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Increasing data demonstrates that inflammation participates in the pathophysiology of neurodegenerative diseases. Among the
different inflammatory mediators involved, prostaglandins play an important role. The effects induced by prostaglandins might
be mediated by activation of their known receptors or by nonclassical mechanisms. In the present paper, we discuss the evidences
that link prostaglandins, as well as the enzymes that produce them, to some neurological diseases.

1. Neuroinflammation and Neurodegeneration

Neuroinflammation plays a key role in the progression or res-
olution of pathological conditions. Inflammatory responses
in the brain parenchyma have been associated with the
etiopathogenesis of different neurological disorders, includ-
ing central nervous system (CNS) infection, brain ischemia,
multiple sclerosis, Alzheimer’s disease, and Parkinson’s dis-
ease [1–7]. Then, it is presently clear that neuroinflammation
is a key feature shared by many neurodegenerative disorders
[8, 9].

Different CNS cells, such as microglia, astrocytes, oligo-
dendrocytes, and neurons produce a plethora of inflam-
matory mediators, which act either in a paracrine or
an autocrine fashion, leading to an intricate cross-talk
between these different cell types. Among these mediators,
many studies have demonstrated that CNS cells produce

prostanoids and that these mediators might contribute to the
normal CNS function or to enhance the neuroinflammatory
and neurodegenerative processes [10]. Herein, we review the
current knowledge on the role of prostaglandins, as well as
the enzymes that synthesize them, in neuroinflammatory and
neurodegenerative diseases.

2. Roles of Prostaglandins in
Neuroinflammation: In Vitro and
In Vivo Evidences

Due to the variety of prostaglandins presently known, it is
reasonable to speculate that these lipid mediators might play
different roles in the CNS. Below, we describe some in vivo
and in vitro data with regard to the potential role of specific
prostanoids in neuroinflammation.
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2.1. PGE2. To date, three prostaglandin (PG) E synthases
(PGESs) have been characterized: the microsomal PGESs
(mPGES-1 and mPGES-2) and the cytosolic PGES (cPGES)
[11–14]. mPGES-1 is an inducible enzyme and is expressed
also in activated microglia [15, 16]. There are at least four
characterized PGE2 receptors, namely, EP1, EP2, EP3, and
EP4. This prostaglandin modulates the expression of inflam-
matory mediators by microglial cells. For example, PGE2

and EP agonists inhibited the expression of inducible nitric
oxide synthase (iNOS) and nitric oxide (NO) generation
[17] and enhanced the expression of cyclooxygenase (COX)-
2 induced by lypopolysaccharide (LPS) in cultured microglia
[18]. Moreover, an EP2 agonist inhibited interleukin (IL)-
1β release by cultured primary rat microglia stimulated with
LPS, although no reduction of this cytokine was observed
with EP1, EP3, and EP4 agonists [19].

Intraperitoneal injection of LPS increased the expression
of EP4 receptors in microglial cells and in the hippocampus
of mice [20]. Interestingly, activation of EP4 receptors
reduced the expression of different cytokines, COX-2 and
iNOS in BV-2 and primary mouse microglial cells [20].

2.2. PGD2. PGD2 has also been shown to be important in
neuroinflammatory conditions. A 6-day infusion of LPS in
the fourth cerebral ventricle of rats enhanced the PGD2

production in the brain [21]. It has been shown that PGD2

produced by microglia acts on DP1 receptors of astrocytes,
leading to astrogliosis. Moreover, oligodendroglial apoptosis
was reduced by hematopoietic prostaglandin D synthase
(HPGDS) inhibitor and in HPGDS-null mice, suggesting
an important effect of PGD2 in demyelination in twitcher
mice, a model of Krabbe disease [22]. Expression of DP1
and HPGDS is also increased in the brains of patients with
Alzheimer’s disease [23].

PGD2 also induced apoptosis of mouse oligodendrocyte
precursor (mOP) cells, what could interfere in the demyeli-
nation process that occurs in multiple sclerosis [24]. It
was shown that mice deficient in lipocalin-PGDS reveal an
increased number of apoptotic neurons and olygodendro-
cytes, suggesting a protective role of lipocalin-type PGDS in
the genetic demyelinating mouse twitcher [25].

2.3. 15-Deoxy-Δ12,14-Prostaglandin J2 (15d-PGJ2). 15d-PGJ2

is a metabolite of PGD2 and is formed from PGD2 by the
elimination of two molecules of water. At least some effects
mediated by 15d-PGJ2 are mediated by activation of the
peroxisome proliferator-activated receptors (PPARs)γ. This
prostaglandin has been shown to inhibit NO and tumor
necrosis factor (TNF)-α production as well as expression
of major histocompatibility complex (MHC) class II in
activated microglia, suggesting that this prostaglandin might
be important to modulate microglia functions [26]. Similar
effects, such as downregulation of iNOS and cytokines, have
also been observed in astrocytes [27].

2.4. PGI2. Few studies were carried out to investigate the
role of PGI2 in the CNS. In general, these studies suggest
a neuroprotective role for PGI2 against different stimuli.

For example, enhancement of PGI2 synthesis in neuron-
glia cultures by adenoviral gene transfer of PGI synthase
(PGIS) reduces the expression of different inflammatory
mediators induced by LPS, such as TNF-α [28], and PGI2

receptor ligands prevented the death of hippocampal neu-
rons induced by high oxygen, xanthine + xanthine oxidase,
or serum deprivation [29]. Interestingly, 15-deoxy-(16-
m-tolyl)-17,18,19,20-tetranorisocarbacyclin methyl ester, a
selective central type PGI2 receptor ligand, reduced brain
damage induced by middle cerebral artery occlusion [30].

2.5. PGF2α. In rat primary neuronal culture, hypoxia
increased PGF2α content. Importantly, previous addition
of this prostaglandin to the culture medium exacerbated
hypoxic injury [31]. PGF2α reduced TNF-α in primary spinal
cord cultures stimulated with LPS [32]. In a model of
unilateral middle cerebral artery occlusion, knockout (KO)
mice to FP, the receptor for PGF2α, have less neurological
deficit and smaller infarct volumes [33]. The KO animals
were also less sensitive to excitotoxicity induced by unilateral
intrastriatal N-methyl-D-aspartate injection. In agreement
with that, in the same model, the FP agonist latanoprost
increased neurological deficit and infarct size in wildtype
(WT) mice [33].

3. Roles of Prostaglandins in
Neurodegenerative Diseases

As previously mentioned, there are strong evidences that
inflammation contributes to etiopathogenesis of neuroin-
flammatory and neurodegenerative diseases. Below, we dis-
cuss the involvement of prostaglandins in these neuropatho-
logical conditions.

3.1. Multiple Sclerosis (MS). A neuroinflammatory compo-
nent is very evident in the etiopathogenesis of MS. MS
is an autoimmune demyelinating disorder characterized by
distinct episodes of neurologic deficits attributable to white
matter lesions. It is the most common of the demyelinating
disorders, which affects predominantly northern Europeans.
The disease becomes clinically apparent at any age, although
onset in childhood or after 50 years of age is relatively rare.
Women are affected twice as often as men. In most indi-
viduals with MS, the illness shows relapsing and remitting
episodes of neurologic deficits. The frequency of relapses
tends to decrease during the course of the disease, but there is
a steady neurologic deterioration in a subset of patients [34].

Modeling clinical aspects of any human disease in
rodents and cells is a big challenge in all fields of research.
However, it is especially more challenging to model MS,
because this is an exclusively human disease, its etiopatho-
genesis is unknown, and this disease is multifaceted, which
occur in a relapsing-remitting manner. As the toxin-induced
models of demyelination such as those induced by cuprizone,
ethidium bromide and lysolecithin are important to under-
stand demyelination and remyelination but do not resemble
the human disease as efficiently as the autoimmune model
(experimental autoimmune encephalomyelitis EAE), this
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paper will be focused on the roles played by prostaglandins in
this model because of its presumed higher predictive validity
[35].

3.1.1. Phospholipase A2 (PLA2) and COX. There is a
large body of evidence demonstrating the role played by
prostanoids in the onset and progression of EAE in a wide
variety of animal models as well as in in vitro studies.
Within the last decade, some studies have demonstrated that
cytosolic PLA2 (cPLA2) plays a key role in the etiopatho-
genesis of EAE [36–39]. There are evidences supporting
distinct roles played by different isoforms of PLA2 in the
onset or progression of EAE [40]. cPLA2 plays a role in
the onset of EAE, calcium-independent PLA2 in the onset
and progression, and secretory type II PLA2 in the later
remission phase. Immunohistochemical labeling of cPLA2

was shown in either immune or endothelial cells in the
spinal cord lesions of mice with EAE induced by myelin
oligodendrocyte glycoprotein (MOG). Both preemptive and
therapeutic treatments with a selective cPLA2 inhibitor
resulted in marked reduction in the onset and progression
of EAE. Accordingly, the reduced clinical score parallels
with reduced spinal protein concentration of COX-2 and
both gene expression and protein concentrations of dozens
of inflammatory mediators, including several cytokines and
chemokines which are implicated with the etiopathogenesis
of EAE [36]. Moreover, selective inhibition of cPLA2α

prevents EAE and suppresses Th1 and Th17 responses [38].
cPLA2α inhibitors diminish the ability of antigen-presenting
cells to induce antigen-specific effector T-cell proliferation
and inflammatory cytokine production, inhibit microglial
activation, and increase oligodendrocyte survival [39]. The
latter study also showed that if cPLA2α inhibitors are admin-
istered at the peak of disease or during remission—relapsing-
remitting model—, the subsequent relapse is abolished.
Consistently with these pharmacological studies, a genetic
study showed that cPLA2α-deficient mice are resistant to EAE
[37].

COX-1 and -2 are upregulated in the CNS of animals
in different EAE models [36, 38, 41]. Accordingly, differ-
ent selective and nonselective inhibitors of COX isoforms
induce beneficial effects in different animal models of
EAE. EAE onset is delayed if diet is supplemented with
acetylsalicylic acid shortly after its induction in Lewis rats
[42]. Indomethacin, another non-selective COX inhibitor,
attenuates the progression of EAE [43].

3.1.2. PGE2. PGE2 seems to be the eicosanoid which is
more strongly implicated with EAE onset and progression.
Bolton and colleagues investigated the CNS concentrations
of PGE2, 6-oxo-PGF1α, and PGF2α in acute EAE-affected
guinea pigs [44]. They showed that a PGE2 concentration
increase in spinal cord and cerebellum precedes EAE onset,
whereas the other two prostanoids were found to peak
after the observation of the first clinical signs of EAE. The
behavioral syndrome associated with EAE is also preceded
by increased CNS concentration of PGE2 in mice [45]. A
wide screening that examined the correlation between many
arachidonic acid (AA) pathway products and EAE onset

and progression showed that PGE2 (concomitantly with its
receptors EP1, EP2, and EP4) is synthesized more markedly
than other eicosanoids [46], suggesting an important role
in exacerbating EAE. However, dual roles played by PGE2

have been recently shown in mouse EAE. PGE2 exacerbates
Th1 and Th2 responses via EP2 and EP4 receptors during
mouse EAE onset and protects the brain from immune cell
infiltration via EP4 receptor [47].

mPGES-1 upregulation occurs in microglia/macro-
phages in the spinal cord lesions of mice with EAE induced
by MOG as well as in brain tissues from MS patients.
mPGES-1-deficient mice exhibit a better clinical score and
suppressed Th1 and Th17 responses when compared with
those of nongenetically modified control mice after EAE
induction [46]. Regarding the untoward gastric and cardio-
vascular effects induced by COX inhibitors [48], there is an
eagerness to discover compounds that target mPGES-1 for
treating inflammatory diseases [49–51] because this enzyme
is downstream to COX-2 in AA pathway.

3.1.3. 15d-PGJ2. Systemic treatment with 15d-PGJ2 inhibits
EAE progression in mice, and this is associated with reduced
demyelination, neuroinflammation, IL-12 production by
macrophage/microglial cells, T-cell proliferation, and IL-
12-induced T-cell responses [52]. Moreover, pretreatment
with this agonist of PPARγ delays the onset of EAE and
reduces the spinal cord infiltration of CD4+ T cells and
macrophages [53]. 15d-PGJ2 suppresses the production of
cytokines and/or chemokines in cultured T cells, microglia,
and astrocytes [53–55]. Providing further support to the role
played by 15d-PGJ2 in EAE etiopathogenesis, it was shown
that PPARγ antagonists reverse the inhibition of EAE clinical
signs and Th1 response by this cyclopentanone prostaglandin
[56].

3.1.4. Other Prostaglandins. As there is a correlation between
increased spinal PGDS concentration and the initiation of
relapsing phase of EAE, it has been suggested a role played
by this isomerase in this phenomenon [57]. Indeed, PGD2

is released from mast cells in allergic reactions, and it is
suggested to modulate allergic inflammation [58, 59]. On the
other hand, a more recent study showed that PGD2, PGI2

and 5-lipoxygenase pathways are suppressed in the acute
phase of EAE and returns to constitutive levels in the chronic
phase [46]. However, in a relapsing-remitting model, PGD2

remained unaffected throughout all phases [41].

3.2. Alzheimer’s Disease (AD). The first evidences supporting
a role played by inflammation on AD onset rose up in the
late 1980s, when many signs of inflammation in postmortem
brains from AD patients were observed, such as activated
lymphocytes and microglial cells in plaque and tangle
lesions, presence of complement proteins, cell lysis, and
opsonisation of debris [60–64].

3.2.1. PLA2 and COX. It was hypothesized that the long-
term use of nonsteroidal anti-inflammatory drugs (NSAIDs)
could reduce the risk for AD or delay disease onset. Indeed,
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McGeer et al. [65] observed a clear negative correlation
between the prevalence of AD in general population ver-
sus that in rheumatoid arthritis patients taking NSAIDs,
mainly salicylates. Reinforcing this evidence, a clinical trial
conducted shortly afterwards, showed that treatment with
indomethacin, a nonselective COX inhibitor, improves cog-
nitive deficits in AD patients [66]. Since then, epidemiologi-
cal studies have been showing either beneficial or detrimental
effects induced by COX inhibitors on AD risk and delay
of onset, though beneficial effects are mostly observed
[67]. Despite controversy, these studies clearly show that
prostanoids play an important role in AD etiopathogenesis.

cPLA2, which cleaves AA from cellular membrane phos-
pholipids, is elevated in AD brain [68]. The cyclooxy-
genation and subsequent isomerization of AA produces
prostaglandins, which regulate immune responses and neu-
rotransmission [69, 70]. Accordingly, increased expression of
COX-1 and -2 is observed in AD-affected brains [71, 72].
One of the most versatile products of this cascade is PGE2,
which is produced by glial cells and neurons.

3.2.2. PGE2. An increased expression of mPGES-1 and
mPGES-2 is observed in the brain of AD brains [73,
74]. Moreover, patients with probable AD have higher
cerebrospinal fluid (CSF) concentrations of PGE2 than age-
matched control subjects [75]. It has been shown that PGE2

increases amyloid precursor protein (APP) gene expression
and production in vitro [76–78]. This effect is inhibited by
immunosuppressants in astrocytes [77] and is associated
with EP2 receptor activation in microglial cells [78]. On
the other hand, there is evidence supporting an anti-
inflammatory role played by PGE2 mediated by EP4 receptor
in LPS-stimulated cultured microglial cells [20]. However,
PGE2 increases APP production via both EP2 and EP4
receptors (but not via EP1 and EP3 ones) both in vitro
and in vivo [76, 79]. Hoshino et al. [76] showed that
PGE2-dependent internalization of EP4 receptor increases γ-
secretase activity, which in turn leads to higher proteolysis of
APP.

In transgenic mice overexpressing APP, selective inhi-
bition of COX-2 blocks amyloid β (Aβ)-induced suppres-
sion of hippocampal long-term potentiation (LTP) and
memory function independently of reductions in Aβ42
and inflammatory cytokines, but markedly dependent on
PGE2 concentrations, showing an additional mechanism by
which NSAIDs may protect against AD progression and
an important synaptic role of PGE2 in this setting [80].
EP2 receptors are important mediators of PGE2 actions
on electrophysiological properties of hippocampal neurons,
as EP−/− mice exhibit cognitive deficits in social memory
tests associated with a deficit in long-term depression in
hippocampus [81]. Pharmacological studies corroborate
these previously mentioned findings. Either exogenous or
endogenous PGE2, but not exogenously applied PGD2 or
PGF2α, regulates hippocampal neuronal plasticity [69, 70].

3.2.3. PGD2 and 15d-PGJ2. One of the first studies which
assessed prostaglandins concentrations in postmortem cere-
bral cortices of probable AD patients showed that only PGD2

was increased in comparison with age-matched control
subjects [82]. Indeed, PGDS expression was found to be
localized in microglial cells surrounding senile plaques, and
DP1 receptor expression was observed in microglial cells and
astrocytes within senile plaques in human AD brains. In
Tg2576 transgenic mice—a model of AD disease—, the DP1
receptor expression increases in parallel with Aβ deposition
[23].

As 15d-PGJ2 induces neuronal apoptosis [83], it was
initially suggested that this prostanoid is associated with neu-
rodegeneration. However, it was shown afterwards that 15d-
PGJ2 reduces microglial production of NO, IL-6, and TNF-α
induced by Aβ40, which suggests anti-inflammatory indirect
neuroprotective effect [84]. Accordingly, not only 15d-PGJ2,
but also troglitazone and ciglitazone, other compounds
known to activate PPARγ and attenuate the Aβ-induced
impairment of hippocampal LTP in vitro, supporting a
possible beneficial effect on AD progression.

3.3. Parkinson’s Disease (PD). PD is the second most com-
mon neurodegenerative disease, characterized by abnormal
motor symptoms such as stiffness, postural instability,
slowness of movement, resting tremor, and bradykinesia.
The neuropathological features of PD are progressive death
of dopaminergic neurons in the substantia nigra (SN) pars
compacta that project to the striatum. The exact cause
of this cell death is not clear, but recent studies have
shown that the process may involve inflammatory reactions,
in addition to oxidative stress, mitochondrial dysfunction,
neural excitotoxicity, and insufficient neurotrophic factors
[85–87].

It is known that, in the SN of PD brains, microglia is acti-
vated [5], and its activation has been strongly associated with
CNS pathology of PD, by production of proinflammatory
and cytotoxic factors, such as cytokines, chemokines, NO,
reactive oxygen species (ROS), and AA metabolites [88, 89].

3.3.1. PLA2 and COX. It has been shown that mice carrying
a mutation of the cPLA2 gene, leading to an absence of
cPLA2 activity, are resistant to 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP), a precursor to 1-methyl-4-
phenylpyridinium (MPP+) -induced neurotoxicity, a well-
known model of PD [90]. Dopamine receptor activation also
increased cPLA2 activity in a rat model of PD [91].

Many data demonstrated also an alteration of COX-2
expression in PD. In fact, different studies have shown an
upregulation of COX-2 in animal models of PD [92–94].
COX-2 increased expression has been also demonstrated
in the SN of postmortem PD specimens in comparison to
normal controls [95, 96]. Moreover, it has been shown
that COX inhibition [93, 94, 97, 98] and COX transgenic
ablation [99–101] in in vivo models of PD increased survival
of dopaminergic neurons. However, this effect was not
observed in all studies. Rofecoxib, a COX-2 inhibitor, did not
change MPTP-induced neurodegeneration and, paradoxi-
cally, caused a significantly augmented basal prostaglandin
production [92].
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Regular use of NSAIDs is associated with a lower risk
of PD compared with nonregular users of these drugs [85,
102]. However, this is still controversial, since recent studies
could not demonstrate a protective effect of NSAIDs in PD
[103–105]. Considering that these drugs might have other
mechanisms of action unrelated to COX inhibition, it is
important to evaluate the effect of specific compounds in the
prevention or treatment of PD.

3.3.2. PGE2. It has been observed that PGE2 is significantly
elevated in the CSF and SN of PD patients in comparison
to control subjects. Moreover, incubation of slices of SN
with AA induced an increased production of PGE2 synthesis,
suggesting an enhancement of the enzymes responsible to its
production [106].

Release of aggregated α-synuclein, a major component
of Lewy bodies in PD, after neuronal damage, may activate
microglia. This activation could, in turn, lead to production
of proinflammatory mediators, such as PGE2 [107], con-
tributing to the progression of nigral neurodegeneration. A
pretreatment of primary mesencephalic neuron-glia mouse
cultures with α-synuclein enhances the production of PGE2.
Apparently, phagocytosis of α-synuclein activates NADPH
oxidase, which produces ROS, and has a crucial role in
microglial activation and associated neurotoxicity [107].

In primary mesencephalic mixed neuron-microglia cul-
tures, MPP+, a neurotoxin that causes dopaminergic neu-
ronal death, induced PGE2 production. However, this effect
was not observed in enriched microglia and enriched neuron
cultures, indicating that is necessary an interaction between
microglia and neurons for MPP+-induced increase of the
PGE2 production, probably due to COX-2 activity. Moreover,
PGE2 was not enhanced neither in enriched astroglia nor
in neuron-astroglia cultures [94]. Conversely, PGE2 was
significantly reduced in the hippocampus, striatum, and
cortex of animals injected with 6-hydroxydopamine (6-
OHDA) [108].

It has been shown that EP receptors are expressed
differently in the SN. To date, in the rat, EP1 is restricted to
dopaminergic neurons, while EP3 is expressed exclusively by
nondopaminergic cells. On the other hand, EP2 is localized
to both dopaminergic and nondopaminergic cells [109].
In rats, EP1, but not EP2 and EP3 receptor antagonists,
reduced the dopaminergic neuronal death induced by 6-
OHDA, suggesting an important effect of EP1 receptor in
the neurotoxicity induced by PGE2 [109]. Also, culture
of dopaminergic neurons displayed EP2 receptors after 6-
OHDA neurotoxicity, and butaprost, a selective EP2 agonist,
significantly increased survival of tyrosine hydroxylase posi-
tive cells, suggesting a possible neuroprotective role of EP2 of
activation [110].

Interestingly, in comparison to microglia obtained of
WT animals, microglia of EP2 KO mice reveal an enhanced
capacity to clear aggregated α-synuclein in human meso-
cortex tissue of patients with Lewy body disease. Moreover,
EP2−/− mice were more resistant to neurotoxicity induced by
MPTP, an effect that is associated with attenuated formation
of aggregated α-synuclein in the SN and striatum [111].

3.3.3. PGD2, PGJ2, and Other Prostaglandins. PGJ2 and its
metabolites might alter the process of protein folding and
aggregation, contributing to the development of PD. In
human neuroblastoma SK-N-SH cells, PGJ2 disrupts the
structural integrity of microtubules and actin filaments
[112]. In vitro, this molecule also hindered the poly-
merization of highly purified tubulin from bovine brain
[113]. Interestingly, in cells treated with PGJ2, micro-
tubule/endoplasmatic reticulum collapse coincides with the
formation of protein aggregates, such as ubiquitinated
proteins and α-synuclein [113].

In mouse and human neuroblastoma cells, as well as
in rat primary embryonic mesencephalic cultures, PGA1,
PGD2, PGJ2, and its metabolite Δ12-PGJ2 induced accu-
mulation of ubiquitinated proteins and cell death [114].
PGE2 only exhibited neurotoxic effects at high concen-
trations. The ubiquitination induced by Δ12-PGJ2 might
be due to inhibition of ubiquitin C-terminal hydrolase
(UCH) L3 and UCH-L1, implicating in an alteration of de-
ubiquitinating enzymes, possibly contributing to the accu-
mulation and aggregation of ubiquitinated proteins, what
leads to inflammation associated with the neurodegenerative
process [114]. Modification of UCH-L1, an enzyme that
functions predominantly during monoubiquitin recycling
in the ubiquitin-proteosome system, by cyclopentenone
prostaglandins, induced unfolding and aggregation of the
protein. Therefore, the deleterious effect of COX-2 in
PD could be due to the production of cyclopentenone
prostaglandins [115].

In addition to that, PGA1 has been shown to reduce
nuclear factor kappa B translocation to the nucleus, caspase 3
activation, and apoptosis of human dopaminergic SH-SY5Y
cells induced by rotenone [116].

3.4. Amyotrophic Lateral Sclerosis (ALS). ALS is a progressive
neurodegenerative condition characterized by the selective
death of motor neurons [117]. This neuropathological
condition can be classified as familial, in which mutations
in the enzyme superoxide dismutase-1 (SOD1) can occur, or
as sporadic, which encompasses 90% of ALS patients [118].
Neuroinflammation seems to play an important role in the
progress of this disorder. In ALS, microglia activation and
proliferation is observed in regions where there is neuron
loss, like motor cortex, motor nuclei of the brainstem and
corticospinal tract. Microglia might be essential for the
motor neuron toxicity [119].

3.4.1. PLA2 and COX. It has been shown that cPLA2 is
expressed in astrocytes and motor neurons of the spinal cord
of transgenic mice carrying the gene encoding a mutant form
of human SOD1 [120, 121]. In agreement with that, cPLA2

immunoreactivity was also observed in the spinal cord of
human SOD1-mutated familial ALS and in sporadic ALS
patients [120, 122].

An increase in COX-2 expression is observed in the spinal
cord of SOD1G93A transgenic mice [123, 124] and human
cases of ALS [125, 126]. Postmortem examination of the
ventral horn of the spinal cord of sporadic ALS patients



6 Mediators of Inflammation

revealed that COX-2 immunoreactivity was increased in
motor and interneurons, as well as in glia, in comparison
with non-ALS controls [127]. On the other hand, COX-1
expression was detected in microglia, but not in neurons, of
ALS and controls tissues, albeit no difference was observed
between the two groups of patients [127].

Few attempts have also been made to elucidate the effect
induced by COX inhibitors in models of ALS. In organotypic
spinal cord cultures, the COX-2 selective inhibitor SC236
significantly reduced the excitotoxic damage of motor neu-
rons induced by threo-hydroxyaspartate, a compound that
inhibits astroglial transport of glutamate [128]. Therefore, it
is possible that COX-2 might be involved in the excitotoxicity
induced by glutamate.

Moreover, in vivo studies also suggested that COX might
be a potential target for ALS treatment. It has been shown
that traditional NSAIDs and COX-2 inhibitors reduced
different pathological features developed by SOD1G93A trans-
genic mice, such as loss of motor neurons and glial activation
in the spinal cord, motor impairment and weight loss,
as well as these compounds prolonged the survival of
the animals [120, 129–131]. Considering these evidences,
Minghetti [132] suggested that COX-2 enhancement could
be deleterious in ALS not only due to the enhancement of
glutamate release by PGE2 [133], but also because of the ROS
produced by COX peroxidase activity.

On the other hand, Almer et al. [134] have shown a
drastically reduced PGE2 production in the spinal cord of
transgenic SOD1G93A/COX-1−/− mice, suggesting a minor
role for COX-2 in the production of PGE2 in the disease.
Moreover, deficiency of COX-1 did not affect motor neuron
loss and survival of the animals [134]. These results challenge
the concept that COX-2 is the main enzyme involved in
ALS.

3.4.2. PGE2 and 15d-PGJ2. PGE2 is elevated in the spinal
cord of SOD1G93A mice [130] and in the serum and
CSF of ALS patients [127, 135], though the levels of this
prostaglandin did not correlate with clinical state of the
patients [135].

The role of PGE2 was further investigated in in vitro mod-
els of ALS. In an organotypic spinal cord slice model, motor
neuronal death induced by D, L-threo-hydroxyaspartate is
reduced by PGE2, as well as butaprost and sulprostone, EP2
and EP3 receptor agonists, respectively [136]. Interestingly,
in the same study, SC58236, a COX-2 inhibitor, also reduced
motor neuron loss.

EP2 receptor expression is increased in astrocytes and
microglia of SOD1G93A mice and in astrocytes of human ALS
spinal cord. Deficiency of EP2 receptor in SOD1G93A mice
increased the survival and grip strength in comparison with
SOD1G93A/EP2+/+ and SOD1G93A/EP2+/− mice. The absence
of EP2 receptor also reduced the production of different
inflammatory mediators in this animal model of ALS [124].

Recently, it has been shown that mPGES-1 is enhanced in
the spinal cord of SOD1G93A in comparison with WT mice.
Interestingly, AAD-2004, a molecule that inhibits mPGES-1
and free radical formation, reduced microglia activation and

motor neuron loss, as well as it improved motor function and
increased survival [137].

15d-PGJ2 immunoreactivity is increased not only in
motor neurons, but also in astrocytes and reactive microglia
in the spinal cord of ALS patients [138].

3.5. Huntington’s Disease (HD). HD is a progressive neu-
rodegenerative disease that reveals movement disorders and
dementia as main features. This pathological condition is
an autosomal-dominant pathological condition disease [139,
140]. Although there are evidences that neuroinflammation
is present in HD, it is not known whether it contributes to
the etiopathogenesis of the disease or whether it is solely an
epiphenomenon [141].

It has been shown that in R6/2 mice, an animal model
of HD, the number of microglia is reduced in some
brain regions in comparison with their WT littermates.
Microglia of animals at 14.5 weeks of age were also smaller
in size than the same cells in the animals at 7 weeks
of age, and they also revealed condensed nucleus and
fragmentation of the cytoplasm within processes, suggesting
an impaired function of these cells in this pathological
condition [142]. On the other hand, activated microglia are
present in the neostriatum, cortex, and globus pallidus of
HD brains. Importantly, the reactive microglia appeared in
association with pyramidal neurons presenting huntingtin-
positive intranuclear inclusions [143]. Although a causal link
between neuroinflammation and HD onset or progression
has not been demonstrated, it is reasonable to assume that
microglia might play a role in its development.

3.5.1. COX. Although there are different genetic models of
HD, some compounds such as 3-nitropropionic acid (3-NP)
and quinolinic acid (QA) are also used to induce striatal
neuron toxicity, being therefore considered HD animal
models [144–146]. COX-2 immunoreactivity is enhanced in
striatal tissues 12 h after treatment of animals with QA. This
enhancement was observed predominantly in neurons and
microglia [147].

Chronic treatment with different COX inhibitors, such
as rofecoxib, celecoxib, nimesulide, and meloxicam improved
spontaneous locomotor activity and the motor performance,
as well as these medicines reduced biochemical and mito-
chondrial alteration induced by QA [148–150]. Naproxen
and valdecoxib, two COX inhibitors, also reduced 3-NP-
induced motor and cognitive impairment [151]. This study
suggested that these effects could be due to a reduction in the
oxidative stress induced by the drugs.

Although beneficial effects were observed induced by
COX inhibitors in drug-induced models of HD, similar
effects are not observed in transgenic mice. For example,
administration of acetylsalicylate from weaning did not
induce any alteration of rotarod performance and ventricle
enlargement N171-82Q mice in comparison with untreated
animals. Rofecoxib also did not change motor performance
and lifespan of R6/2 mice [152]. On the other hand,
acetylsalicylate and celecoxib shortened life expectancy of
R6/2 and N171-82Q mice, respectively [152, 153].
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3.5.2. PGE2, PGF2α, and PGA1. Administration of 3-NP
enhances PGE2 and PGF2α in the striatum [154, 155].
These prostaglandins are reduced by licofelone, a compet-
itive inhibitor of COX-1, COX-2, and 5-LOX isoenzymes.
In addition, this compound reduced the impairment in
locomotor activity and motor performance, as well as it
reduced apoptotic markers [155]. Expression of COX-2,
as well as PGE2 production, is increased in the ipsilateral
side compared with the contralateral vehicle-injected side
in the striatum and cortex of rats by unilateral intrastriatal
injection of QA [156]. Moreover, it has also been shown
that QA injection induced EP3-positive striatal neuronal
loss, whereas activated microglia expressed EP3 in vivo after
excitotoxicity injury [157].

A role for PGA1 has also been suggested. This prosta-
glandin attenuated DNA fragmentation and neuronal loss
and increased dopamine D1 receptor expression induced by
QA in the striatum it also reduced the QA-induced activation
of nuclear factor kappa B, but not activator protein-1, in this
brain region [158].

4. Discussion

There is an intricate relationship between neuroinflamma-
tion and neurodegeneration. In general, acute inflammation
in the CNS is triggered by a neuronal injury or infection
and is short-lived. This acute response is believed to have
protective aspects, since it could avoid further injury and
induce tissue repair [159]. Although an acute stimulus may
trigger, for example, oxidative stress, this short-term event
would not interfere with long-term neuronal survival [160].
It is known that moderate microglia activation might induce
neuroprotective effects, such as to scavenger neurotoxins,
remove cell debris and secrete mediators which are impor-
tant for neuronal survival [160]. Acute activation of these
cells is a normal response to injuries, and it contributes to
wound healing [161].

On the other hand, chronic neuroinflammation persists
for a long time after the initial insult and normally is self-
perpetuating [160]. This condition induces neuronal death,
and the molecules released by the dead neurons can further
activate microglia, which enhances cell death. This vicious
cycle, together with the continuous production of factors
that activate microglia, contributes to the chronicity of this
process.

Again, microglia might play an important role in this
long-term process. Intense activation and accumulation of
these cells at the site of injury can induce neuronal damage,
since they release a variety of neurotoxic substances. For
example, the Aβ protein, which is involved in AD, can
activate microglia and lead them to release neurotoxic
factors such as NO, TNF-α, and superoxide, leading to the
progression of this disorder [162]. An interesting finding is
that a chronic inflammation induced by the infusion of LPS
(a substance that strongly activates microglia) in the brain
of rats resembles different features observed in AD patients
[163].

Actually, it is presently not clear why the neuronal or
glial cells cannot prevent the chronicity of the inflammatory

process. However, it might be due to a plethora of effects.
Abnormal synthesis of some proteins by neurons could
continuously activate microglia, leading them to the release
of neurotoxic factors. Moreover, oxidative stress is another
important event that contributes to the neuronal damage
observed in chronic neuroinflammation [164]. It is also
possible that the senescence of immune system in the CNS
could contribute to chronicity of this process. For example, it
has been shown that microglia from old transgenic PS1-APP
mice release an increased amount of inflammatory mediators
and do not phagocytose Aβ properly in comparison to
microglia from young mice [165]. Therefore, microglia
senescence could play a role in the development of some
neurodegenerative conditions [161, 166]. Despite these facts,
the adaptive immune system might also play a role, as it has
been shown that it is involved in the etiopathogenesis of PD
[167].

In this context, one might assume that the production
of lipid mediators, such as prostaglandins, might differ-
ently modulate neuroinflammation and neurodegeneration.
Considering the roles of prostaglandins and depending on
the stage of inflammation, as well as different microenvi-
ronments generated by a variety of substances, these lipid
mediators could determine the survival or death of neurons.

5. Conclusion

Here we summarized the evidences that prostaglandins
might play a key role in the etiopathogenesis of neuroin-
flammatory and neurodegenerative diseases. Prostaglandins
have a plethora of actions in CNS cells that differently
affect the progress of inflammation and neuronal death
or survival. Therefore, inhibition of the production of a
specific prostanoid or its action on its receptor would
be a better mechanism to control some pathological pro-
cesses. On the other hand, inhibiting the effects of some
prostaglandins could also be deleterious. Thus, further
studies are important to make a more complete idea the
role of these lipid mediators in neuroinflammation and
neurodegeneration. This knowledge might serve to develop
pharmacological strategies for the treatment of neurological
diseases.

Abbreviations

15d-PGJ2: 15-deoxy-Δ12,14-prostaglandin J2

3-NP: 3-nitropropionic acid
6-OHDA: 6-hydroxydopamine
AA: Arachidonic acid
AD: Alzheimer’s disease
ALS: Amyotrophic lateral sclerosis
Aβ: Amyloid β
APP: Amyloid precursor protein
CNS: Central nervous system
COX: Cyclooxygenase
CSF: Cerebrospinal fluid
EAE: Experimental autoimmune

encephalomyelitis
HD: Huntington’s disease



8 Mediators of Inflammation

HPGDS: Hematopoietic prostaglandin D
synthase

IL: Interleukin
iNOS: Inducible nitric oxide synthase
KO: Knockout
LPS: Lypopolysaccharide
LTP: Long-term potentiation
MHC: Major histocompatibility complex
MOG: Myelin oligodendrocyte glycoprotein
mOP: Mouse oligodendrocyte precursor
mPGES: Microsomal PGE synthase
MPP+: 1-methyl-4-phenylpyridinium
MPTP: 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine
MS: Multiple sclerosis
NO: Nitric oxide
NSAIDs: Nonsteroidal anti-inflammatory

drugs
PD: Parkinson’s disease
PG: Prostaglandin
PGIS: PGI synthase
PLA2: Phospholipase A2

PPARs: Peroxisome proliferator-activated
receptors

QA: Quinolinic acid
ROS: Reactive oxygen species
SN: Substantia nigra
SOD1: Superoxide dismutase-1
TNF: Tumor necrosis factor
UCH: Ubiquitin C-terminal hydrolase
WT: Wildtype.

Acknowledgments

The authors acknowledge Fundação de Apoio à Pesquisa
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