory Mechanisms

Despite many attractive properties of the eQTL mapping

approaches, merely mapping a locus associated with gene

expression variation does not provide direct information about

the mechanism perturbed by the associated genetic variant, even if

one assumes that the causal variant has indeed been identified. To

understand which regulatory mechanisms might be affected by

eQTLs, the QTL mapping framework has been extended to

consider a wide variety of genomic assays that relate to aspects of

gene regulation. The rationale is that if an eQTL acts by

perturbing a particular regulatory mechanism—for example, a

histone modification—then the eQTL SNPs should also be

associated with measures of the relevant regulatory mechanism(s).

Such studies, which we will refer to as regulatory QTL (regQTL)

studies, have yielded a number of intriguing insights into the

mechanistic basis for eQTLs specifically and the complex and

combinatorial nature of gene regulatory logic more generally

(Fig. 1).

The paradigm of regQTL mapping has been applied within the

context of numerous mechanisms spanning various stages of

mRNA and protein regulation. The majority of regQTL studies

have been conducted with sample sizes of fewer than 100

individuals, limiting their power to detect trans effects. We will

thus focus on the insights gained from cis-acting regQTL maps.

Moreover, with few notable exceptions [29,30,39], regQTL

studies to date focus on mechanisms that regulate the rate of

transcription and mostly neglect processes of posttranscriptional

RNA processing and degradation. This is consistent with the

prevalent notion that transcriptional mechanisms, as opposed to

RNA decay, exert the largest control on gene expression

phenotypes and might account for most of the observed variation

in steady-state gene expression levels.

The analysis of eQTLs in the context of variation in regulatory

mechanisms has generally involved correlating patterns across

datasets collected from the same samples. This approach considers
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the genetic variation as a foundation for the purpose of inferring

the causal order of events. It is indeed reasonable to assume that

genetic diversity in a locus associated with regulatory variation is

the initial cause for changes in regulatory mechanisms and,

ultimately, in gene expression levels. However, inferring causality

beyond the anchor of genetic diversity is more challenging and is

generally done by identifying shared associations across multiple

regulatory phenotypes. For example, genetic variants associated

with dynamic epigenetic marks such as DNA methylation seem to

contribute modestly to overall gene expression variation [21,40–

42]. In LCLs, an estimated 10%–20% of eQTLs are also classified

as methylation QTLs (meQTLs) [21], and thus it could potentially

be inferred that a small proportion of loci that are affecting gene

expression do so by perturbing DNA methylation levels

[21,40,41].

The inference of causality, however, is problematic. The

intuitive interpretation of a SNP that is deemed to be both an

eQTL and regQTL is that genetic variation at the QTL results in

a change in a regulatory mechanism, which in turn results in a

change of the expression of a nearby gene. Yet, the analysis of

partial correlations across regulatory phenotypes does not gener-

ally indicate a straightforward sequence of molecular events

(Fig. 2). In particular, it would seem that when the effects of

genetic variation are accounted for, changes in gene expression

levels and changes in epigenetic markers (methylation levels or

histone modifications) are often not correlated with each other.

This observation indicates that it is unlikely that there is a direct

causal link between changes in the regulatory mechanism and

differences in gene expression levels. Instead, an additional

regulatory step may underlie the association of both gene

expression and the epigenetic marker with genetic variation at

the QTL.

One explanation for the observation of independent associations

of genetic variation with regulatory marks may involve variation at

TF binding sites. Indeed, variants influencing overall chromatin

accessibility as measured by DNaseI hypersensitivity, which has

long been used as a marker of regulatory activity in general and

TF binding in particular, were found to overlap with as many as

55% of eQTLs in LCLs [19]. A joint analysis of gene expression,

chromatin accessibility, and methylation reveals that DNaseI-

sensitivity QTLs (dsQTLs) that also show significant association

with methylation levels are more likely to be associated with gene

expression changes. This observation may indicate that methyl-

ation, chromatin accessibility, and gene expression levels are either

interacting or are all affected by changes in the same aspect of

regulation—such as TF binding [19].

Changes in transcription factor binding result in changes
to the regulatory landscape

The suggestion that many of the genetic variants associated with

variation in gene expression levels may do so by impacting TF

binding affinity has recently gained some measure of support. A

Fig. 1. A cascade of regulatory mechanisms by which an eQTL SNP can affect gene expression. Studies mapping regulatory QTLs have
identified a variety of mechanisms, many of which are coordinated, by which eQTLs might act to affect variation in mature mRNA levels. First, eQTL
SNPs can impact epigenetic modifications and transcription initiation. These include regulatory processes such as transcription factor binding,
histone modifications, enhancer activity (perhaps mediated by chromatin architecture and conformation), and DNA methylation. Transcriptional
mechanisms, and specifically transcription factor binding, are likely the strongest contributors to variation in steady-state mRNA levels. Second,
recent work has increased appreciation for transcriptional and cotranscriptional processes as major contributors to variation in gene expression levels
and mRNA isoform diversity. These include mechanisms such as transcriptional elongation (by PolII traveling rates), cotranscriptional splicing, and
mRNA processing and modification. Third, eQTL SNPs both within and outside the transcript have been shown to influence posttranscriptional mRNA
processing, which includes mechanisms such as general mRNA degradation, defects in polyadenylation, and targeting by miRNAs. Finally, preliminary
studies have shown that we do not yet fully appreciate the extent to which variation in mRNA expression might impact or even correlate to variation
in downstream protein products, the synthesis of which are additionally regulated by a set of posttranscriptional and translational mechanisms.
doi:10.1371/journal.pgen.1004857.g001
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series of recent studies considered the regulatory impact of histone

modifications, TF binding, and localization of RNA polymerase II

(PolII) in small samples of individuals [16,24,25]. These comple-

mentary studies all found strong allele-specific signatures of PolII

occupancy, histone modifications, and TF binding, consistent with

earlier reports [17,43]. Kasowski et al. used genome-segmentation

methods (based on multiple histone modification profiles [44]) to

understand the genetic basis of chromatin states. They found that

enhancer states (defined primarily by H3K27ac and H3K4me1

histone modifications) exhibit the highest level of variability

between individuals [16]. Yet, most QTLs associated with changes

in enhancer-delineating histone modifications do not correspond

to differences in gene expression levels. This may indicate that

many apparent enhancers are nonfunctional; alternatively, there

might be redundancy in enhancer function, absence of an

intermediate component (such as a chromosome loop colocalizing

the enhancer and promoter), compensatory effects, or buffering of

transcript levels. Yet, it is also possible that interactions between

Fig. 2. An approach for joint quantitative analysis of gene expression and regulatory QTLs. A goal of interindividual studies of regulatory
mechanisms is to understand the extent to which variation at regulatory loci underlies gene expression levels across individuals. (A) This example,
using hypothetical data, shows a QTL that is associated with levels of both DNA methylation in an upstream CpG island (left) and gene expression
(right). Though the example QTL shown here indicates higher DNA methylation due to a G allele (potentially in a CpG pair), SNPs associated with
methylation do not necessarily always fall in CpG dinucleotides. (B) The observed correlation between DNA methylation and gene expression levels
could be due to a few different underlying relationships, two of which we have highlighted here. The extent to which gene expression and regulatory
differences are correlated through an intermediate variable is often tested using an approach called partial correlation analysis. This involves
regressing out the effects of an intermediate variable—genotype in this example—from both DNA methylation and gene expression levels and then
evaluating the residual correlation between the two variables (left). One possibility is that the QTL directly affects differences in DNA methylation,
which then determine (cause) the gene expression level. Thus, gene expression is regulated by the genotype through the DNA methylation effects
(middle), and the residual variance in gene expression levels will still be correlated to residual DNA methylation levels. Alternatively, genotype is
independently associated with both DNA methylation and gene expression levels—for instance, by directly influencing changes in an upstream
mechanism (such as transcription factor binding) that affects DNA methylation and gene expression levels. This would make DNA methylation and
gene expression appear to be correlated, but not causally related (right), and the residual values no longer show any significant correlation.
doi:10.1371/journal.pgen.1004857.g002
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histone modifications, which are implicitly assumed to be

informative under the premise of annotating chromatin states

[45], are less important as causal drivers of variation in gene

expression levels than the marginal effects of either individual

histone modifications or another underlying mechanism.

Kilpinen et al. and McVicker et al. focused more heavily on

understanding the mechanistic basis of QTLs underlying individ-

ual histone modifications. By dissecting the strong links between

histone modification QTLs (many of which regulated multiple

histone modifications in addition to chromatin accessibility), both

studies found that changes in sequence-based affinity for TF

binding underlie a subset of observed changes in histone

modifications and PolII occupancy across individuals (Fig. 3)

[24,25]. These studies propose that in some cases, TF binding is

most likely the first step in a series of events that result in distinct

histone modification profiles and gene expression output. Inter-

estingly, by assaying nascent RNA expression levels in addition to

processed mRNA expression levels, Kilpinen et al. were also able

to observe greater evidence for allele-specific effects in nascent

RNA than in mRNAs [24]. This observation points to additional

and possibly complementary roles of posttranscriptional mecha-

nisms that act in an allele-specific manner to influence steady-state

gene expression levels.

An additional measure of support for the idea that TF binding

may underlie general properties of chromatin states comes from a

study that offered a different perspective on this challenging

problem of inferring causality in the chain of regulatory processes.

White and colleagues [46] used a massively parallel enhancer

assay to test the activity of thousands of sequences. They tested

1,300 genomic sequences that were found, using high-throughput

chromatin immunoprecipitation sequencing (ChIP-seq), to be

bound in mouse retinas by the photoreceptor transcription factor

Cone-rod homeobox (Crx). They also tested 3,000 control

sequences, which were not bound by the TF but contained

similar matches for the known binding motif of the TF. The

enhancer assay was designed to address whether the bound sites

are distinguishable from unbound sites by local primary sequence

features or more influenced by the functional in vivo genomic

context in which motifs reside, namely the chromatin and

epigenetic context. The results were unambiguous: in the vast

majority of cases, the sequence information in segments of just 84

bp centered in individual ChIP-seq peaks was sufficient to

distinguish between bound and unbound sites [46]. These

observations further support the notion that TF binding is

primarily determined by the sequence context and is less driven

by chromatin state. That said, it will be important to repeat these

experiments in more cell types, with more factors, in order to

understand the generality of these results.

The genetic basis of variation in posttranscriptional
regulatory mechanism

There have been far fewer studies that focused on the extent to

which eQTLs are driven by posttranscriptional regulatory

mechanisms, perhaps due to the more complex technical

challenges of assaying posttranscriptional mechanisms on a large

scale. Several studies have mapped the genetic basis of mRNA

splicing variation (splicing QTLs [sQTLs]) and found that much of

the variation in splicing is located within or proximal to the

targeted spliced exon [26,36,47]. As expected, many sQTLs fall

directly within primary splice sites. However, sQTLs also

unexpectedly show a prominent enrichment near transcription

start sites and 59 untranslated regions (UTRs) and within TF

binding sites [36]. This might suggest that splicing mechanisms

could be either independently or concurrently regulating gene

expression through interactions with components of the transcrip-

tional regulatory machinery.

A small number of studies have also investigated the role of

other posttranscriptional mechanisms, such as general RNA decay

(RNA decay [rdQTLs]) [30], alternative polyadenylation [29], and

miRNA binding (miRNA binding QTLs [mirQTLs]) [34,39,48].

Each of these QTL types shows enrichment in 39 UTR motifs or

regulatory elements that have previously been implicated in

transcript stability, such as adenylate-uridylate (AU)-rich elements

and miRNA binding sites [29,30,39]. Interestingly, rdQTLs and

mirQTLs are also often associated with variation in mRNA

expression levels [30,39,48]. SNPs associated with miRNAs tend

to affect miRNA biogenesis rather than target recognition within

the transcript, and stronger regulation by miRNAs is associated

with greater variation in gene expression levels [39]. However, the

picture presented by rdQTLs is more complex, with almost half of

the nearly 200 rdQTLs identified showing counterintuitive

associations with mRNA expression levels (namely, the allele

associated with more rapid RNA decay is also associated with

higher levels of steady-state expression). The mechanisms under-

lying these opposite-direction effects are unclear, but they might

reflect a buffering mechanism or a coupling between transcription

and decay [49]. Overall, it was estimated that as many as 19% of

eQTLs might be driven by differences in mRNA decay [30].

There is still much to be learned about transcriptional and

posttranscriptional mechanisms. Yet, it is also becoming clear

that in order to fully appreciate gene regulatory effects on

human phenotypes, one would have to incorporate studies of

protein expression levels [50–52]. In the first study of its kind in

humans, Wu et al. studied the genetic basis of protein expression

levels in LCLs and the effects of mRNA variation on

downstream protein level phenotypes [50]. They found consid-

erable interindividual variation in protein levels across the 95

LCLs they investigated and were able to identify 77 protein

QTLs (pQTLs). Only about half of these pQTLs were also

found to be affecting transcript levels, which may indicate that

many pQTLs specifically affect the regulation of translation or

protein stability. Perhaps more interesting is the observation

that most (more than 80%) of the eQTL SNPs found in these

LCLs were not also associated with variation in protein levels

[50]. This discrepancy might be partly explained by incomplete

power to detect pQTLs, perhaps due in part to limitations of the

mass spectrometry techniques for protein measurements. Yet,

these observations are also consistent with the results of a recent

comparative proteomics study [53], which found evidence

consistent with buffering or compensation of interspecies

divergence in protein expression levels.

Can we explain variation in gene expression?
Posttranscriptional mechanisms notwithstanding, the available

body of work suggests that variation in steady-state gene

expression levels can disproportionately be explained by variation

in TF binding. In turn, variation in TF binding might underlie

concerted changes in a large number of supporting regulatory

mechanisms that determine chromatin state and accessibility

[19,24,25]. These inferences, based on functional genomic

variation data, are consistent with independently observed

evidence of strong selective pressures on TF binding motifs,

second only to the conservation of protein-coding genes [54]. It

would thus seem that we have made considerable steps towards an

understanding of important properties of gene regulatory logic and

the ability to explain variation in gene expression.

Yet, one ultimate goal of genomics is to read the code—to be

able to predict variation in gene expression levels based on the

PLOS Genetics | www.plosgenetics.org 5 January 2015 | Volume 11 | Issue 1 | e1004857



nucleotide sequence—and this goal remains challenging. The

main difficulty is that many changes in TF binding do not seem to

result in measurable changes in gene expression levels, and we do

not yet know how to distinguish between binding events that affect

gene expression and those that do not [55]. Perhaps much of TF

binding is not directly functional, or maybe the marginal effects of

a change in binding of one TF are too small to detect given the

complexity of interactions between different regulatory mecha-

nisms.

For example, Cusanovich and colleagues [55] attempted to

characterize functional TF binding by characterizing genome-

wide gene expression profiles following the independent knock-

downs of 59 TFs in the same lymphoblastoid cell line. Depending

on which TF was knocked down, the expression levels of a few

Fig. 3. A representative example of a QTL in a TF binding site correlated with changes across multiple regulatory mechanisms. Many
concerted changes in regulatory mechanisms across genotypes can be linked to a sequence change in transcription factor binding sites, which might
causally influence downstream changes. (A) For TFs that regulate concerted changes in transcriptional marks, SNPs that cause a large change in
binding affinity (as measured by a position weight matrix score, x-axes) might also show a large skew in the ratio of transcription mark reads from
each allele (measured as fraction of reads from the reference allele, y-axes). Evidence for this correlation across all SNPs in binding sites (top panel, red
points) implies a relationship between TF binding and the transcriptional mark. Significant correlations can then be assessed for a given TF across
multiple transcriptional marks (bottom panel, where each line represents a correlation using allelic biases measured from different histone
modifications, PolII localization, etc.) to understand which mechanisms might be influenced by changes in binding of the given TF. (B) Overall,
looking at allelic biases in transcriptional marks at SNPs that can affect TF binding affinity show a pattern whereby increased TF binding is promoting
open chromatin (measured by DNaseI sensitivity), nucleosome positioning, and enrichment of activating histone modifications relative to sites with
weaker TF binding. Importantly, since SNPs in these binding sites usually only have moderate-to-weak effects on binding affinity, QTL SNPs most
likely serve to shift the equilibrium frequencies between these two configurations within populations of cells. (C) This example of a TF binding QTL
shows a SNP, rs2886870, that falls within a binding site for the NF-kB transcription factor. NF-kB ChIP-seq data [17] show that LCLs with at least one T
allele (TG genotype; purple) matching the consensus motif sequence [63] have higher NF-kB binding than LCLs with no T alleles (GG genotype;
orange). The top panel shows the distribution of ChIP-seq reads in a 500-bp window around rs2886870, with the grey line representing the mean
across four individuals and the colored outlines representing the 95% confidence intervals. The rs2886870 SNP also acts as a QTL for several
downstream regulatory patterns, with the T allele promoting significantly increased DNaseI hypersensitivity, PolII localization, and H3K7ac marks at
the site of the transcription factor site and increased PolII localization, H3K4me3 marks, and H3K7ac marks at the promoter of the downstream
C3orf59 gene, whose expression is also significantly associated with this QTL (panel reproduced from McVicker et al. 2013 [25]).
doi:10.1371/journal.pgen.1004857.g003
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dozen to several thousands of genes were significantly perturbed.

However, in all cases, only a small subset of genes inferred to be

bound by any individual TF were differentially expressed following

the knockdown of that factor [55]. This observation suggests that

many instances of TF binding in the genome do not result in

measurable changes in gene expression levels of the putative target

genes.

Regardless of the logic of functional TF binding, while

transcriptional regulation at promoters and enhancers outweigh

known posttranscriptional effects, it is clear that not all regulation

is happening within promoter regions. Along these lines, many

interesting nonintuitive interactions between regulatory elements

have emerged from regQTL studies. For instance, both sQTLs

and rdQTLs, which are primarily enriched within canonical splice

site motifs and 39 UTR stability motifs, respectively, also have

strong signals at the transcription start site and seem to be

cooperatively regulating gene expression variation with transcrip-

tional mechanisms [30,36]. These observations highlight the fact

that none of these mechanisms work in isolation and complex

coregulatory phenomena are quite common, if likely situation

dependent. Similarly, though regQTL studies have advanced our

understanding of the mechanistic basis for many eQTLs, there

remain many regQTLs that seem to have no discernable effect on

gene expression phenotypes [19,21,30]—for instance, while 55%

of eQTL SNPs are identified as dsQTLs, only 39% of all dsQTLs

are also associated with changes in gene expression levels [19].

Combined studies of quantitative posttranscriptional and protein

measurements might provide insight into many of these non-

eQTL regQTLs, but overall, the functional consequences of these

unexplained regQTLs remains an unanswered question in the

field.

What Have We Learned and What’s Next?

While recent work analyzing combinations of functional

genomic data types has taught us much about the principles of

gene regulatory logic, the results have more importantly opened

the door for new sets of questions to be addressed. Theoretical

models of gene regulatory networks and logic can finally be tested

and refined based on directly relevant genomic data of high

resolution and incredible breadth and depth. Outstanding

questions about causality, the order of regulatory events, and the

direction of effects can finally be addressed. For instance, the initial

intuition that histone modifications regulate chromatin state,

which in turn determine whether factors can bind to different sites,

might generally be inaccurate [24,25,56]. Instead, TF binding

seems to be the central event that mediates concerted changes in

other regulatory mechanisms determining chromatin states,

accessibility, and conformations. This, however, cannot be an

exclusive statement because it would require that the entire system

rely entirely on the variation in TF expression. An intermediate

model has been suggested, by which a small number of particular

TF, at a subset of their designated binding sites, can act as pioneer

factors. Pioneer activity generates concerted changes in chromatin

state, which are maintained by histone marks, DNA methylation,

and nucleosome positioning [57–59]. Chromatin areas that are

accessible because of pioneer activity are available for binding by

secondary factors [57,58]. Though direct evidence for the model

of pioneer transcription factors is still weak, the model is consistent

with all of the genomic variation data collected to date.

One promising way to move forward is by considering a

combination of data across individuals and across tissue types (for

example, the Genotype-Tissue Expression [GTEx] study). While

the genetic and mechanistic basis for regulatory variation across

individuals is of great interest, one of the factors limiting the utility

of population data is that relatively modest regulatory difference

are observed between individuals. Regulatory differences between

tissues or different cell types are of a much larger magnitude.

Moreover, while the regulatory landscape in the same cell type or

tissue across individuals is highly similar (with the occasional

difference due to genetic or epigenetic variation), the regulatory

programs in different cell types can be vastly different. It is thus

expected that a combined analysis of regulatory variation between

individuals and across tissues may have more power to detect

partial correlations and thus infer causality.

With a better understanding of the cascade of regulatory events

that leads to variation in gene expression outputs, we can turn our

attention back to the persistent questions that motivate much of

the research in the fields of regulatory evolution and disease

susceptibility. What are the modes of evolution within species?

How many regulatory changes underlie a phenotypic adaptation

and what mechanisms are affected? What are the most important

genetic changes in the evolution of particular lineages?

The genomic tools that allow us to collect appropriate data with

which to address these questions are already largely available. For

example, it is now possible to perform genome editing of specific

loci in order to specifically test the causal role of individual

nucleotide changes. Yet, in humans—where direct manipulation

of the entire individual is not possible—a suitable and faithful

cellular system is needed in order to carry out such experiments.

Studies using the LCL system in humans have yielded a wealth of

information and insight as we considered steady-state regulatory

phenotypes, but it seems that we have nearly exhausted the

usefulness of this artificial system, which does not lend itself well to

temporal, developmental, or spatial variation in gene regulation.

New systems, such as induced pluripotent cells (iPSC) and their

derived differentiated cell types, are perhaps a more appropriate

and fertile resource for such studies [60–62].
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